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la convergence de la série (3,) entraine la convergence de la série (¥')
pour tout ? réel.
Par ailleurs, Ia convergence de la série (8,) enfraine Dexistence d’un
M > 0 tel que
1flag’y) < M oot 1<Casg—1.

On a alols (9} et la convergence des séries (S,) et (Sg) entraine celle
de la série (8”) pour tout i réel.

Ta série (S%) est convergente pout tout ¢ réel puisque (') et (37)
le zont.

Daprés le Théoréme 2, pour tout t réel, F,posséde une valeur moyenne

égale i - .
”—glz_ (l+ 2 Ft(aq?')).

On va voir gue cette valeur moyexme est une fonction econtinue
de 1. Bn effef, si I’on pose
1
v 1tf{aq"') 1)’

1 ‘ .
E(l—f—ZFt(GQ’))‘:l—kur(t), ot wy(l) = >

a=1 . a=]1

_an

=1

pour ¥ =

g1

&b

le Lemme 4 (avee & == 1, puis avee & = 2) montre que 'on a pour |{j << T

g-—-1

- T (g —1)
) < == 3 (0, ol ) < Zf

=1

et
. e 21

D, Tl

a=1
Le produit infini I Y (1w ()™ est donc uniformément con-

vergent sur tout m.tervalle [, +17, d’aprés le Lemme 6, et par suite
8a valéur est une fonction de ¢ contmue sur B, Or il est égal &

[T+ 3 mios o~ S5 Stod )

=0
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ACTA ARITTHMETICA
XXI (1972)

On the diophantine equation a{#'—1)/(z~—1) = y™
by
K. INKERT (Turku)

1. Among the diophantine equations p{z) = ™, where p(z) is a
polynomial with integer coefficients, the eguation
" —1

1), a@ '+ e+l =a—— =" (mz1, 5|>1, m=2)

is an interesting special case. In addition to x and v, also a,n, and m
ean be integral variables in (1). The problem of determining the solva-
bility in integers of (1} when all these numbers are variables seems to
be unfeasible. Various special cages arise by fixing, or specializing in gome
other way, one or more of the variables in (1). Particularly the case & = 1
with certain other restrictions has been treated by many authors. Oblath
{127 has determined ail solutions of (1) when z = 10, 1 < o < 10. More
accurately and by a slightly different route, he has proved that all num-
bers which are perfect powers and whose digits in the scale of 10 axe
jdentical and not equal fo 1, are 4, 8 and 9. Sierpinski also has dlscussed
this problem in his monowra,ph ([147], p. 276)(*).

Ag, from our point of view, the cases # = 1 and n = 2 can be regar-
ded as trivial, we assume in the following that = > 3. Without loss of
gonerality, it can also be assumed that m is a prime.

‘We-shall make use of the following results coneerning the case ¢ = 1
which were given by Nagell and Ljunggren.

{A) If 4|n, then the only solution of (1) in integers B =d, 2 =7,
m =2y =420 (cf. [8])

(B) If m—2 (1) has only the solutions n =4, o =7, y = 420
and n =5, 2 = 3, y = 411 {cf. [67, [9] and also, because of the used
method, [2]).

{Y) Note also the problem presented by Oblath (J.-ber. Deutseh. Math. Verein.
47 {1937), p. 64, Aufgabe 258) and three solutions of thaf problem (ibid. 50 (1940),
pp. 3-5). The solufion given by J. Eréd is not, however, complete, since the theorem
of Biegel [13] has been applied incorrectly.
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(CY T 3im, (1) has only the solutions m =n = 3, =18 or —18,
y =T (cf [6]).

(D) Tf m = 3 and #» # —1 (mod 6), then (1) has only the solutions
=3, % =18 or —19, ¥ =7 (¢f. [6]).

We add. also the following theorem concerning the case n = 3.

(B The equation #'+»-+1 =™ has only the solutions m =3,
# =18 or —19, y =7 (cf. (C) or [10] and [4]). The equation #4241
= 3y, where m = 3, |#| > 2, has no integer solutions (ef. [10]).

