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1. Introduction. In thizs paper we will be concerned primarily with
the Huler polynomials H,(x), although the Bernoulli polynomials B, {x}
will be congidered briefly in Sections 2 and 4.

The first results we give have to do with determining the parity
of the number of irreducible factors of &, («) and B,{z) {mod p), where »
is an odd prime. The next results deal with the irreducibility over the
rational field R of the members of two partieular classes of Euler poly-
nomials. The final results consist of showing F,(r) and B, (x) with their
linear factors removed are irreducible over R respectively for = < 26,
% # 5, and »<22, n 11,

2. Parity theorems. The Fuler polyﬁoxﬁials can be given about the
origin in Nozxlund’s notation [8] as

(1) B, (z) = 2(")2-80333“-5, w0,

&
&=

=]

where O,_; = 25(1—2%)B,/s and B, is the Bernouli number, B, =1,
By = —1/2, B, =1/6,...; Byysq = 0, m > 0.
The Bernoulli polynomials have the explicit form
. .
Bylz) = Y(Z)Bsw““s, 70,

8=

=]

where B, is again the Berpoulll number.

‘We will also use the notation e(z) = By () {x—1), as well as B,
for the Eunler number: B, =1, Fy = —1,...; Ty =0, mz=0. We
then have

TEEOREM 1. If an odd prime p does mot divide the discriminani
D(e(m)), then e(x) has an even or odd mumber of irreducible factors (mod p)
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respectively as the Legendre symbol

( {_ 1)m-E2m
»
Proof. It was proved in [2], p. 52, (10), that

(2) Die(@)) = (—=1)"Bypa®, a 0.

): +1 or —1.

From this eguation the result immediately follows from the theorem of
Stickelberger [101: If an nth degree polynomial f(z) has s irveducible
factors (mod p), where p is an odd prime pot dividing J)( I (m)), then, the

D
Legendre symbol (-P—) = { —1)*% Q.H.D.
CoroLLARY. The only odd primes p for which e(z) con be irreducible
1y g :
{mod p) are those p, not dividing D(e(m)), For which ((——1)—%?1) = 1,
P

It we let e,(2) = 2™ K, (@)/(20—1) and recall ([2], p. 53) the
equation Dey () = (—1)™(2m+1)F,, 0%, b #0, m 7 2, we can also
use Btickelberger’s theorem to obtain

TweorEM 2. If an odd prime p does mot divide Dfe,(w)), then e, ()
has an even or odd number of irreducible factors (mod p) respectively as the
Legendre symbol

(=1 (2m+1) B,
S—
We can also derive two theorems of a similar kind for B (x) from
the formulas ([2], p. 62)
D (2" By (@) = (—1)"Dy,a®  when @ 0,
where D, is the rational number D, = 2(1—2"1B,, and

- D@Bupaa ()] = (=12 1P [(4m 4 2) By, TH, b 0.

3. Two irreducibility theorems. In preparing for the proofs of the
theorems given below, we first establish in general how the polynemial
Egn (@), nz 1, factors (mod p). '

Ii p is an odd prime, we have from (1) (using [6])

) = +1 oy ~1.

"1 .
e o YR R - T no,
Hpnyrf@) = 3 (1’ ¥ )2 Cpa?™ 178 = a1 g2} 4 (/27" (tnod p).
: : . a=0 C
But : .
Opn = (27" L =2 B 1{(p" + 1)) = 4 (—8) Byf2 = —1 (mod p)

by Kummer’s congruence.
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Hence, .
BB nyq (@) = 207" H —#" — 1 (mod p).

Further, setting
Flz) = _‘2(w+1)pn+1Eﬂ”+l(1/(m+1))a
we obtain
(3) Flo) = @+ 1" +(#+1)—2 = 2" " +1) (mod p).
If p"—1 = 2k, 24k, @ = 1, then the binomial on the right side factors as
a1 = [ [ Queirgle) (mod p),
dli ]
where Q,,(z) is the mth cyclotomic polynomial. Also, it is well-known if
b+ m that

‘ i :
R Qu (@) = [ [ Pi(2) (mod p),

where fhe P,(z) are distinet and breduncible (mod ), and are all of degree e,
where e is the order of p {mod m) and f = ¢(m)/e, ¢ the Fuler function.

