New theorems concerning the diophantine equation

$$x^2 + D = 4u^q$$

by

W. LJUNGGREN (Oslo)

1. Introduction. Let D denote a positive integer $\equiv 3 \pmod{4}$, without any square factor > 1. Let further q denote any odd prime. It is the purpose of this paper to prove some new theorems concerning the solvability in positive rational integers x, y and q of the equation

$$(1) x^2 + D = 4y^q$$

for given values of D.

Putting x = 2z + 1 the equation (1) can also be written

(1')
$$z^2 + z + \frac{1}{4}(D+1) = y^q.$$

For D=3 and $q\neq 3$ T. Nagell [8] showed that (1') has no solutions with $y\neq 1$. In case D=3 and q=3 Ljunggren [4] proved that y=1 and y=7 are the only solutions.

Let $h(\sqrt{-D}) = h$ be the number of classes of ideals in the algebraic number field $Q(\sqrt{-D})$. B. Persson [9] proved the following theorem:

The equation (1') with D>3 is solvable in integers x and y only for a finite number of integers D for a given q with (h,q)=1, and the integral solutions y of (1') are less than the number $\frac{1}{4}D\csc^2\frac{\pi}{q}+1$. The equation has at most $\frac{1}{2}(q-1)$ solutions y when D and q are given.

The last part of this theorem was improved by B. Stolt [11] showing that there is at most one solution, except for the case $D\equiv 3\ (\mathrm{mod}\ 8)$

with $q \equiv 1 \pmod{6}$, where there are at most three solutions. In a recent paper [3] I investigated the equation (1) in case $D \equiv 7 \pmod{8}$, and proved the following two theorems:

Theorem 1. Let $D\equiv 7\ (\mathrm{mod}\ 24),$ and let at the same time one of the following two conditions be satisfied

$$1^{o} \ q \equiv 3 \pmod{8},$$

$$2^{\rm o}\ q\equiv 5\ ({\rm mod}\ 8),\ \ D-4=3^{2m+1}D_1,\ \ D_1\not\equiv 0\ ({\rm mod}\ 3).$$

Then the equation (1) has only a finite number of solutions in positive integers x and y and odd primes q, provided (h, q) = 1. If there are solutions these can be effectively found.

THEOREM 2. Let $D \equiv 15 \pmod{72}$. Then the equation (1) has only a finite number of solutions in positive integers x and y and odd primes q, provided (h, q) = 1. If there are solutions these can be effectively found.

As to the case $D \equiv 3 \pmod{8}$ we proceed proving the following new theorems:

THEOREM 3. The equation (1) has only a finite number of solutions in positive integers x, y and odd primes $q \not\equiv \pm 1 \pmod{24}$, provided (h, q) = 1. If there are solutions these can be effectively found.

THEOREM 4. Let $D \equiv 51 \pmod{72}$. Then the equation (1) has only a finite number of solutions in positive integers x, y and odd primes $q \not\equiv -1 \pmod{24}$. If there are solutions these can be effectively found.

In the proof use is made of the following lemma due to J. W. S. Cassels [2]: Let H be a finite set of rational primes and let P be the set of positive integers all of whose prime factors are in H. Let F>0 and $E\neq 0$ be rational integers and suppose that no prime factors of E is in H. Then there are only a finite number of solutions Z, Y of the equation

$$Z^2 - FY^2 = E,$$

where Z is a rational integer and $Y \in P$. These can all be obtained in a finite number of steps.

2. If (h, q) = 1 it is easily proved that (1) implies

(2)
$$\frac{1}{2}(x+\sqrt{-D}) = \left(\frac{1}{2}(a+b\sqrt{-D})\right)^{\alpha},$$

a, b denoting rational integers, $a \equiv b \pmod{2}$. See for instance Ljunggren [3]. Here is also proved that

$$b = \left(\frac{-D}{q}\right) = \pm 1$$

(equation (2) impossible for $D \equiv 0 \pmod{q}$).