In thig paper, we extend (A) (cf. Theorem 4) and slightly alse (D)
(Theorems 1 and 2) and improve Oblath’s result by determining the
golutions of (1) for 1 < e < 2 < 10 (Theorem 7). We make use, in addition
to the theorems (A}, ..., (B), of some other rather deep results, but other-
. wise our treatment iz elementary by nature. ‘

2, Write
at—1

J(n,x) = (@ #=1).
If 9 is a prime, the greatest common divisor (m 1,8(p, w)] is porl
according as « — 1 is divigible by » or not. If » is odd, then @ (%, p) iz not
divigible by p*

We shall generalize these facts in the following three lemmas.

LeMa 1. If p is o prime and © is an infeger = 1, then
(@ —1,Q@, 2" N =por1 (0<
according as ple—1 or not.

_ Proof. pr|m~—1,thenp[w1’i—
little theorem,

1< J)
1, and vice versa, because, by Fermat's

] i—1
47 = g® = ..

. = ¢ (mod p).
Further, #%°—1 7% —1 for ¢ <j and |
@ —~1,Qp, 0" ) =por 1
accordmg as ple—1 or not.
. Lemvs 2. Let p be on odd prime cmd let % belomg to the ewponent
d (mod p). If

p“,LlQ(@, x), din, .pb|'”’: (@, b= 0},

then
PQ (n, @),

RBemark. As nsually, p%|n (@ 0) means that p*ln

PHYY . Bvi-
dent1Y7pTQ(%;m)sﬁp|®" or d'l’nL ' ’
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Proof. Write n = p”t. Then pt ¢, &/t and p*||Q(¢, ) since

Qt, o) =Q(dam)Q(mamd) {m = t/d)
and

Q(m, 2% =g D fat L1 =m £ 0 (mod p).
We have '

b1,

Q(%Jm) =Q(¢:£)Q(f’p’ms) "Q(p:mp B

where the first factor on the right-hand side is divisible exactly by the
power p” and the other factors by p'. This proves the lemma.

Leva 3. Suppose 2°[o+1 and 24n. Then

(2) 9 Qn,m) if s =0 (ie 2|@) or t =9,
and
3) 2N Q(n, 8) i 8>0 and 1> 0.

Proof. The case (2) iz clear since @ (n, ) is odd if # is even or » 18 odd. -
Write n = 2%k and let s > 0, ¢ > 0. In the equation

Qs 2) = Q(k, B+ 1)@*+1) ... (@ 1)

o™ 1 (i =1,2,...,4—1) and 2°]a"+1, Decause k is

24 Q (%, =),
odd and

g +1 = (z+1)Q (%, —2);

where the latter factor on the right-hand side is odd. Hence the lemma
follows.

3. We give now two theorems which slightly exteurl the result (D)
coneerning thc equation

)-_y {n>2).

We begin with two lemmas.

Levma 4. The diophantine equaiion {4) ecan not have solutions Sor
which ¢ = ¢* or &4+ 1 with [ > 1.

Proof. The equation (4) assumes accordingly the forms

(@ P —(@—-Dy =1, " =1+().

Since for a given z {|2] > 2), the equation ou® — (@ —1)0* =1 hag, by

a result of Nagell [11], only the solution % = » = 1, the former equation
is impossible because |2**| > 1. By another 1esult of Nagell ({10], p. 14),
also the latter equation iz imposgible.
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Lexma 5. Ifpisa pmme with 94 p—1 and if = belongs to 8a"ponem 3
or 6 (mod p), then a does not satisfy the equation

(5) (@ 1) (m—1) = ¢,

where k> 0 and y are integers. The same holds if © belongs o exponent 12
and x2(z+ 1) to an exponent divisible by 3.
Proof. In the former case, p is of the form 6141, and the agsumption
referring to p is equivalent to the conditions
(6) o2t =1, & % 1(modp).
Suppose that x satisfies equation (5), which becomes
(7) % = alp—1)9°.

