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4 Gy +ag+a, = 0, contradicting hypotheses concerning . Thus, §
represents at least 8 clements of #. The theorem follows. &

Attainment of the bound for f(k) in Theorem 5, with k& = 4, is ghown
by 1, 3,4, 7 (mod 9). In general, precise evaluation of f(k) is increasingly
laborious, *even though entirely elementary. We have shown f(5) = 13.
The proof is available ag an appendix in [1]. Furthermore 7(6) < 19,
and equality seems likely. (Computationg in this direction are in Progress.)

Szemerédi [5] can show f(k) > eh?* where ¢ is some positive constant.
On the other hand, f(k) < [$%%]+ 1, as shown by the following two exam-
ples (where s is any positive integer);

(1) @, =< for 1<<i<<s,ap =844 for s+1<4< 2841 {mod 2s% 125+
+2), where kb = 2¢4+1, and the number of eclements represented
is Fhe4-4

(2) @; =i for 1<i<<s, o = $*—s+4 for s--1< i< 2 (mod 252 4- 2,
where L = 2s, and the number of elements represented is k211,

- Ttis interesting to note that in all resolved cases, f(k) can be achiev-
ed within the class of cyclic groups. We conjecture this to be the case
for all k.

Finally we remark that our theorems perhaps carry over to non-
abelian groups, but we have no results in this direction.
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H. Davenport and W. Slerpiniski

1. Introduction. The purpose of' the present paper i3 to establish
a new theorem on linear forms in the logarithms of algebraic numbers
which incorporates many of the more recent developments in this field
and, in certain respects, goes farther. .

Leb oy, ..., o, be non-zero algebraic numbers with degrees at most 4
and let the heights of e,,...,a,_; and a, be at most A’ and A (> 2)
respectively. We prove:

THEOREM. For some effectively computable number € >0 depending
onky on n, d and A', the inequalities '

{1) 0 < |bdoga,+... + bloga, | < (-lozdlog s

have no solution in rational integers by, -
(= 2).

It has been assumed that the logarithms have their principal values
but the result wounld hold for any choice of logarithms if ¢ were allowed to
depend on their determinations. Under slightly more stringent hypotheses
the theorem would be valid for any algebraic numbers by, ...,5,, not
merely rational integers; indeed our arguments can easily be modified
to show that, for any &> 0, there cxists an effectively computable num-
ber O, depending only on n, 4, A’ and’s, such that (1) has no solution in
algebraic numbers by, ..., &, with degrees at most d and heights at most B -
(= 2) it log A is replaced by (log.4)'**. This sirengthens a recent result
of Stark and the author [3] wherein log Alog B is replaced by the maximum
of (log4)™** and (log B)™" for a sufficlently large absolute constant ¢.
The theorem also extends the work of Feldman [41, which itself furnished
refinements of the inequalities given in the third memoir of the series [y

ooy by with absolute valuss ai mosi B

by substituting log4 for a high power of the logarithm. Furthermore,

the theorem can be viewed as a variant of the result obtained in the fourth
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memoir of [1], implying an upper bound for H of the form Clog Aloglog 4,
where ¢ ig an effectively computable number as above.

The lagt remark is of particalar significance in connexion with appli-
cations, Weaker forms of the assertion have been employed in, amongst
. other things, the study of diophantine equations and most of the results
obtained in this respect can now be sharpened. More egpecially, the the-
orem yields a further effective improvement wpon Liouville’s ineguality
of 1844 relating to the approximation of algebraic nurnbers by rationals,
It ig in fact easily deduced from the work of [2] that for any algebraie
number « with degree # = 3 there exist positive effectively computable
numbers ¢, x, depending only on a, such thab |a—p/g] > cq™"+*/orloee
for all rationals p/g (g > 0); this is the best estimate of ity kind establi-
shed to date (%).

2. Preliminary lemmas.

by »(1, &) the least common multiple of 741, Z+2
' Ay k) = (@+1) ... (®-Fk)/%!

and we write A{z;0) = 1. Further, for any integer m =0, we denote
by A{@;k, 1, m) the mth derivative of (4(w; k))"/m!. The notation will
be retained throughout the paper.

The following lemmas are recorded for later rcierence

Lemwa 1. ( (w,k))md(m,k,l,m) i8 @ positive infeger when o is
a positive infeger and we have

Alw; T, 1, m) < 41EH8,

Tor any integers kz1, 120 we gignify
. b--F. Weo define

v{wy B) < {e(w+ T[T}

for some absolute constant ¢ (%).
Proof. We have

A@i by lym) =A@ B D (@45 - (2 +ia))™
1, T, i

where ji, ..