From (2) it then follows

(3)
$$2^{q-1}b = qa^{q-1} - {q \choose 3}a^{q-3}D + \ldots + (-D)^{\frac{1}{2}(q-1)}.$$

Putting

$$\lambda = \frac{1}{2}(a + \sqrt{-D}), \quad \lambda' = \frac{1}{2}(a - \sqrt{-D}), \quad a > 0$$

(2) may be written

$$\frac{\lambda^q - \lambda'^q}{\lambda - \lambda'} = b = \pm 1.$$

For brevity we introduce the notations

(4)
$$T_m = \frac{\lambda^m - \lambda'^m}{\lambda - \lambda'}, \quad S_m = \lambda^m + \lambda'^m, \quad R_m = \frac{\lambda^m + \lambda'^m}{\lambda + \lambda'},$$

where m denotes any positive integer in the expressions for T_m and S_m , and any odd positive integer in R_m .

The following formulas are easily verified

(5)
$$T_{\frac{1}{2}(q+1)}^2 - \lambda \lambda' T_{\frac{1}{2}(q-1)} = b,$$

(6)
$$T_{k(q+1)} \cdot S_{k(q-1)} = b + (\lambda \lambda')^{\frac{1}{2}(q-1)}$$

(7)
$$T_{k(q-1)} \cdot S_{k(q+1)} = b - (\lambda \lambda')^{\frac{1}{k}(q-1)}.$$

These three identities have proved to be very useful in dealing with problems of the type investigated in this paper. See for instance Ljunggren [4], [5], [6] and Aigner [1].

In case $D \equiv 3 \pmod{8}$ we have $\lambda \lambda' \equiv 1 \pmod{2}$. From the formulas

$$\begin{split} T_m &= (a^2 - \lambda \lambda') T_{m-2} - a \lambda \lambda' T_{m-3}, \\ S_m &= (a^2 - \lambda \lambda') S_{m-2} - a \lambda \lambda' S_{m-3} \end{split}$$

we conclude that all T_m (S_m) are odd integers for $m \not\equiv 0 \pmod 3$ and even integers for $m \equiv 0 \pmod 3$. Making use of the identities

$$T_6 = aT_3R_3, \quad T_{6h+3} = T_{6h}S_3 - (\lambda\lambda')^3T_{6h-3},$$

and noticing $R_3 \equiv T_3 \equiv 0 \pmod{2}$, we find

(8) $T_m \equiv 0 \pmod{4}$ if $m \equiv 0 \pmod{6}$, $T_m \equiv \pm T_3$ if $m \equiv 3 \pmod{6}$. For later use we note

(9)
$$T_3 = \frac{1}{4}(3a^2 - D), \quad S_2 = \frac{1}{2}(a^2 - D), \\ R_3 = \frac{1}{4}(3a^2 - D), \quad T_3 + R_3 = a^2 - D.$$

In case $D \equiv 3 \pmod{8}$, D > 3 we have

$$\left(\frac{a+b\sqrt{-D}}{2}\right)^3 \epsilon Z[\sqrt{-D}], \quad a, b \text{ odd integers.}$$

Consequently, there are no solutions of (1) for q = 3 and (h, 3) = 1. 3. In this section we prove some lemmas with b = +1.

Lemma 1. If the equation (3) is satisfied with $a \equiv 0 \pmod{3}$, then either

(i)
$$q \equiv 1 \pmod{4}$$
, $b = 1$, $D^2 - 16 = 3^{2m_1}D_2$, $(D_2, 3) = 1$ and $q \equiv 2DD_2 \pmod{3}$

187

or

(ii)
$$q \equiv 3 \pmod 4$$
, $b \equiv -D \pmod 3$, $D+4b=3^{2m_2}D_3$, $(D_3,3)=1 \ and \ q \equiv DD_3 \pmod 3$.

Proof. The equation (1) implies

$$(10) D^{\frac{1}{2}(q-1)} - b(-4)^{\frac{1}{2}(q-1)} = \sum_{i=1}^{\frac{1}{2}(q-1)} (-1)^{i-1} \binom{q}{2i} D^{\frac{1}{2}(q-1)-i} a^{2i}.$$