By (6), it follows that 1- 2 = z(w—1)%* (mod p) and s0, since pto—1,
that '
(8) : 2N =1 (mod p).

However, this is impossible since (p—1) /3 is not divisible by 3.
In the latter case, the assumption that o belongs to exponent
12 (mod p) is equivalent to the conditions :

(9) @t = —1, o*= —1 (modp).

Now p has the form 121+ 1. If % in (5) is even, we get from (7) again (8)
and so a contradiction. If % is odd, equation (7) leads to

P z+1) = o (2+1) (@ —))y® (mod p).
But, by (9), #*—4*+1 = 0 (mod p) and @ = —1 (mod p), so that
[o" (@ +1)]%1 =1 (mod p).

This is a contradiction by virtue of the assumption of the lemma. This
- completes the proof.

Let r be a primitive root. of p Put p = 65—1—1 Then the solutions
of (6) are : .

{10) . @ =7%(mod p)

(8 = 1,2, 4,.5).
For p = 121--1, the solutions of (9) are
(17 @ =r(modp) (s=1,5,7,11).

. TEmoREM 1. Suppose that the integers k=1, z,y satwfy the co%dzw
tion (5). Then o =0, 1 (mod 9) and also mod 7), ond x5 —2, £3,
+4, —6(mod 13).
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. Proof. Suppose that # =0, -£1 (mod 9).

The nmmnbers »*+24-1 and 22—a+1 are relatively prime, so that
at most one is divisible by 3, if it is divisible, but then net by 9. All the
other prime factors of these numbers have the form 6I-F 1. At least one
of these prime faclors, say p, fulfills the condition 9+1p— 1, since, other-
wise, cither

el =1, »*—2+1 =1 (nod9),
and so @ = 0 (mod 9), or -

tu+l =3, «*Fzr+l=1/(od9),
and g0 & = 41 (mod 9).

We see dnectly that #° = 4.1 (mod p) and &* # 1 (mod p). Hence =
belongs to exponent 3 or 6 (mod p). Using Lemma 5 and the assumption
of our theorem, we have & contradiction, whieh proves the first assertion..

Let s now apply Lemma § to the primes p = 7 and p = 13. When,
in the first case, we omit the residue classes (10), the result mentioned
in the theorem follows. In the case p = 13 (r = 2), the solutions of (10}
and (10') are, Tespectively,

&= 3, +4 and z=

In the latter set, # = —2 and x = —6 (mod 13) satisty the condition
set for #%(x+1) and so the last result of the theorem follows immediately
from Lemma 5.

THEOREM 2. For 1 << &< 70, the equation (5) is not solvable in integers
I 0,9, and the equation (4) has only the sobufion n =3, ¢ = 18, y = T,
For any given @ > 70, the equation (3) has af most one solution in positive
tniegers k, y.

Proof. If k, @, v vatisfy (5), there are according to Theorem 1 only
the followmg possibilities:

z==0,1,8,27,28, 35, 36, .)5 62 (mod 63).
By the result concerning the prime p = 13, we see that at most the num-

+2, £6 (mod 13).

bers @ = 8 = 2%, 27 = 3%, 28 = 8°+1 and 64 = 4’ in the interval 1< =

< 70 can. bo solutions of (3). However, it follows from Lemma 4 that also

these do not come into question. By (D), we eonclude now that the equa~

tion (4) has only the solution » = 3, # =18,y = 7 when 1 < x < 70.
The equation (5) can also he written in the form

a* (g — (— 1)y = 1.