1, ...,k repeated I times, and the right hand side is read ag 0 if m > &l

For each v, 27, divides »(#, k), and since certainly 4 (z; k) is a rational

integer, the first part of the lemmea follows. Further it is clear that

. i ,
A (93, k, T:, m) < (m";{;‘k) (;"rz) < llw-tle)-- Kl &e‘: 4:5(m+.’::)'

(*)Added in proof. Feldmon (Isv. Akad. Nouk S8SR ser, mat. 35 (1871),
Pp. 973-990) has recently improved the number on the right te og=~%, where
2 = ()< 5 The result can also be obtained by a sl1g]1t genemhmtmn of the present
work, a8 will be shown in a sequel.

{*) The exponent 2 in tho. estimate for v(w, k) can be reduced o 1, which is
best possible; see a note by R. Tijdeman to appoar in the problem section of Nieuw
Arch. Wisk, {(ef. 10 ( 19’71) p. 185).

. jm TUD. through all selections of m integers from the se
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To obtain the final estimate we write »(%, k) = +»'+"", where all' prime
factors of »', »'" are < k and > % respectively. Since the exponent to which
any prime p divides 4 iz at most log (x4 k)/logp, we have

logy' < Zlog(m+ k) < ¢’ klog(x + k) floghk
pEk
and thus » < {¢"' (2 +F)/%)* for some absolute constants ¢/, ¢”'. The esti-
mate follows on noting that »'" divides 4(z; k) < (& k)*/%L.

LeMma 2. If P{a) is a polynomial with degree n>0 and with coef-
ficients in o field K then, for any integer m with 0<<m < n, the polyno-
mials Plz}, Pla-+1), ..., Ple-+m) and 1,2, ..., 4" ™ are linearly in-
dependent over K. '

Proof. The assertion is readily verified for n = 1. We adsume the
result for # =’ and we proceed to prove the validity for »n = o'+ 1.
Suppose therefore that 0 < m < »n'+ 1, that P(x) is a polynomial W1th
deg'ree »n'+1 and that

R(@) = AP @)+ 4P @ +1) + ... 4 1P (w-+m)

has degree at most #' —-m for some elements A; of K. We have

R@) = (gt F ) Platm+ 1)+ > U+ bt oo+ ) (2 45),
j=b
where @ () = P(z) —P(z--1). But ¢ (#) has degree »’ and since P (z+m +1)
hay degree n'+1 we see that i,+...+ 24, = 0. Further, the inductive
hypothesis shows that

Iy B +L—

and 50 Ay = ... =4, =0, a8 reqmred.

Lemma 3. Let a4, ..., o, be non-zero elements of an algebraic number
field K and Tet &', ..., a,ﬁ”’ denote fized p-th roots for some prime p. Fur-
ther let K' = K(al®, ..., d)). Then either K (¢®) is an extension of &'
of degree p or we hwue

(O<j<m

i -
t, = o} ... @iy

for some y in K and some integers jyy ..., jo_y With 0 < 4, < p.
Proof. This is Lemma 3 of [3].
Lemwva 4. Suppose that o, 8 ave elements of an algebraic number fleld

with degree D and that for some posilive integér p we have o = §° If aa s

. an algebraic integer for some positive rational integer o and if b is the leading

coefficient in the minimal defining polynomial of § then b < anp
Prootf. This is Lemma 4 of [3]. '
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3. Main Jemmas. We dencte by «, ..., a,, where # = 2, non-zero
algebraic numbers with degrees at most & and we suppose that the
heights of a,..., ¢, and @, do not exceed 4" and A respectively. By
€y Gy €2, ... We ignily numbers greater than 1 that can be specified ox-
plicitly in terms of 5, d and 4" only. We suppose that there exist rational
integers b, ..., b,, with b, = 0, having absolute values at most B (= 4)

such that (1) holds, where it is asswmed that the logarithms have their

principal values and that ¢ = C(n, d, A") iz sufficiently large for the
validity of the subsequent arguments. We shall proceed to show that
there exist then further rational integers bj,..., b, with absolute values
at most ¢; B and an algebraic number a, in the field generated by the o’s
over the rationals with height at most ¢,4Y*, such that (1} holdg with
b, (1< r < n)angd a, replaced by b, and o, respectively; an inductive argu-
ment will then complete the proof of the theorem.