Putting $a=3^sa_1$, $(a_1,3)=1$, $s\geqslant 1$ we observe that the first term on the right-hand side of (10) is exactly divisible by $3^{\delta+2s}$, $q-1=2q_13^{\delta}$, $(q_1,3)=1$, $\delta\geqslant 0$. The general term in the sum in (10) may be written in the form

$$\binom{q}{2}a^2\binom{q-2}{2i-2}\frac{a^{2i-2}}{i(2i-1)}\,D^{k(q-1)-i}.$$

Here we have

$$3^{2i-2} > i(2i-1)$$
 for $i \ge 2$,

and consequently this term is divisible by a power of 3 with exponent greater than $\delta + 2s$. Hence the right-hand side of (10) is exactly divisible by $3^{\delta+2s}$. In case $q \equiv 1 \pmod{4}$ it is easily seen that the condition $a \equiv 0 \pmod{3}$ implies b = 1. Putting further $D^2 - 16 = 3^m D'$, (D', 3) = 1, $m \ge 1$, we find that the quantity on the left-hand side of (10) is exactly divisible by $3^{\delta+m}$. Hence m = 2s. As to the case $D^2 - 16 = 3^{2s}D_2$, we easily find, when both sides of (11) are divided by $3^{\delta+2s}$ that $q \equiv 2DD_2 \pmod{3}$. We have then proved the first part of the lemma.

In case $q \equiv 3 \pmod{4}$ the left-hand side of (10) may be written

$$D^{\frac{1}{2}(q-1)}+(4b)^{\frac{1}{2}(q-1)},$$

which implies $b \equiv -D \pmod{3}$. The remainder of the proof is similar to the proof of the first part of the lemma.

LEMMA 2. If $a^2 \equiv D \equiv 1 \pmod{3}$, then the equation (1) has no solutions in rational integers x, y and odd primes q, q satisfying the condition that the Legendre symbol (2/q) = -b.

Proof. We note that $S_2=\lambda^2+\lambda'^2\equiv 0\ (\mathrm{mod}\ 3)$ and $\lambda\lambda'\equiv -1\ (\mathrm{mod}\ 3)$. By means of the recurrence formula

$$T_m = T_{m-2} \cdot S_2 - (\lambda \lambda')^2 T_{m-4}$$

we deduce that $T_m \equiv -T_{m-4} \equiv T_{m-3} \pmod{3}$. Hence $T_m \equiv 0 \pmod{3}$ if and only if $m \equiv 0 \pmod{4}$. By (5) the lemma then follows since $\frac{1}{2}(q \pm 1) \equiv 0 \pmod{4}$ for b = 1 and $\neq 0 \pmod{4}$ for b = -1.

4. In this section we prove some lemmas, assuming b=-1.

LEMMA 3. If $D \equiv -1 \pmod{3}$, then the equation (10) has no solutions in case b = -1.

Proof. If $a \equiv 0 \pmod{3}$, then (10) gives $b \equiv 1 \pmod{3}$, contrary to the assumption. If $a^2 \equiv 1 \pmod{3}$, then $\lambda \lambda' \equiv 0 \pmod{3}$, but this contradicts (5).

Lemma 4. Necessary conditions for the solvability of (3) with b=-1 are $q\equiv -1\ (\text{mod }3)$ and

(i)
$$a^2 \leqslant D-2 \quad \text{for} \quad q \equiv 1 \pmod{8} \text{ or } q \equiv 3 \pmod{8},$$

(ii)
$$a^2 \leqslant 3D - 8 \quad \text{for} \quad q \equiv 5 \pmod{8}.$$

Proof. Treating (5) as a congruence mod 4 we conclude by (8) that $q \equiv -1 \pmod{3}$. In the remainder of the proof we distinguish three cases and let p denote any odd prime.

 1° q = 8r + 1. Using formula (7) we obtain

(11)
$$S_{4r+1} \cdot T_{4r} = -1 - (\lambda \lambda')^{4r}.$$

 S_2 is a divisor of T_{4r} . Let $p \mid S_2, S_2 > 0$. Since $S_2 \equiv -1 \pmod 8$ this number contains at least one prime factor not of the form $p \equiv 1 \pmod 4$, which contradicts (11), where the right-hand side only has odd prime factors $p \equiv 1 \pmod 8$. Consequently, $S_2 \leqslant -1$ since $S_2 \equiv 1$ cannot occur, i.e.

$$a^2 \leqslant D-2$$
.

 $2^{\circ} q = 8r + 3$. Using (7) we obtain

(12)
$$S_{4r+2} \cdot T_{4r+1} = -1 - (\lambda \lambda')^{4r+1}.$$

Assume $p \mid S_2$. Then (12) implies

$$\left(\frac{-\lambda\lambda'}{p}\right) = \left(\frac{-a^2 - D}{p}\right) = 1 = \left(\frac{-2}{p}\right)$$

since $D \equiv a^2 \pmod{p}$, i.e. p = 8h + 1 or 8h + 3. As in 1^0 we conclude

$$a^2 \leqslant D-2$$
.