Sinee for every fixed x> 70, we have &*(x—1)> T2-70° > 4*-3°, the
iagt agsertion of the theorem follows from a known result of Siegel (cf. [13]
or [7], p. 273). The same can be verified also by means of one of Nagell’s
results [11] mentioned already above. The proof iy complete.
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4. The following lemma is a collection of some Well known results,
which we shall need later.
LEvwMA 6. The only integer solufions of the equation

{(a) ot —2y =1 are @ = +1,y =0;
M) @ =2t = —1  we w=kl,y =1
(e) -2yt = are @= +1, y ==0;

= +1,y =41 and
# = =239, ¥ =~ -L13;
= 41, 4y =0 and
o= 3 y=+1.
The deep result (d) was proved by Ljunggren [6]. The others have
been known already » long time (cf. [16], p. 404 or [14], p. 98; (&) follows
eagily from (b) and (e) from (e)).
TeuoreM 3. The only integer solutions of the sysiem
(11) o1 = 2%y, &+l = Zz )

where p 18 apmme, ez 0 and y odd, are given by v = 1,7 and p = 2,

Remark. In the case p = 2, this implies Genoechi’s resuli; (cf. [9],
Dp. 404-406) asserted zbhjezhdy by Fermadt.

Proof. Suppose that (11) holds ‘and write the latter equation in (11)
in the form
s+1V [a—1\ |
( 2 ) +( 2 ) e

It suffices to consider only the case 2 = 1.
If 4| —1, there exist integers  and s such that

(12) }@4+1) =r2—s?, F(a—1) = s,
From this and from (11), it' follows that

{d) &2yt = —1 are

{e) @ —8y* =1 are

r>s>0,(r,8) =1, 2|rs.

(18)  (r—sf—28" =1, (r4sl—2" = —1, P—g® =2 Ip?

where p =2, ¢ = 0 or P23, e =1, since r2—5? iz odd, The numbers
7 ~—s-and r--s are relatively prime, whence at least one of them is a gquare,
By Lemma 6, a contradiction follows now from (13} and (12). '

In the cage 4|x+1, the first two equations in (13) must be replmced
by the conditions .

129 - Ha+1) = 2rs,
80 that now

{18') (r--s)2—

Fa—1) = 7 —st,

2% =1, (r—8)'—2 = —1, g+1=dps =2°pyt.
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By Lemma 6, it follows from the first equation in (13’) that » cannot be
2 square. From the same equation, it follows that 2|r.

If pls and so p 2, we obtain, from the latter condition in (287,
v = 2r{, whenee

(r+8)—8rf = 1.

This i3 of the form (e) so that r+s = 3 and, therefore, r = 2, § = 1,
contradicting the condition p|s.
It remains to consider the case p1s. From (13 ), it follows that
s =& and 80
(r—s)?—zﬁ = —1.

By Lemma 6 (d), we have s; = 1 or 13. In the first case, s = 1, 7 —s = 1,
r = 2, so that by virtue of the lagt relation in (18", # = 7, p = 2. In case
8; =13, we have & — 169 and »—s = 239, whenee » = 408 = 8-3-17.
On the other hand, by (13), » = 2*~*pr3, where 7, is an integer. This
contradiction establishes the theorem.

5. The following theorem is an extension of Nagell’s result ([8], p. 78).
However, we restrict ourselves to the case @ > 1 since only this will be
used Iater.

TrworeM 4. If the imlegers n>0, #>1, y>0, ¢=0, f=0 and |
the primes m = 2, p > 2 satisfy the conditions
(14) Qn, ) =2"p"y",  4in, (y,29") =1,
then
)n=4, 2=T 6=4, f=0,m=2, y=5 or f=2, p=5,
¥y =1,
or

{)yn=8x="7¢6=5Ff=1,p =120, m =2, 5y =5,
or the following conditions are fulfilled;

(it n = 4l, (2,0 = (f,m) =1, p =1(mod4), and there are odd
iniegers w, v, w such that y = wvw ond
(15) Q) = u™, Ll =9", L =pwm if 2a,
and

(16) Q) =", 241 = 2o iym

Prooi. We can suppose that m(e,f) since otherwise it follows
from (A} that (i) holds.:
‘We write the equation (14) in the form

(amn QU o) (@ + 1) (2™ + 1) (@ +1) ...

a* +1 =2p’w™ i 2fa.

(@ 1) = 2y
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where n = 27, 21 Z The first factor on fthe left-hand side iz odd and
the g.o.d.