We signify by & an integer exceeding a sufficiently large number ¢
as above and we write

b =1L ;+1 = [logB],

L — LO = ,,, = Ln—-l = [kl—--l,’(d:n)lo.gri]’ Lﬂ - [761/2]’

- where, ag usual, @] denotes the integral part of @, Further wo write Jo(2)
for the mth derivative of f(z).

Levma 5. There ave infegers p(A_y, 2y, ..., Ay,), 1ot all 0, with abso-
lute values at most A", such that for all imtegers 1 with L <I< h and all
non-ncgative imtegers My, ..., My, 5 WIith Mg+ 1y, < klogd we have

L, Ly,
(2) D e D POy )AL i =,
A._1=0 ;.ﬂ'=0.
where ‘
. -1
AR) = Ao+ 33 b, Aot-1, mg) [ [ 48,0, — b, 4,5 m,).
P T

_]_?rc_)of. Let a,...,a, denote the leading coefficients (supposed
positive) in the minimal defining polynomials of Gpyv0ey Oy, PeSpectively.
For any non-negative integer j we have

-1
Wl
(wrar)j == 2‘ aﬁ?a,ﬁ,

g=

where the aff) denote rational integers with absolute values at mog ¢

or (24 according ag r < n or 7 = . Thus on multiplying (2) by aF?... aks*

© we obtain :
) d—1 d-1

e D V()ep.. a0,

& =0 ‘ 8 =0
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where
L—l L?B T
V) = X e Y0y ey 20AD [ a2 afi?).

A_q=0 Ay =0 rel

Hence the lemma will be satisfied if the 4" equations ¥ (s) =0 hold.

Now these represent M < d"h(klogd--1)" linear equations in the
N = (L_;+1)... (L,+1) woknowns p(i_,, ..., A,). Further, Lemma 1
shows that, after multiplying by (v((), 3h))™, the coefficients in these
equations will be rational integers. Furthermore we have

(1’(0, 3}1,))’"10 A_(l A1 by A1, my) < PO
and clearly :
(3) | (B, A — by A3 M) < B A(d+ Ay m,) < AR (2B) M.

Sinee also the absolute value of the product over v in the definition of
V (s} is at most i A™* wa see that the absolute values of the coefficients
referred to above are at most U = A, Now

N > k™ {log A" > 2H

and hence (cf. Lemma 1 of [1, IT) the system of equations V(s) = 0 can
be solved non-trivially and indeed the integers can be chosen to have
absolute values at most N U < A% a5 required.

LeMya 6. For any non-negolive inlegers My, ..., M, ith e ...
cort iy, < klogAd, et '

. L Ly .
@) = 3 o Mgy ey ) Al .. s
A, =0 ’

i
: Ay=0
where v, = 4. —b.A,/b, (I <r<n). We have
{4) |F(e)] < Afeear

Further, for any imeger L with h < 1< k™, either (2) holds or
(5) v U‘(l)‘ 2 chmhk{b{dog(l/k)}cﬁLl'

Proof. We b'egin. with the preliminary observation that, by virtue
of (1), we have

(6) . _{a"’_a;a! < Gr—ilogzl.logB’
where

(7) | = g Tty
for clearly

log a, —log a,| < (~legAleR,
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where the second logarithm is not necessarily prinecipal-valued, and (6)
tollows on noting that
& — 1| < 2| 6'*"

for any # and that (see [1,IV])
{8) - loga,| << 4log(dA4).
Now (6) implies, in particular, that
' %) < olIoRel+ s
and from (8) we have
L oga,l <L,
TFurther it is clear that
laf? .. aﬂﬂ < oL
and since
A < flell+h
we deduce from Lemma 1 that
e+ b, Ap+1, mo” = cf&.{lzwh}-

On combining this with (.3) we obtain
|A(z)| \,{Acmﬂkeﬂzi

and the required estimate (4) follows easily.

To prove the second assertion we begin by noting that the left-hand
gide of {2), say Q, is an algebraic number with degree at mogt d"*. Further,
by estimates similar to those given above, it is readily verified that each
conjugate of @, obtained by substituting arbitrary conjugates for ay,...,q,,
has absolute value at most A% ¢ Furthermore, from Lewmma 1 we
see that, on multiplying § by

P =gkt .. aﬁ'ﬂl(w(l, Eh))mo,

b

where a,, ..., a, are defined. ag in Lemma 5, we obtain an algebraic integer
and

P Oﬁi(ﬂml/h)mmu-
Hence we conelude that. either == 0 or
|Q| ; A—clghi’ccz—om (l/h)—ﬂglh’rnn;
and since m, < klog 4, the number on the right exceeds the right-hand

side of (5) for some ¢y and ¢y . But, as above, we deduce easily from (6)
‘that :

[ —f(1}] < A ulk g—tlosdlog B
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and, if 1< hE™ and O is larger than some function of %, the number on
the right i at most '
O@ilogﬁlngﬁ -ﬁ % ]QE .