 3° q=8r+5. By (6) we find $T_{\frac{1}{2}(q+1)}\equiv 0\ (\text{mod }8)$, implying $T_3\equiv 0\ (\text{mod }8)$. Hence $R_3\equiv -2\ (\text{mod }8)$. Now making use of (7) we get

(13)
$$S_{4r+3} \cdot T_{4r+2} = -1 - (\lambda \lambda')^{4r+2}.$$

 $\frac{1}{2}R_3$ is an odd divisor of T_{4r+2} . Let $p \mid \frac{1}{2}R_3$, $R_3 > 0$. By (13) we deduce $p \equiv 1 \pmod{4}$, which contradicts the fact that $\frac{1}{2}R_3 \equiv -1 \pmod{4}$. Hence, as before, $\frac{1}{2}R_3 \leqslant -1$, i.e.

$$a^2 \leq 3D - 8$$
.

189

Remark. I have not succeeded in proving a similar theorem for q=8r+7.

LEMMA 5. The equation (3) has no solutions if

$$D \equiv b \equiv -1 \pmod{3}.$$

Proof. If $a \equiv 0 \pmod{3}$, then (10) gives b = 1, contrary to the assumption. If $a^2 \equiv 1 \pmod{3}$, then $\lambda \lambda' \equiv 0 \pmod{3}$, but this is impossible on account of (5).

Lemma 6. A necessary condition for the solvability of (3) for b=-1 and q=8r+7 is that $q\equiv -1 \pmod 3$ and either

$$(i) D \equiv 0 \pmod{3}$$

or

(ii)
$$a \equiv 0 \pmod{3}, \quad D \equiv 1 \pmod{3}.$$

Proof. In virtue of Lemma 2 we can not have $D \equiv 1 \pmod{3}$ and $a \not\equiv 0 \pmod{3}$. The assumption $D \equiv -1 \pmod{3}$ contradicts Lemma 5. As in Lemma 4 it is shown that $q \equiv -1 \pmod{3}$, i.e. $q \equiv -1 \pmod{24}$.

5. In this section we prove some further lemmas assuming b=1. Lemma 7. Let p>3 be a prime dividing D, and assume that $q-1 \equiv 0 \pmod{(p-1)}$. Then the equation (3) is not satisfied with b=1.

For a proof see T. Nagell [7] or Ljunggren [3].

Lemma 8. If $D \equiv 6 \pmod{9}$ then the equation (3) is not satisfied with b = 1.

For a proof see Ljunggren [3].

The next lemma is partly similar to Lemma 4.

Lemma 9. Necessary conditions for the solvability of (3) with b=1 and $q\equiv \pm 3 \pmod 8$ are

(i)
$$a^2 \leqslant 3D + 8 \quad \text{for} \quad q \equiv 3 \pmod{8}$$

(ii)
$$a^2 \leqslant D-2 \quad \text{for} \quad q \equiv -3 \pmod{8}$$
.

Proof. 1° q=8r+3. At first we prove that $\lambda\lambda'\equiv 1\ (\text{mod }4)$. If $\lambda\lambda'\equiv -1\ (\text{mod }4)$ we would have $S_2=2\lambda\lambda'-D\equiv 3\ (\text{mod }8)$. By (7) we obtain

$$S_{4r+2} \cdot T_{4r+1} = 1 - (\lambda \lambda')^{4r+1}$$

 S_2 is a divisor of S_{4r+2} . Let p be an odd prime dividing S_2 . This implies

$$\left(\frac{\lambda\lambda'}{p}\right) = \left(\frac{a^2 + D}{p}\right) = \left(\frac{2}{p}\right) = 1,$$

i.e. $p = 8t \pm 1$, contradicting $S_2 \equiv 3 \pmod{8}$.