(@1, 241 =1L or 2 (i3> 0)
according as ¢ = 0 (2(z) or e> 0 (242).

Suppose first that ¢ = 0. Then 2|x. If > 3, it follows from (17)
that ‘
(18) ‘ 41 =yl (s =1 or 2),
where , is an integer. By a result of Lebesgue ([7], p. 301), this is impossible
when m is odd. Clearly, the same holds in case m = 2. If ¢ = 2, it follows
likewise that p’|z* + 1. This leads to (iii) (15), since the condition (f, m)
= 1 follows dirvectly from what we just said about (18).

Tiet now 6> 0 According to a result of Stormer [156], Lhe condlbmn
(19) _ P4l =2 (s=1,0> 1)
is impossible if m is odd. Now it follows from (17), if m is odd, that ¢ = 2,
7 'le® +1 and Hence that {16) is valid. From Stormer’s result n follows
again that (f, m) =1,
o ‘We must still consider case m =.2. At first, we note that ¢ < 3 sinee,

otherwise, it would follow from (17) that (19} holds for s == 2 or 3, con-

trary to Lemma 6 (b). If t = 3, p’|a™ + 1 for the same reason. Hence there
exist natural numbers g, v, w such that

(20) al gl =20, 241 =200, 27
By Theorem 3, we find at once that z =7, I =1, n = 8. Since §(8,7)
= 2°.5%-1201, this gives the solution (ii). :

If, in case { = 2, ¢’ |Q(l, ), we get from (16) again the conditions

(20), whence #=171=1 and consequently » = 4. This leads to (i}.

T p'|at+ 1, then ‘rhere 1s an integer # such that
P, z) = ut

Now, by (B); 1 =5, © =3 or | =1. The former possibility cannot come
into’ question since 31"—1—1 =2-5%.1181, If, in case [ =1 (n = 4), 21f,
we get again (20) and finally (i). If 21 f, we have, instead of (20),

w+1 = Zﬂ”,lgp'vz a;a—l—l = 2u",
where » and w are odd. By Theorem 3, this syﬂtem is impossible. There

Temaing the case p’la” 1. Then (16) holds. The econdition { (fym) =1
can be clarified by using Theorem 3. This completes the proof.
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Remark I. Every solution of system (15) and also of (16) gives,
of course, a solution of equation (14).

Remark II. If [ = 1, then (15} and (16) are reduced to the follow-
ing sysbems

(21) g4+l =v", 2241 = plwm,

(21%) z+1 =20"%", P41 = 2p w™,

This i5 so at least when m is even. In fact, if 7> 3, then from the first
condition in (15) and (16) it would follow that I = 5, # = 3, However,
this is impoggible since 3°4-1 = 27-61.

The only solutions of (21) in the interval 1 < 2 100 are o = 24, 26
and those of (21') # = 8, 7, 15, 35, 49, 99. These give solutions for equa-
tion (14) if » = 4.

Remark JII. If >3 and =< 10", then the middle equation in
{15), Catalan’s equation, is impossible by & result of Hyyrd [1] and thus
(15) drops out. If = « 70, it follows from (B), (0) and Theorem 2 that
m > 5 and 341 in (16). _ .

THROREM 5. If equation (1) has anm integer solution with ¢ = x-—1,

=3, z>1, then » > 10™. ‘

This follows Immmediately ﬁ‘om Hyyrd’s result mentioned just
above. :

In the sequel, we still need

Lumms 7. The system

(22) g—1 = (w—l).ys, #4+1 = (1)

where ® 2 0, A1 (mod 11) and 1 =£ 0, 1 (mod 5), 45 not solvable in infegers
@,, 2, 1. The same is true for 227, I =1 (mod b) am,d also for 1< &< 23,
! = 0 (mod 5).

Proof. Let & 4, 2, I be a solution and let o belong to exponent
d (mod 11). If 11|y2, then £* =1 (mod 11). Thus &|(10, 21) and hence
d =1 or 2, so that #° =1 (mod1l), contradicting the assumption of
Lemma 7. We obtain now from (22)

i>1)

(@ —1)% = (@—1), (2"--1)* = (#-+1)? (nod 11}
and further from these congruences by subtraction
21 =1 (mod 11).