The factorization is thus complete.
It will be of use to go further than the above development in the

_cages # = 1 and 2. Accordingly we have

Luvva 1. If p is an odd prime ond Ny, Ny, ..., By are the quad-
ratic non-vesidues of p, then the factorization

(w—1)2

2Hya(m) =o(e—1) [] [(1—n,)2*— 2w+ 1] (mod p)

i3 complete (mod p).
Proof, Taking » =1 in (3) we find

=1
P(z) =@ +1] =2 [] (22—n,) (mod p),
§=1
where we have used Euler’s Criterion.
. _ | 1
Transforming back with the formula 2H,,,(z) = &P (—0—3— —1),

we obtain the required factorization, where the quadrati'e‘ factors are
clearly irreducible (mod p). Q.1B.D. :
Lemma 2. If p is an odd prime, then

@21

2By (o) =s(2—1) [] G.(@)(modp),

§=1
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where the G (x) are distinct quartic polynomials, which ave ivreducible
(mod p).

Proof. Taking n = 2 in (3) we find

Fluw) =a(@” 1) = o [ [ Qerig(@) (mod p),
|k

where p*—1 = 2%, 24k Now for each d|k, p? s 1 (mod 2""'d), but
p* =1 (mod 2**'d). Henee, ¢ = 4 for cach d, and the result is proved,
since transforming back yields distinet, irreducible, quartic factors
(mod »). Q.H.D.

To conclude these preliminaries, we veeall how H,,, (x) factors (mod 2)
(see [2], pp. B3--54):

(5) Egjn(m)/m(;qa—1) = mﬂm*l{u- (1 +¥) N J(mod 2),

so again the factorization rests on the modular facterization of a hino-

g Zm—1 E 1
mial, @ -1, where z = 'H_E' Hence,

2] H Qa(#)(mod 2},

] {3m—1)

where §;(2) may possibly factor further (mod 2) as described in (4).
. THROREM 3. If p = 8m —14s a prime for which % has the order (p—1)/2
(mod p), then By, (#)jn(ec—1) is irreducible over R.

Proof. Tet e(z) = By, (@)r(z—1). By Lemma 1 we know that
¢(z) factors into a product of irreducible quadratics (mod p). Hence, if
¢{(w) were reducible over R, the degree of cach factor would be even.

On the other hand, we have by (B) that

. 1 81
©oe(n) = gt [1 4 (1 + -J—) ] {mod 2). -
But
_ P L = (L42)Q,() = (L+2) Py (2)Py(2) (mod 2),
where P, (2) and Pz(z) are irreducible (mod 2) with odd degree (p~1)/2.
Transforming back (and losing the factor 1 -+#) we obtain

1
e(m) = P~ V2p, (1 b E) -gte-iep, (1 + %) (mod 2).

Frora this factorization we conclude if ¢(x) were reducible over R, it would
have two factors of odd degree (p —1)/2, which contradicts the conclusion
of the first part of the proof. Q.E.D.
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THEOREM 4. If o prime p = (mod 8) has 2 as a primitive root,
and 2°7F 2 1 (mod p2), then B, (x)fe(z—1) is irreducible over B.

Proof. Let e(x) = B, (w)jw(z—1). Fhe condition 27~% = 1 (rmod p?)
Implies 2 is & primitive root of p? (and in fact all higher powers of p; see
Nagell [7]). From Lemma 2 we know e{z) factors into a product of irre-
ducible quarties (mod p). Thus, if e(x) were reducible over L, the degree
of each factor would be a multiplie of 4.

On the other hand, we have from () that

0

e(x) =z [1 + (1 + %)F] (mod 2).