We proceed now by assuming $\lambda\lambda'\equiv 1\ (\mathrm{mod}\ 4)$. Treating (5) as a congruence mod 4 we obtain $T_{4r+1}\equiv 0\ (\mathrm{mod}\ 2)$, and hence $q\equiv 1\ (\mathrm{mod}\ 3)$. By (6) we have further

$$T_{4r+2} \cdot S_{4r+1} = 1 + (\lambda \lambda')^{4r+1}.$$

Now $\frac{1}{2}R_3$ is an odd divisor of S_{4r+1} . If $p \mid \frac{1}{2}R_3$, $R_3 > 0$, we get

$$\left(\frac{-\lambda \lambda'}{p}\right) = \left(\frac{-a^2 - D}{p}\right) = \left(\frac{-D}{p}\right) = 1,$$

since $a^2 \equiv 3D \pmod{p}$. This implies $\left(\frac{-3}{p}\right) = 1$, i.e. p = 6k+1. Consequently $a^2 - 3D = 8(6k_1 + 1)$, a contradiction mod 3, and then

$$a^2 \leq 3D + 8$$
.

Remark. The congruences $q \equiv 3 \pmod{8}$ and $q \equiv 1 \pmod{3}$ give $q \equiv 19 \pmod{24}$.

 2° q = 8r + 5. By (6) we obtain

(14)
$$T_{4r+3} \cdot S_{4r+2} = 1 + (\lambda \lambda')^{4r+2}.$$

 S_2 is a divisor of S_{4r+2} . Let the odd prime $p \mid S_2, S_2 > 0$. Then by (14) $p \equiv 1 \pmod{4}$. But $S_2 \equiv -1 \pmod{4}$, and hence

$$a^2 \leq D-2$$
.

Remark. It is possible to obtain a somewhat better result in case $q \equiv -1 \pmod{3}$. By (5) we then conclude $\lambda \lambda' \equiv 3 \pmod{8}$, giving $\frac{1}{2}T_3 = \frac{1}{6}(3a^2 - D) \equiv -1 \pmod{4}$. Now $\frac{1}{2}T_3$ is a divisor of T_{4r+3} , and therefore $\frac{1}{2}T_3 \equiv 1 \pmod{4}$ in virtue of (14). Consequently,

$$a^2 \leqslant \frac{1}{3}(D+8)$$
 for $q \equiv 5 \pmod{24}$.

Lemma 10. A necessary condition for the solvability of (3) with b=1 and $q \equiv \pm 7 \pmod{24}$ is

$$a^2 < \frac{1}{3}(D-4)$$
 for $q \equiv -7 \pmod{8}$,
 $a^2 \le D-2$ for $q \equiv 7 \pmod{8}$.

Proof. 1° q=24h+17. By (6) we have $T_3\equiv 2\ (\text{mod }4)$, which by (5) implies $\lambda\lambda'\equiv 3\ (\text{mod }8)$. Hence $\frac{1}{2}T_3\equiv -1\ (\text{mod }4)$. Let the odd prime $p\mid T_3,T_3>0$. On account of (6) we get further $\frac{1}{2}T_3\equiv 1\ (\text{mod }4)$. Consequently, $a^2<\frac{1}{3}(D-4)$.

 2° q = 24h + 7. Treating (5) as a congruence mod 8, we get by (9) that $T_{12h+3} \equiv T_3 \equiv 0 \pmod{4}$. Equation (6) may be written

(15)
$$T_{12h+4} \cdot S_{12h+3} = 1 - (\lambda \lambda')^{12h+3}.$$

 S_2 is a divisor of T_{12h+4} . By (15) we get, putting $p \mid S_2, S_2 > 0$

$$1 = \left(\frac{-\lambda \lambda'}{p}\right) = \left(\frac{-a^2 - D}{p}\right) = \left(\frac{-2}{p}\right),$$

i.e.

$$p = 8t + 1$$
 or $8t + 3$.

However, from $T_3 \equiv 0 \pmod{4}$, we find $S_2 = \frac{1}{2}(a^2 - D) \equiv -1 \pmod{8}$. Consequently, $a^2 \leq D - 2$, since $a^2 - D = 2$ contradicts $D \equiv 3 \pmod{8}$.

6. Proof of the two theorems. At first we prove Theorem 1. There are only a finite number of possibilites for a if $q=\pm 1 \pmod{24}$. In case b=-1 this fact follows from Lemmas 4 and 6, and in case b=1 from Lemmas 9 and 10. If there are any solutions these can be effectively found by use of Cassels' theorem mentioned in the introduction. We have only to write (1) in the form

$$x^2 - (a^2 + D) \left(\frac{a^2 + D}{4}\right)^{q-1} = -D.$$

In order to prove Theorem 2 we note that $D \equiv 51 \pmod{72}$ implies $D \equiv 6 \pmod{9}$. Lemma 8 then shows that (3) cannot be satisfied for b=1. In case b=-1 Lemmas 6 and 4 show that $q\equiv -1 \pmod{24}$ is the only possibility. Then we may use Cassels' lemma. Our two theorems are proved.