Since 5411, this leads to a contradiction iﬁ the éa,me way a8 just above.
In cage { = bk+1 (k > 0), by multiplying the equations (22), we get

@ (@) — (o — 1) (y2)° =
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The equatibn 'y’ — (" — 1) has, therefore, two solutions 2 =» =1
and v = & > 1, v = yz provided that the system (22) has a solution
with @ = 7. This is impossible by Siegel’s result [13] mentioned above,
gince, for ¢ =7,

[#% (2 — 1)1 > (50-45)° = 4°-81%- 5 > 42.52 = 44.5%,

It follows from. a result of Lebesgue [3] that the equation #° 4-¢° = 44
hag no integer solution x, ¥, &, loyz| > 1, if 4 is not divisible by a prime
factor of the form 5711 and if A £ £1, &7 (mod 25). By this, we
establish immediately that at least one of the equations (22) is not solv-
able when I = 0 (mod 5), 1 < 2 < 28. The proof is now complete.

6. In thiz section, we restrict our considerations to the case 1 < a
< @< 15. Now the “digit” a = 2°p”, where » =3,5,7,11,13 (0 ¢
£ 3,0y <2), and (1) can be written in the form

(23) Qln, @) = 2°p7y™,  (y,2p") =1,
where ¢ =Im-620, f=lhm—g=0 (h, k=0).

Let us consider first the case 4 = 2° (g = 0,1 g e < 3).

TomoreM 6. The only solution of the eguation

28@ (n, @) == ymx
We=2%n=4o="7m=2 y=L£40.

Proof. We consider (23) (from which p” drops out). .

In case 4|n, we get directly, by Theorem 4, the solution mentioned
in Theorem 6. Suppose now 41 n. If m|e, then m|e and ¢=m =2 or
¢ == m = 3. By (B), in the former case, # must be 3, which gives the con-
tradiction ¢ = 1. In the latter case, we have, by Theorem 2, > 18.

Thus we need consider only the case m+{e. Then e¢> 0 and, by

Lemma 3, n = 21, where ! is an odd number > 3, It follows now from
(23) that

{24) Qi ) = 4™,

(1<2"<w<1p)

wt 1 == 2™ (Y = uw).

In the case m = 2, we have, by virtue of the first equation in (24), I = b,

z = 3, which, however, does not satisfy the second equation. As above,
the condition m = 3 leads to o> 18. The latter equation in (24) giv?s
2%le+1. If m =7, it follows from (23) that e>> 4 and so 215, If, in

case m =B, firsé ¢ = 2, then ¢ > 3 and, necessarily, #+1 = 8. However,

we see from (24) by means of Lemma 7 that this ig impossible. (The case

- Bt would be settled also by a result of Skolem ([77, p. 276), since the
second equation in (24) becomes (741 = 8¢°) , .
I, next, ¢ = 3, then e > 2 and # > 9. Since 4 |z--1, we have & = 11

and, by (24), @@, —11) = 3*«»*, where w is an integer. According to
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Lemma 2, 3|1. Applying (C) to the first equation in (24), we come t0 2 con-
tradietion, which completes the proof.

We deal now with the case a = 2°p%, 4> 0, where g =1 or 2 for
P = 3andg = 1for other primes » < 13. From Theorem 4 and the Remarks
IT and IIT concerning this theorem it follows eagily that in case 4|n, it
smffices to consider only (16) for m > 5 (¢ = 5). By Theorem 5, the cage
p =13 i8 not possible, gince then ¢ — 13, @ = 14. There remains only
the case p = 5. By the third eguation in (16), it follows that @ belongs
to exponent 4 (mod 5), whence # = 7 or 13. If =17, we see from
{14} (or from the second equation in (18)), by Lemma 3, that ¢ = 4. Since
now @ =5, we have ¢ = 0 and o, on the other hand, ¢ = hm = 5. 1f
@ =13, we establish similarly that ¢ = 2. Since now « — 5 or 10, we
have ez hm—1 > 4. BExcept for the solutions given by n =4, ¢ = 7,
there do not exist any other solutions in cage 4 | 7. .

