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New theorems concerning the dicphantine equation
D = 4y°

by

W. LauvngereEN (Oslo)

1. Introduetion. Let D denote a positive integer =3 (mod4), without
any square factor > 1. Lel further ¢ denote any odd prime. It ix the
purpose of this paper to prove some new theorems eoncerning the
solvability in positive rational integers =, v and ¢ of the equation

{1) P4 D = 4yt
for given wvalues of D.

Putting @ = 221 the equation (1) can also be written
(1) BRtz+3D+1) =yl

For D) =3 and g 3 T. Nagell [8] showed that (1) has no solutions
with ¥ + 1. In case D = 3 and g = 3 Ljunggren [4] proved that y = 1
and ¥ = 7 are the only solutions.
Let ‘h(l/——__ﬁ) = h be the number of classes of ideals in the algebraie
number field Q¥ _-———ﬁ). B. Persson [9] proved the following theorem:
The equation (1°) with D > 3 is solvable in infegers z and y only
for a finite number of integers D for a given ¢ with (b, ¢) = 1, and the

integral solutions ¥ of (1’) arc less than the number L coseczg-i—l. The

equation has at most £(¢—1) selutions y when D and g are given.

The last part of this theorem ‘was improved by B. Stolt [11] showing
that there is at most one solution, except for the cagse D = 3 (mod 8)
with ¢ = 1 (mod 6), where there are at most three solutions.

In & recent paper [3] I investigated the equation (1) in case D =7
(mod 8), and proved the following two theorems:

TaEOREM 1. Let D = 7 (mod 24}, and lel at the same time one of
the following two conditions be satisfied o

1% ¢ = 3 (meod 8},
2° ¢ =5(mod8), D—4=23"+D I =0 (mod3).
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Then the equation (1) has only a finite number of solutions in positive
infegers = and y end odd primes g, provided (kh,q) = 1. If there are solu-
tions these can be effectively found.

TEEoREM 2. Let I == 15 (mod 72). Then the equation (1) has only
a finite number of solutions in posilive inlegers w and y and odd primes ¢,
provided (b, g) = 1. If there are solutions these can be cffectively found.

As to the case ) = 3 (mod 8} we proceed proving the following new
theorems: ‘

TEEOREM 3. The equation (1) has only o finile number of solutions
#n positive integers x, y and odd primes ¢ & £ 1 (mod 24), provided (b, ¢) =1.
If there are solu&wws these canm be gffectively found.

THEOREM 4. Let D = 51 (mod 72). Then the equation (1) has only
o finite number of solutions in positive integers =, y and odd primes q =% —1
{mod 24). If there are solutions these can be effectively fomd’

In the proof uge is made of the following lemma due to J. W. 8. Cassels
I2]: Let 17 be a finite set of rational primes and let P be the set of posi-
tive integers all of whose prime factors are in I7. Tet F> 0 and B =0
be rational integers and suppose that no prime factors of # is in 7. Then
there are only a finite number of solutions Z, ¥ of the equation

72~ FY? = B,

where Z is a rational integer and ¥ eP. These can all be obtained in a fi-
nite number of steps.

2. If (b, q) = 11t is easily proved that (1) implies
(2) Ho+V—D) = (Ha+bV -D)J,
@, b denoting rational integers, a == b (mod 2). Sea 'for instance Ljunggren

[3]. Here is alse proved. that _

=) =

(equation (2) impossible for D = 0 (mod ¢)).
From (2) it then follows
(3) . 901y qaq‘lfm (g)aquap_l_ +(w ) @1,
Putfing 7
A= etV =Dy, N =1Ila—V—-D), a>0

(2) may be written

(29
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Tor brevity we introduce the notations

A pm 2 )
S’m — Am_i_llfm, Rm A2

4 Ty =—F—717 ==
(1) = i

where #m denotes any positive integer in the expressions for 7, and S,
and any odd positive integer in &,,.
The following formulas are easily verified

(5) Tieny~ W Tyy y =5,
(6) Tyginy Sygny = b+ AXPEY,
™ Tya-n Sigeny = b— (AP0,

These three identities have proved to be very useful in dealing with
problems of the type investigated in this paper. See for instance Ljunggren
[4], [5], [6] and Aigner [11