EXAMPLE. $x^2 + 11 = 4y^a$. Here h = 1. Since $D \equiv -1 \pmod{3}$ Lemma 3 shows that b = 1. Utilizing Lemma 9 we obtain the following bounds for a^2 : $a^2 \leqslant 25$ for $q \equiv 3 \pmod{8}$ and $a^2 \leqslant 9$ for $q \equiv 5 \pmod{8}$. Here a = 3 is excluded by Lemma 1. The value $a^2 = 25$ gives $\lambda \lambda' = 9$, i.e. $x^2 + 11 = 4 \cdot 3^{2q}$, an equation with q = 1 as the only integers olution. It then remains $a^2 = 1$ with $\lambda \lambda' = 3$, i.e. $x^2 + 11 = 4 \cdot 3^q$. In order to avoid the laborious calculations in using Cassels' lemma, we prefer an application of Skolem's p-adic method. Here we have

$$\lambda^4 = (\frac{1}{2}(1+\sqrt{-11}))^4 = 1+5\xi, \quad \xi = \frac{1}{2}(1-\sqrt{-11}).$$

Then we must solve the equation

(16)
$$\frac{1}{2}(x+\sqrt{-11}) = (\frac{1}{2}(1+\sqrt{-11}))^{4x+r}, \quad r=1 \text{ or } 3.$$

By (16) we get

$$\frac{1}{2}(x+\sqrt{-11}) = (1+5\xi)^{2}(\frac{1}{2}(1+\sqrt{-11}))^{2}.$$

It is easily seen that r=3 can be excluded mod 5. In case r=1 we obtain the following 5-adic development:

$$(17) 0 = z(z-1)+5()+5^{2}()+...$$

According to a theorem due to Th. Skolem [10] this equation (17) has at most two solutions in rational integers z. Now z=0 and z=1 are solutions. For z=1 we get y=5 and

$$31^2 + 11 = 4 \cdot 3^5$$

as the only solution in case $q \equiv \pm 3 \pmod{8}$. Lemma 10 gives no further solutions. Hence:

The equation $x^2 + 11 = 4y^q$ has no solutions in rational integers x and y and primes $q \not\equiv \pm 1 \pmod{24}$, with the exception of q = 5, where y = 3 is the only solution.

References

- [1] A. Aigner, Die diophantische Gleichung $x^2 + 4D = y^p$ im Zusammenhang mit Klassenzahlen, Mh. Math. 72 (1968), pp. 1-5.
- [2] J. W. S. Cassels, On a class of exponential equations, Ark. Mat. 4 (1961), pp. 231-233.
- [3] W. Ljunggren, On the diophantine equation $x^2 + D = 4y^q$, Mh. Math. 75 (1971), pp. 136-143.
- [4] Einige Bemerkungen über die Darstellung ganzer Zahlen durch binäre kubische Formen mit positiver Diskriminante, Acta. Math. 75 (1942), pp. 1-21.
- [5] On the diophantine equation $Cx^2 + D = y^n$, Pacific J. Math. 14 (1964), pp. 585-596.
- [6] On the diophantine equation $Cx^2 + D = 2y^n$, Math. Scand. 18 (1966), pp. 69-86.
- [7] T. Nagell, Sur l'impossibilité de quelques équations à deux indéterminées, Norsk Mat. Forenings Skrifter, Ser. I, No. 13 (1923), pp. 65-82.
- [8] Des équations indéterminées $x^2 + x + 1 = y^q$ et $x^2 + x + 1 = 3y^q$, Norsk Mat. Forenings Skrifter, Ser. I, No. 2 (1921), 14 pp.
- [9] B. Persson, On a diophantine equation in two unknowns, Ark. Mat. 1 (1949), pp. 45-57.
- [10] Th. Skolem, Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen und diophantischer Gleichungen, 8^{de} Skand. Mat. Kongress, Stockholm 1934, pp. 163-188.
- [11] B. Stolt, Die Anzahl von Lösungen gewisser diophantischer Gleichungen, Arch. Math. 8 (1957), pp. 393-400.