Hence, if @ 7 0, we obtain [f(1})| > 1]|@] and this proves (5).

- LemMMA 7. For some & (0 < e < 1) depending only on n, d and A', and any
integer J with 0 << J < 2n/e, (2) 45 satisfied for all integers T with 1< 1< hk™
and, all non-negative integers My, ..., My_; With Mg+ ...+ m,_, < (k/27)log 4.

Proof. We shall show that in fact a suitable valne for e is (2%mey) 7,
where ¢y, is the mumber indicated in (5). The lemma is valid for J = 0
by Lemma b. We suppose that K is an integer satisfying 0 < K < (2n/s) —1
and we assume that the lemma has been verified for J = 0,1, ..., K.
‘We proceed to prove the lemma for J = K+ 1.

We begin by deﬁning

= [h],  8; = [ (k/27)log AT (] =0,1,...).

It su:ffmes then. to prove that (5) is untenable, whence, in view of Lemmsa 6,
{2) holds, for any integer I with Ex <1< RK-:—l and any set of non-negative
integers My, ..., My With my+ ... 4my,_ ) < Sgpy. Tirst we make the
preliminary ﬂbservamlon tha,t by virtue of our inductive hy"potheqls,
we have :

@ . |fm(7)/m1i < (tlogdlog B

for each .integer + with 1 <r < Ry and each integer m satisfying 0= m
< Sgo1- For clearly f,,(r) is given by

(5/82,,—,—...-]—6/62 B2, ey 2)

evaluated at z = ... = #,_; = r, where
Ly

gﬁ(zoa"-r"n 1}— 2 TP

A_1=0 l'l n=0

s An) A(e) 0] TE L. g tn—1,

Arguing by induetion with respect to u;-+...+w,—; and noting that
A{b, 4y — ;4,5 my) 18 & polynomial in y; with coetficients independent of
the A’s and with deg:ree mj, we obtain from (2)

\’ 1A 1
(o F i)} 2 21‘3 mlz'_": Ay yprrta e =0

im0 =

for all non-negative integers uy, ..., fy_y With o+ ...+ gy = M, where A’
is given by A(r) with m,+ g, in place of m,. But the sum on the left differs
from

o ! (10g @) ™1 ... (10ga, o) n=1(8)00 Y0 ... (8]02,_ 71D (2, +.v; Zpoy)
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evaluated at z, = ... = 2,_; =7, only In the substitution of a, for 5
where o, is defined by (7),-and the required inequality (9) now follows
easily from (6) by estimates similar tc those employed in the proof of
Lemma 6 (%).

' We write, for brevity,

Flz) ={(z—1) ...

and we denote by I the circle in the complex plane, described in the
positive sense, with centre the origin and radiug Ry, k. By Cauchy’s
regidue theorem we have

1 )
10 55 Ff (z—l)F(z) de

(2= Ry)yrctas?

Teg '5“'1\11

m — )"
2m§2 e f zz);(z) 4

Ti==0

where I, denotes the circle in the eomplex plane, deseribed in the positive
sense, with centre » and radius 4. Since, for z on I,

|(z— "B (2)] < {H{Be—r—1)1(r

we deduce from (9) that /2w times the absolute value of the double sum
on the right of (10) is at most

e 21}t GRIFE A R 1) TSR

B (Sga+ 1) 8URSENTHR g )Rt gmdlos o8,

Further, for ! < Rg,;, we have

P)] < {1 D= Ry — 1) S (2R Ryt

and, if (3) holds, then |f(I)| > ¢~Fl°8418F  Thugy we see that the absolute
value of the number on the right of (10} exceeds §|f(D)/F ().