But )
Ll = (1+2)Q1,(3)Q1]2(z) (mod 2),

where @, (2) and Q,2(2) are irredncible (mod2), since 2 i3 & primitive root
of both p and p2 Transforming back we obtain

i
e(x) = m”“(,}p(l + l)-mm‘l)(?pz (1 -+ w) (mod 2).
& X

Hence, if e(x) were reducible over B, it would factor into irreducible fac-
tors of degree p —1 and p(p —1). But the condition P =3 (mod 3) implies
41 (p—1), which contradicts the conclusion of the first part of the proof.
(Note: the extra 2 in the modulus of » =3 (mod 8), beyond what is necded
to establish the contradiction, is present so that 2 can be a primitive
root of p). Q.E.D.

Comment. It is worth mentioning that no prime » =3 (mod 8) -
is known -< 2" for which 277" =1 (mod p2). {See [3]) The primes of
this form < 100 having 2 as a primitive root are 3,11,19, 59, 67, and 83.

We conclude this section with the following result,

TurorEM 5. If p 48 an odd prime, then

By (2 —1) =0 (mod p)  and  E, ,(2k) = 2 (mod p),
B=1,2,...,(p-1)2.
Proof (Carlifz). From the identity
By (e +1)+ 8, x) = 2", nz0,
we conelude that

Ej}—l(m"{" 1) ~.Ep,1(&3 —1) =2 .['mpil"" (#— 1)p_1] .
Hence,

E73~1(p—2) E‘Ej)-"l(.p_"‘l) = == -"11—‘1(1) = 0(]110(1]9)
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and
E, (p-—-1) EEJ)A;UJMS} = .= 8, ,(2) =2 (modp). Q.ED.

4. Further irreducibility resalts. In two previous papers the follow-
ing irreduecibility theorems for Buler and Bernoulli polynomials have
been proved:

THEOREM (f4], p. 475)
is drreducible over R.

. If ¢ prime p is = 3 (mod 4), then B, (w)](z-3)

THROREM ([2], p- B5). If 2m-—1 d8 a prime having 2 as « primitive
root, then By, (z)fr{e—1) is drreducible over K.

TueorEM ([4], p. 475). If 2m = k(p —1)p!, £ 0, Lt k < p, where p
is an odd prime, then B, (x) i& irreducible over R.

THEOREM ([2], p. 59). If 2m—1 is a prime having 2 as a pmﬁmtwe
root, thew By, (w)f(z— 1) (x—1) is drreducible over .

When the first two of these theorems are combined with Theorems 3
and 4 of this paper, we find that F, (2} with its linear factors removed
is irreducible for = < 26, n 3 §, except in the 10 cases: # = 9, 13, 15-18,
21, 22, 25, 26, which the theorems don’t cover. Bcfow estabhshmcr
the irreducibility in these cases, we first consider a general pro-
cedure for showing irreducibility by combining modular factorization
information. ‘

Let flz)
T .

We can easily determine a set of mtegerg which containg the degrees
of the factors of f(w) over I from the degrees of the irredncible factors
of f{z) (mod p}. _ .

Let 8,(f) = {d,, ..., d;} be the sct of degrees of the irveducible fg(y
tors of f(z) (mod p). We then define the degree set D(f(w), p) of f(a) with
respect 1o p to be the set of sums of the elements in each of the non-empty
subsets of 8,(f). ‘

If we now have the eomplete factorizations of f(z) modulo various
primes p;, p;1¢,, we then know a set of integers in which the degreex
of the factors of f(z) over I must lie, namely F = ﬂfﬂ(f ) As

= @2"+ ...+ Gy, ;< I, the integers, and suppose p is a prime,

soon as enough p, have been discovered so that F = {w}, we kuow f()
is irreducible over I. (I am grateful to R. Graham for first pointing out
this simple procedure to me.)

Tt is clear Theorems 3 and 4 were proved by using this proeedure.
In Theorem 3 we- h&d with e(m) = By (@)/w{z—1) that B5,{¢) =
{2;2 2}5 80 ‘@[ ) { _--:'P‘”l}' A}SQ’ SQ(G) = {(p_l)/Z,
(p—1) /2}, where (13 l),’ is odd so Ple(),2) ={{p—1)2,p~1}
Thus, F = @(e(x),p) 0 D(e(x),2) = {p— 1} In Theorem 4. we hud
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with e(®) = Hp (z)jr(z—1) that S,(e) = {4, ,...,4}, so
Zle(x), p) = {4,8,12,..., p?—1}
and Sy(e) = {p—1,p(p—1}}, so

-@(3('7" :2) = {P—lsp(P‘l):Pz—l}a
where 41 (p —1}. Thus
F = Ze(n), p) N 2(e(x), 2) = {p*—1}.

