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1. Introduetion. Bach permutation of the finite field GF (¢") iz the
function associated to a nnique polynomial over GF(g") of degree less
than ¢°. The smallest subfield of GF (¢") which contains all the coefficients
of this polynomial will be referred to as the cogfficient field of f. Tt iz clear
that the permutations with coefficient field contained in GF(¢) form
a subgroup A (¢") of the group of all permutations of GTF(g™). The prin-
cipal aim of this paper is the determination of the structure of A (g™).
We find that 4(¢™) can be built-up out of symmetric groups and cyelic
groups using the semidirect product. We denote the symmetric group
on m letters by 8,, and the eyclic group of order # by C,.

The group A(¢™) contains the subgroup B(q") generated by the
linear permutations & — ax-+» with a,beGF(q) and the permutation *
defined by '

0 i g=20,
iz i @0,

a}*

Note that o* = #7"~* on GF(g™). It is known [i] that * and the linear
permutations generate the full symumetric group when » = 1. In fact,
the transposition (ab) is given by the perroutation

@) @~ 4+ (b—a)[1—(1+ (b—a) (w— b))

We show that B(g™) # A(¢") for n > 1 except in the one case ¢ = 2 and
7 = 2. In fact, except for this special case, for » > 1 B(g") = 8,%x L,,
where L, is the group of linear fractional transformations over GF(g).
Thus, B(g") is actually independent of » for m = 1! :
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2. The group A (¢"). Denote the Frobenius automorphism » — 22 by .
Lemma 1. The group A{g") is the group of all permutations f of GFig™)
. such that fo = of. '

Proof. It is clear that each permutation in 4 (¢") commutes with .

Conversely, if
=1

Y

pe={l

.‘eommutes with qa, then f(zh) = ( flw)}® for all weGF(¢"). IL ¥ == ¥ this

means that
Ry,

=
i

f("/): (a,,—mﬁ)y" = {

It

F
=

for all y « GF (¢"). Since degf < ¢*, we must have a, = = a%and hence a, < GF{g)
for » = 0,1, ...,4"—1 Hence, the coefficient tield of f is contained in
GT (g), and the proof is complete.

We can now determine the orbits of the action of 4(¢") on GF({¢").
Tor each divisor d of », put

K, = {ae GF(¢")| dega = d& over GF(g)}.

LevmA 2. If ae GF(g") has degrec d over GI'(g), then the orbit of o
under A (¢") 18 K. .

Proof. The commutation fp = ¢f for feA(q") implies that each
subfield of GT(¢") containing G (g) is setwise invariant under the action
of A{¢™). Since I, is the complement in GF (¢ of the union of Lhose of
its proper subfields which contain GT (g}, K; must also be invariant under
the action of A(g"). Therefore, Orb(a) = K4 To prove the reverse inelu-
sion, we have to exhibit for every feK; a parmutatlon fed (¢") such that
f(a) = p. If B is one of the field conjugates ¢ fla) of a over (wl“(q) then
we take f = ¢° Otherwise, put

_ @ it @ is not a field conjug%c of « or f over GF(g},
fl@) = ¢ (B)

¢ le) it @ = ¢°(f) for some integer &.

i o ¢*{«} for some integer s,

Then f is well-defined because ¢°(a)
'and this Toeans that ¢*(8) = ¢*(8) as degB = d. One verifies immediately
that fis & permutation with f(a) = 8 and that fip = ¢f. Therefore, fe.A (¢
by Lemma 1, and g0 feOrb{a). Thig shows K, < Orb(a) and completes
the proof.

For every divisor d of =, let A;(¢™) be the group of all permtltatlons g
on X, such that gp — gg. Bestriction to K, yield: a homomorphisms

= ¢'(e) means that 4 divides s—¢
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rey,: A(g") - 4;(¢") as one easily checks. Putting these homomorphisms
together, we get & homomorphism

res: A(g") - XAaz(¢"
dln

into the direct product of the 4,(¢™).
THEROREM 1. The homomorphism rey defined above is an isomorphism.

Proof. We construct the inverse homomcerphism inf as follows:
Given. g = (¢z)an in the product group, let inf(y) = f where f{z) = g4(2)
when degz = d. Then fp = ¢f sinece gy = qg; for all d|n. Therefore,

" feA(q") by Lemma 1. That inf is inverse to res is immediate. This com-

pletes the proof. :

In order to complete our study of 4(g¢™), we must determine the stru-
chure of the groups A,(g"). The set K, is the set of zeros of the irreducible
polynomialy of degree 4 over GF(g). Therefore, 3 K,; = dx(d), where
7(d) = m,(d) is the number of monic irreducibles of degree d over GF (g). T.et
Cy = Z/dZ be the standard cychc eroup of order 4, and let the symmetric
group 8,4 act on the =(d)4old product (G({d) by permuting the eo-ordi-
nates in the obvious way. This gives a homomorphism y: Sy - Aut(CF).

THEOREM 2

2. The group A;z(g") is naturally isomorphic to the semidirect
product '

v

where 8, acts on O3 via .

Proof. Partition K, into classes of conjugate elements over GF {q)
and chose arbitrarily a set I' of representative elements, one from each
conjugacy eclass. Given ael’, let H, denote the set of elements which are
conjugates of a. Thus, H, = {¢°(a)] § = 0,1, ...,d—1}. If gedy(g®),
then ginece gp = pg, y must map the elements of H, onto ancther set of
conjugate elements. Thus, g induces a permutation v(g) on the set of
conjugacy classes of elements of degree d over GF(g). Now there are = (d)
such conjugacy classes, and so we get a map v: 4,(¢") — 8,4 which is
easily seen. to be a group homomorphism.