Wow let 0 and © denote respectively the upper bound of |f(e)| and
the lower bound of |¥ (2)| with 2 on I. Since 2|¢—1} with 2z on J" exceeds
the radius of I', we obtain from (10)

(11) ABIF)] > O1F (D)

Clearly we have o
. 2 (3 Ry KO REEm4rH)
and, from (4),
- g polife TRy o i EH{B0)

0 < A% opRrpk T,

(") Note that |yl < B el and m! > . .. ppen! -
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Thus we see that
(12) 0g(®]
and, by virtne of {A),
(13)  log(B]f(D)™") < {eg+2es0log (Ri 1 /h)} hhlog A + 0y LB,  KVE™,
Butb the number on the right of (12) is at least
9 EF— b pE+ogklog 4

and that on the right of (18) is al most

{oy+ 2006 (K +1)Iogk + e,y kETD-VEN pilog A |

Further, with the value of ¢ given at the beginning, we have 2¢,5e = 27 "n™!
and & << (8n)7". Thus (11) is untenable if % is sufficiently large; the con-
tradiction implies the validify of (2} and the lemma follows by induction.

LevwA 8. For all integers 1, mg;...

)]_1) = Be(Sga+ l)log(%klf{?m)

y Moy_ny @ With
<r<m), 2<q<ol,, (,¢ =1,
{2) s satisfied with 1 replaced by 1/q. |

Proof. Let f(2) be defined ag in Lemma 6 with m,, ..., m, , any
integers as above. From Lemma 7 we -see that (2) holds for all integers |

with 1< 1< X and all non-negative integers my, . .., My, With m, + ... - m,,
< ¥, where .

l<<hl, O0<m. <L (0

X =[], Y = [eyklogd]

-and ¢, — 27P"9~1 Further, as in the proof of Lemma 7, we see that

this implies the validity of (9) for all integers 7, m with- 1 <<r < X, 0 m
< Y. On writing, for bl"evity,
E - { 2—1) .. ( }ZE'+1

and denotmg by I' the circle in the complex plane, described in the
positive sense, with centre the origin and radius X%/®™ we deduce from

 Cauchy’s residue theorem that

1 f(=)
I Pf g Em ©

X ¥
_ f( g | 1 Fn (1)
Bl o ; L om!

(z—r)"
et =

where 1, ¢ are any integers satisfying the.hypothe'ses of the lemma and I,

denotes the circle in the complex plane deseribed in the positive sense
with centre » and radius 1/(2q). Singce, for 2z on I,

(E=r"BEIS (G0 (X == =) <8 BT EH T,
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it follows from (9) that the absclute value of the double sum on the right
of the above equation is at most

(Y+1)8XF(8Q.)1’+2(X|)—I l(wilogA]ogB < (X ) r— Y- %logA]ogB

Further, by virtue of Lemma 6, we have, for any 2 on I

|f(~) ‘ < AGSTLICGLXICIJ'(BW),

~ 9

and it is clear that

]E(z)l > (_%_Xklf(ml))}i’(l’+l)
and

|B(lq)| < (@X)yXE  gFIHny,

Thus we obiain

i1/ (8 - —-—iog’Alog-B
|F(L)g)| < AcshhglEE i ’”(gfklf(an)) x(r+) 4 o B ,

and, since

LR < & and czshff"+°logA<X(Y+1)< 1ogAlouBlog0

the number on the right is at most ™*F.

We now utilize the latter estimate to confirm the validity of (2)
with I replaced by I/g. Let the left-hand side of (2) thus medified be denot-
ed by ¢. Clearly @ is an algebraic number with degres at mogt (dg)™
and each conjugate has absclute value at most A% Further it is easily
verified, on recalling the expression for A(x; k,1, m) given in the proof
of Lemmsa 1, that on multiplying ¢ by
L. gl (y (0, 2RE))™ < AT

Ll

q
one obtaing an. algebraic integer. Thus, if @ + 0, we have
‘Q| = A—.cmhic%ﬂ'.
Bub it is easily seen from (6) that
) !Q __f(l/gm < 0~&logﬁlog13

whence |f(1/q)] = }1Q). Since g2k it is clear that the estimate for Q]
given above is inconsistent with the upper bound ¢=*¥ for |f(l/g)| obtained
earlier. Hence we conclude that @ = 0, ag required.

4. Proof of the theorem. It iy well-known that there exists at least
one prime p between L, and 2L, exclusive and we take ¢ = p in Lemma 8.
On Wri_ting {2) with I replaced by Ifp in the form

Ly, L1 Ln.;—l .