I:a case D = 3 (mod 8) we have 12" = 1 (med 2). From the formulas

Tm = ( A )Tm—z'—a’ermﬂ-aa
By = (02— )8y — @' 8,

we conclude that all T, (8;) are odd integers for m = 0 (mod 3) and
even integery for m = 0 (mod 3). Making nse of the 1dent1t1es

T, = aTgRa, Tines = TS — (AP Ty,
and noticing R, =T, =0 (mod 2), we find
(8) T, =0(mod4) if m=0(mod6), T,= +T,if m=23(mod§).
For later use we mote
| Ty = }(3a*~D), ~ & = He*~D),
R, = 3a*—1), T+ R;=a*—D.

In case D =3 (mod 8), D > 3 we have

(9)

(_a'ﬂg“m‘?_) eZ[V —~D], a,b odd integers.

Consequently, there are no selutions of (1) -for ¢ =3 end (R, 3) = 1.
3. In this section we prove some lemmas with b = 1.

LemmaA 1. If the equation (3) is satisfied with a = 0 (mod 3), then
either .
(i) g¢=1(mod4), b=1, D*—16=23"D, (D,3)=1
 oand ¢ = 2DD, {mod 3)
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(i) g=25(mod4), b= —D(mod3), D-4b=3"2D,,
(Dg, 3) =1 and ¢ = DD, {mod 3).

Proof. The equation (1) implies

Ha-1)

: - Mo i-1f 4] pHa-1)-i i
(10) D@D _p(— 4yt = A (1)) D @t
UERPIE A

Putting & = 3%a,, (#,,3) =1, s 1 we observe that the first term
on the right-hand side of (10) iz exactly divisible by 3°"*, ¢ —1 = 24,3,
(g:,3) =1, 6= 0. The general term in the swn in {10) may be writfen
in the form
g\ o Q“*Z) LT
(2)“ (2-1'—2 iy :

Here we have .
3 j(2¢—1) for iz 2,

and congequently this term is divisible by a power of 3 with exponent
greater than &+ 2s. Hence the right-hand side of (10} is exactly divisible
by 3°**, In cage ¢ = 1 (mod 4) it is easily seen that the condition & =0
{mod 3) implies b = 1. Pufting further D*—16 =3"1, (D, 3) =1,
m =1, we find that the quantity on the left-hand side of (10} iz exactly
divigible by 3°*™ Hence m = 2s. As to the ease D*—16 = 3% D,, we
easily find, when both sides of (11) are divided by 3°" that ¢ = 20D,
(mod 3). We have then proved the firgt part of the lemma,
In case ¢ = 3 (mod 4) the left-hand side of (10) may be written

pha-n 4 (4})){(11-—13 ,

which implies b = — D (mod 3). The remainder of the proof ig similar
to the proof of the first part of the lemma,

Levma 2. If o = D =1 (mod 3), then the equation (1) has no solu-
tions in rational inlegers =,y and odd primes g, g satisfying the condition
that the Legendre symbel (2/q) = —b.

Proof. We note that 8, = A242° =0 (mod3) and 23’ = —1
{mod 3). By meansg of the recurrence formula

Tm == Tm—‘}.. SQ‘"— (‘AZ’)‘ETW"I

we deduwce that T, = —T,_, =T, _, (mod3). Hence T, = 0 (mod 3)
if and only if m = 0 {mod 4). By (5) the lemma then follows sinee $(g4-1)
=0(mod 4) for b =1 and = 0 (mod 4) for b = —1.
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4. Tn this section we prove some lemmas, asswning b = — 1,
Lemma 3. If D = —1 (mod 3), then the equation (10) has mo solu-
tHons tn case b = —1.

Proof. If @ ==0{mod 3}, then (10) gives & =1 (mod 3), contrary
to the assumption. If &® =1 (mod 3), then 11" = 0 (mod 3), bus ‘this
contradicts (5).

Lemya 4. Necessary conditions for the solvability of (3) with b = -1
are ¢ = 1 (mod 3} and
(1) e’ D—2 for g=1(mod8) or ¢ =3 (mod8),

(i) <L 3D -8 for ¢ =5 (mod8).