To obtain the meodular factorizations needed to show the irreduci-
bility of the 10 undecided cases of ,(x), we have nsed a modular facto-
rization program, written by R. Staudubar for the ODC 6400, which
is based on the powerful algorithm of E. Berlekamp [11. To obtain the
polynomials themselves as input for this program, it was necessary to

-devise a simple means of calculating a table of B, {x) with respect to the

various prime moduli which would be used in the factoring program.
This ealculation was carried out by Dr. W. F. Lunnon on the Atlas Com-
puter at the Atlas Computer Laboratory, Dideot, England. Using the
following algorithm, the first 100 FEuler puivnonuals were computed
modulo each prime << 100,

2

Algorithm: Let 7, (a) =

M

o(n, 8)a%, nx2. Then with the starting

»
I

l

1]
values ¢(2, I, and ¢(2, 0) = 0 we compute In general

2 =1e2,1)=

e(n+2,s8) = (n+1}n+2)e(n, s—2s(s—1), 2<s

w432

—Z efn+2,5 and e(n+2,0) =0,

a=32

<n-+2,

¢(R+2,1) =

Thus, starting with # = 2, we first compute the coefficients of the next
Euler polynomial of even degree. Since this polynomial also has integer
coefficients, the exact division serves as a check on the arithmetie.

Now let n+2 = 2°F, k odd. Since E,(x) = nk,_,(z), we can compute
the coefficients b(n- 1, s) of the intermediate polynomial of odd degree
by differenfiating ¥, ,(x), i.e.

b(n+1,8—1) =g-¢{n+2, sijfk, 1<<s<<n-+3.

(Here the b’s are integers, which differ from the actual {fractional) coef-
ficients of F,.,(x) by the factor 2°.) Finally, each of the polynomials

‘is reduced modulo each odd prime < 100 {none of these primes divides

the leading coefficient of the generated polynomials,
is 1 when #» is even and a power of 2 otherwise).

We should remark that the program written by Dr. Lunnon of ne-
cessity employed multiple precision calculation, since the coefficients

since this coefficient
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of B, (¢) generally grow in size with n. It would have been more efficient
to bypass this multiple precision calenlation by computing the polyno-
mials directly modulo p from the reeursion, if this were possible. However,
it was not clear how to do this.

In the following table we list the information obtained from the
factoring program which shows the hrreducibility of the £, (x) under
consideration. The degrees of the irreducible factors are given first, followed
(after the semi-colon) by the modulus. In case the respective polynomial
was found to be irreducible (mod p), the entry reads “mod p».

Table 1
o i Degrees and moduli 1 Degrees and moduli
9 ’ (1, 1,6; 13), (4 4;17) 18 (8,85 11), (5, 5, 6; 23)
13 1 mod 7 (10, 10; 11), (2, 2,16 17)
15 ¢ mod 19 23 mod 17 :
16 | (7,7;11), {4, 5, 5;13) (5, 5, 14; 33, (4. 20; 17)
17 (6, 10;7), (1,1, 14; 11} 26 (4, 20; 3), (12, 12;23)

The case of the Bernoulli polynomials for » < 22, # # 11, is much
simpler, since the lagt two theorems given at the beginning of this section
cover all the cages except # = 14 and 17. The irreducibility of By {x)
has been shown by L. Carlitz in [5]. To obtain B,,(2);, & calculation was
carried out by hand, rather than make a table of B, () similar to the one
made for B,(x). To construct such a table is only slightly more compli-
cated than for B, (z), the complication arising from the fact that in
general the coefficients of B, (z) are fractions, whose denominators are

not just powers of 2. The factorizations that settle this case are (4,10;7 )

and (7, 7;11).
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