) Pl

Ap=0 A_y=0 dp_=0

Aa) AP .. ) b = 0
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we see that Lemma 3 implies that either each of the expressions in paren-
thegis is 0 for all my, ..., M, With 0 <{m, < L or

(14) ahy = a1 ... ding1a™

for some integers j,, ..., §,., with 0 <, < p and some element o' in the
field K generated by the o's over the rationals. We first show that the
above expressions cannot all vanish for every I with 1<I<hk andr

Ly =
In f&ct this would imply thads
L,, i Iy
S o E bt U ) 4 o
J.n_l—u /'1._,1“0 Ay =0
(0 < my_y < L),
where

A = Ay dyy—=byadpymy o), A (Yp) = AQp)| A,

and sinee the polynomials A(x; m,_,) (0<<m,_, < L) are linearly indepen-
dent we see that the determinant of order I +1 with 4" in the (1, ,+1)th
row and (m,_,--1)th column is not 0. Hence the new sums in paren-
thesis above would all vanish, and by repeated apphcatlon of the argu-
ment we would obtain

Loy

2 Ep} 13 eeny

A_1=0 Ay=0

) Ay +ifps by Ay+1, my) =0

O<h<L,...,0< L, <L)
Now if this equation were to hold for all integers 1, not divisible by p,
with 1 <1< bk and all m, with 0 < m, < I then the polynomlal

Ly

Ziﬂ sy vey ha) (A (A a5 R0

L1—° ig=0

would have at least
(Bl - [BE/p (L4 1) > R(Ly--1)

zeros counted with multiplicities. But sinee A(4 ,+o;Bh) has degree
h = L_;+1, it would follow that P (x) vanishes identically; from Lemma 2
we see that the polynomials

(A0 +o R (0<A, <L, 0< 1< L)

are linearly independent and thus p (A_l yreey
The contradiction proves the assertion.

Ay) wouldbeOforall A_y,..., 4,.
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Hence we conclude that {14) holds for some integer I, not di.x-risible
by p, with 1 <1< hk, and some nwmbers ji, ..., ., and o’ as indicated
-above. This gives

} Jp—1 o 1
@, == all... afiyle]

"where o, = o' for some Ith root. In particular we sce that «f is an ele-
e ! .

ment of K whenee, since (I, p) = 1, it follows that ¢, must itself be. an

element of K. We agsume now, as we may without loss of generality,

that a, = —1; then

loga, = (5, +7)loga, ... +j,_qloga,_; +plogay,
where all the logdrithms have their principal values and j is & rzm‘;iona,l
integer with abgolute value at most #p. On substituting for loge, in (1)
we obtain
0 < [bloga, +...|-b,_ loga, -+ by logay| < (loEAleE,

where .

by = b +b, (i +5), by = by, b= b+ by,
Clearly b, ..., b, ave rational integers with absolute values at mogt 6nk" 3,
JYurther we observe that each conjugate of

(L <Cr << m).

- =7 Iy
o, = ot o

“has absolute value at most (d4)"”d4, and the same estimate holds for
gome integer & such that aa,” is an algebraic integer. Thus, from Lemma 4,
we deduce that the height of «, is at most (244°)""?4*P%, where D (<@
denotes the degree of K. Since p > &** we have 2D/p < } and this con-
firms the assertions made at the beginning of § 3. .

The proof of the theorem is now corpleted by induction. We can
suppose that B > ¢! for otherwise the result holds trivia;lly» (ef. [1,IV],
Lemma 6). If also 4 = ¢; then (1) clearly remaing valid with ¢, B and
¢, 4" substituted for B and A respectively, Thus we can vepeat the
above argument and obtain for each s =1, 2, ... a set of integers b(f),’...
o, B wwith absolute values at most ¢! B and an clement o of K with
height at most ‘ .

i 4@

such that (1) holds with b, ..., b and o in place of b, ..., b, and e,

respectively. The algorithm terminates for some § < Zloglog{i" .When
the height of of is at most ¢, and the insolubility of (1) with ¢ sufficiently
" large is then apparent from the work of [4]. Alfernatively we can argue
that since there are only finitely many algebraic numbers with bounded
degree and height, the process can be continued to yield a number e,
independent of 4, such that of = /7 for distinet §, i’ < c--2loglog A.

icm
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This gives

Ne _ » Doy
aﬁl = oql... gynyl

where pp, ..., P, 1, ¢ denobe rational integers with absolute values at
most p*FHEREL on  gubstituting for logaf) in the inequality derived
irom (1) after j steps we obtain a linear form in which by = 0and by, ..., b, ,
are rational integers having absolute valtmes at most (log d)29B. After
repeating the argument n times we derive an ineguality involving only
one logarithm and recalling that, by hypothesis, the original linear form

does not vanish, this is plainly untensble, The contradiction proves the
theorem. L '
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