_Proof. Treating (5) as a congruence mod 4 we conclude by (8) that
g = —1(mod 3). In the remainder of the proof we distingunizsh three
cases and let » dencte any odd prime. :

1° ¢ = 8 +1. Using formula {7) we obtain
(11) S4r+1'T4r = _1_('“’)47.-
S, i8 a divisor of T,.. Let p|8,, S;> 0. Since 8§, = —1 (mod 8)

- this namber contains at least one prime factor not of the form p =1 (mod 4),

which confradicts (11), where the right-hand side only has odd prime
factors p =1 (mod 8). Consequently, S, —1 since §, =1 cannot
occur, i.e.

at < D—32,

2° g = &+ 3. Using (7) we obtain

(12) Sam—z Ty = —1— (}-lr)‘h’_’_l-

Assume p|8,. Then (12) implies

-5 -5

since D = a? (mod p), i.e. p = 8h+1 or 8+ 3. As in 1° we conclude

L D—2.

3° g = 8r+5. By (6) we find Tju4qy = 0(mod 8), implying T,
= 0 (mod 8). Hence R, = —2 (mod 8). Now making use of (7) we get

(13) _SMM'TMH = "1_{”“’)““-
1R, is an odd divisor of 7,,,,. Let p[iR;, By > 0. By {13) we deduce
p =1(mod 4), which contradicts the fact that {E; = —1 (mod 4).
Hence, as before, 3 Ry << —1,1ie. : :

a2 <L 3D —8.
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Remark. I have not suceeeded in proving a similar theorem for
g = 8r-+1.
Lemva B. The equation {3) has no solutions if
D =} = —1{mod3).

Proof. If a =0 (mod 3), then (10) gives b =1, contrary to the
assumption. If a? = 1 (mod 3), then A2" = 0 (mod 3), but this is impos-
sible on account of (5). :

LEMniA 6. A necessary condilion for the solvability of (3) for b = —1
and g = 8-+7 is that ¢ = —1(mod 3) and cither
(1) D =0 (mod 3)
or ‘ '
(if) " a=0(mod3), D =1(mod3).

Proof. In virtue of Lemma 2 we can not have D =1 (mod 3) and
a 2 0 (mod 3). The assumption D = —1 (mod 3} contradicts Lemma 5.
Agin Lemma 4 it is shown that ¢ = —1 (mod 3),i.6. ¢ = —1 (mod 24).

5. In this section we prove some further lemmag assuming b = 1.

Leyma 7. Let p->3 be a prime dividing D, and assume. that q—1
= 0 (mod (p ——1)). Then the equation (3) is not satisfied with b = 1.

For a proof see T. Nagell [7] or Ljunggren [3].

Levwa 8. If D =6 (mod 9) then the equation (3) is not sabisfied
with b = 1.

For a proof see Ljunggreﬁ (31
The next lemma is partly similar to Lemma 4.

LeMMA 9. Necessary conditions for the solpability of (3) with b =1
“and ¢ = 43 (mod 8) are

1 << 3D-+8  for g =3 (mod 8),
(ii) : @< D—-2 for g¢= —3(mod8).

Proof. 1° ¢ =8r+3. At first we prove that A2 = 1 (mod 4). It
A = —1 (mod4) we would have 8, =24 —D =3 (mod 8). By (7)

'we obtain _
Sﬂbr-i-z 'T4r+1 =1— (ﬂr)wﬂ-

8; is a divisor of 8,,..,. Let p be an odd prime dividing 8,. This implies

=157 -G -

Le. p =8{+1, confradicting 8, =3 (mod 8).
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We proceed now by assuming A1 = 1 (mod 4). Treating (5) as 2 con-

gruence mod 4 we obtain T, ., = 0{mod 2), and hence g =1 (mod 3).
By (6) we have further

Ly By = 1-F (AV)H

Now {E; i3 an odd divisor of 8,.,;. I p| LR, B; > 0, we get
(MM’) (_—aa—_D) (—J))
P » Vg

—3
gince a? = 3D (mod p). This implies (T) =1, te. p = 6k+1. Conse-

quently a?—3D = §(6k,+1), a contradiction mod 3, and then
a2 < 3D+8. '

Remark. The congruences ¢ =3 {(mod 8) and g =1 (mod 3) give
¢ =19 (mod 24). '
2° g = 8¢5, By (6) we obtain