Our choice of I' enables us to construet a homomorphlcsm o Sy —
— A;(¢") such that T = I, where I is the identity map on 8,4, Among
other things, the exigtence of such a “section™ o proves that 7 is surjec-
tive. We proceed as follows: Given te ;S',,(d) ; let o(t) =g where for all
ael’, g{a) is that element of £(H,} which belongs to I' and

gle®(a)) = ¢lg(a))  for

A little thought should convince the reader that g i indeed a permutation
of H; with gp = ¢g and that v =.1I. We can now write the split exact

§=1,2,...,d—1.
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sequencd

: b
(2 1 ->Ker(z) - Ay(q") = Spgy — 1.

Now, any ge<Ker(r) maps H, into itself. Since gp = g, the restriction
of y to H, is an element of the cyclic group (f of order d generated by the
restriction ¢, of ¢ itself to H,. Therefore, the process of restriction to H,
induces a homomorphism res,: Ker(z) — Of for every a<l. Putting these
homomorphisms together and arguing as in the proof of Theorem 1, we

geb an {somorphism res: Ker(x) - X OF onto the direet produet of the ¢%.
ael’ }

In particular, Xer(z) is an abelion group. Returning to the exact sequence
(2), we see that 4,(¢") is indeed the semidirect produet of the m(d)-fold
product of cyclic groups of order 4 with 8.4, and it remainsg only to
investigate how 8,4, acts on Ker(r). '

Identify each Cf with the standard cyclic group ¢y = Z/dZ by re-
guiring that ¢, corregpond to 1mod d. Then geKer(s) i identified via
res with the m(d)-tuple (s,)..r mod d, where each s, is determined by
g(e) = gie(a). The action of £e8.,y, on Ker(r) is given by the inner automor-
phism through o(z). This translates into an action on =({d)-tuples mod d
as follows: Suppose g is identified with (s,), and suppose teSyg iy given.
Then for all ael, ' '

(o 9o () a) = e g(B) = (&8 (B) = (o () (8) = ¢ (@)

where fel'is determined by ¢(H,) = H,. Thus, ¢ acts on the s(d)-tuple
(s.) by replacing each coordinate s, by s; where () = . But this is just
the W-action. The proof iy complete. '

OororLARY. The order. of A(g") is [] (n{d))!"d™®.

' |7

3. The group B(¢"). Let M be the subgroup of B(g") consisting
of those permutations ¢ such that g(z) ==z for @<GF(¢™)\GF(¢); and
let ¥ be the subgroup of B(¢™) consisting of those permutations g such
that g{z) = o for meGF(q). Bince each element of M commutes with every
element of ¥, multiplication gives a group homomorphism px: M > N -~
-+ B(¢"). The kernel of u is clearly frivial, and so p is injective.

Lmrwa 3. Suppose g is o permutation of GF(g). Then the permutation
§° of GF (") defined by

® for
gl@) - for

z¢ GR(g),
ze GF(q)

@) =

belongs o B(q").
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Proofl. Write g as a product of transpositions (ab) on GIF(g). Then,
by definition, ¢° is the product of the same transpositions viewed as trans-
positions on GF(g¢™). Now (1) shows that each such transposition belongs
to B(g"). Therefore, g° belongs to B(¢™), and the proof i complete.

CoROLLARY. The subgroup M is isomorphie to Sy, and u: M x N — B(q")
8 an isomorphism.

Proof. By the above lemma, ¢ — ¢° is an isomorphism from §, to .-
Obviously, every permutation f of GF(¢"™) can be written in the form
f = ¢h where g is a permutation of GF(g) and k(z) = o for ze GF(g).
If fe B{g"™), then %o is % as g% B(¢™) by the lemma. Therefore, x is surjective.
Sinee uis obviously injective, 4 is an isomorphigm, and the proof is complete.

Since 0 ¢ GF(¢")\GF(g), the definition of B(¢") shows that every
heN can be written in the form # - (as--b)/(cx-d) where ad 7= be.
Therefore, we have a homomorphism é: L, — N, where L, is the group
of linear fractional transformations with coefficients in GEF{g).

TieoreM 3. If > 1 and ¢ = 2, the homomorphism 6 is an isomor-
phism. Therefore, B(q"} is isomorphic to 8, x Ii,. '

Proof. Sinee 4 is obviously surjective, we have to look at its kernel.
Now (ax-+b)/(ex+d) = x implies a2+ (d—a)z--b = 0 for all xeGF (g")
“GF(g). Since n > 1 and ¢ * 2 there are more than two such # and so we
must have ¢ =0, b =0 and d = 4. In other words, (a4 b}/(ex+d)
is the identity element of L,. Therefore, 8 is injective and hence is an iso-
morphism. This eompletes the proof.

TreorEM 4. If 5> 1 and ¢ += 2, then B(g") #= A(d").

Proof. We show that in fact ¢ does not belong to B(g"). Assyume
otherwise: Then g e N, and therefore 22 = (az+ b)/(cw+ d) for all z<GF (g")
NGF({g). Multiplying both sides by c¢w--d, we see that the polynomial
ex?™t - dz?— az—b has at least ¢"—g roots. Now ¢"—g>g+1if 2 >1
and ¢> 2 as one easily checks. Therefore, ¢ = d = & == b = 0, which
is absurd. The proof 13 complete.

It is not difficult to verify that, for ¢ =2 and = =2, 4({¢"} and
B(g") are actually equal.
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