(14} Tiris Barga = 1 (i,
8, is a divisor of 8,,,,. Let the odd prime p{8,, 8,> ¢ Then by (14)
p =1 {mod 4). But §; = —1(mod 4), and hence

< D—2. ‘

Remark. It iz possible to obtain a somewhat better result in case
= —1 (mod 3). By (8) we then conclude i1’ =3 (mod 8), giving {1,
= (342 —D) = —1 (mod 4). Now }T, is & divisor of 7.4, and there-
fore 17, = 1 (mod 4} in virtue of (14}). Comsequently,
at L }(D--8) for g =5 (mod24),
Lemma 10. A necessary condition for the solvability of (3) with b =1
and ¢ = +7 (mod 24) is
at < (D —4) for g = —T{modS8),
et D—2 for g =7 (mod8)..

Proof. 1° ¢=24h+17. By (6) we have T'; =2 (mod 4), which by (5)
implies A" == 3 (mod 8). Hence 4T, = —1 (mod4}. Let the odd prime
pTs, Ty > 0. On account of (6) we get further 37, =1 (mod 4). Con-
sequently, a® < $(D —4). '

20 ¢ = 24k + 7. Treating (B) as a congruence mod 8, we get by (9)

that Tiy.s =Ty =0 (mod 4). Equation (6) may be written

(15) T1211.+4‘S12h+3 = ] _m(;v/lr)lzh;rg.
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8, iz a divisor of Ty, By (158) we get, putting p}S,, 8, > 0
H-C5EE
1= = = s
V4 P »

p =8t+1 or 8i-43.

However, from 1'; = 0 (mod 4), we find 5, = §(0*—D) = —1 (mod 8).
Consequently, o< .D—2, since a*—D =2 contradicts D = 3 (mod 8).

6. Proof of the two theorems. At first we prove Theorem 1. There
arc only a finite number of possibilites for a if ¢ = 41 (mod 24). In case
b = —1 this fact follows from Lemmas 4 and 6, and in case b = 1 from
Lemmas 9 and 10. If there are any solutions these can be effectively found
by use of Cassels’ theorem mentioned in the introduction. We have only
to write (1) in the form

2 g '
qc2-v(a,2+,D)(£L————£-P~) = —1),

In order to prove Theorem 2 we note that D = 51 (mod 72) implies
D =6 (mod 9). Lemma 8 then shows that (3) cannot be satisfied for
b=1. TIn case b = —1 Lemmas 6 and 4 show that ¢ = =1 {mod 24)
is the only possibility. Then we may use Cassels’ lemma. Our two theorems
are proved.

Exampin. o + 11 = 497, Here no=1. Singce D = —1 (mod 3) Lemma
3 shows that b = 1. Utilizing Lemma 9 we obtain the following bounds
for a*:0?<C 25 for ¢ =3 (mod8) and a®*< 9 for ¢ =5 (mod 8). Here
@ =3 iy excluded by Lemma 1. The value a® — 25 gives Al' =9, i.e.
z?+-11 = 4-3%, an equation with ¢ — 1 as the only integers olution.
It then remaing ¢® = 1 with 117 == 3, i.e. #*+11 = 4-3% In order to avoid
the laborious calculations in using Gmsel%’ lemama, we prefer an appli-
cation of Bkolem’s p-adic method. Here we have

= (HA+V =10 =1+B5E, &= F(1—V—11).
Then we must solve the equation
©(16) oV =10) = (3 +V TP, » =1 or 3.

¥ (16) we get
Ha+VTT0) = @+ 383 +V 1T

Tt is easily seen that» = 8 can be excluded mod 5. In case v — 1 we obtain
~ the following - 5- adlc developrent:

(17). | 0 =g(e—-1)+5( )52 )+
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Aceording to a theorem due to Th. Skolem [10] this equation (17) has
at most two solutions in rational integers 2. Now 2z = 0 and 2 =1 are
solutions. For z = 1 we get y = 5 and

31411 = 4-3°
as the only solution m case ¢ = 43 (mod 8}. Lemma 10 gives no further

sclutions. Hence:

The equation @ +11 = 447 has no solutions in rational integers @ and y
and primes g = +1 (mod 24}, with the evception of ¢ =5, where ¥y = 3
i8 the only solution.
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