Let now 44 n. If, in (23}, f = 0, thenp = 3,6 =9 <w,0=0,m = 2.
Thus 2|e, which leads, by (B), to a contradiction. We can now suppose
that f> 0 and so pa.

We shall treat first the case p = 3, 3|#—1. By Lemma 2, it follows
from (23) that 3 |n. If » = 67 and hence { is odd, we get from (23)

(25) @8, @) = 3'w™, P41 = 9%m
Further, from the first equation in (25},

(¥ = uw).

2+l 1 = 37,

since the g.e.d. (o'—1,Q(3,4") =3 and 31Q(3,2". From the second
equation in (26) it follows, by (E), that m = 2 » and further from the zsame
equation that 1> 3, since # = 22 gives in the case I — 1 the smallest
solution (% > 1) of this equation. Rither the first condition in (25) or
the first condition in (26) gives now a contradiction, by (B). '

In case » =31, 241, we have ¢ — 0. From equabion (23), we get
now directly a pair of conditions which have the same forms as in (26).
As above, we note that m = 2, 122 3. Now either {23) or (26) gives, by
(B), a contradiction. :

Let x belong to exponent d {mod p} and let first d be even. Then,
by (23), d|n, n = 21 (241,12 3) and '

(27) Q) =u™,  (2+1)Q(, —a) = 2°p'™ [y = uw).

Sinee 3 <p < @< 15, it follows again that m > 5, 31l. ¥ p = 8, the
second equation gives, by Lemma 2, 3'|g+1. Then > 3'—1> 26,
sinee fz= m—2 = 3. In case p > 5, # cannot be odd, since otherwise ¢ > 0,
and consequently, because now ¢<<1, >4 and #>9* 1 —15. If
4 =2, ie pla+1, theno1 > 3p, whenee only p = 5, o == 14 is possible.
Since now 3]y, we have 3°|Q(x, z) and, sinee 3@ (2, ), by Lemma 2,
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3w and so 3|1, contrary to the result found above. If d = 6, then again
8|1. There remains the case d = 10, whereupon p = 11. However, the
even numbers in the interval 11 < # < 15 do not belong to exponent
10 (mod 11). Let now d be odd. Then p = B, since the case p = 3, 3jw—1
wag, treated already above. I d = 1, it follows from Theorem 5 that the

only possibility 18 2 =11, e =p = 5. If d==38, then correspondingly
p=7Tand x =9 or 11. Tf in the former case » = 2[, (23) becomes
Q(41,8) = 22 7y",
which according to Theorem 4 is impossible. Since thus » is odd? we get,
from (23), Q(m, 3) = «" This is, however, false by () since 3|n. The
case # = 11, @ = 7 remaing open, likewise the case # = 14, p = a =11
(d = 5). Thus we have proved
TeeoreM 7. The only positive integer solulion of the equdtion
4 g —1 . -
(28) g— = l<ao<m,n>2,mz2)
-1 .
when #<10, is a =4, n =4, 2 =T, m =2, y = 40. If 10 <» <15,
there ave, if any, selutions only in the cases @ == 11, a = B, T and 2 = 14,
e =11.
The only integer solutions of the equation (28), when 1< a<® <15,
n = 2, are given by
&= 7,@ =1,2,4;
@ =11, & = 3.

=30 =1,2; x=28a0=1,3,4;

For bages << 100, the numbers with three identical digits which
are perfect powers (i.e. the solutions of (28) with 1< ¢ < 0 <100, # = 3)
are given by

x=18,a =1,7,8; & =22, a4 = 3,1%;
x = 68, a = 13, b2,

@ = 30,0 = 19;

and the numbers with four digits, by

=T a=14; ©=41,a=21; =99, =08

Of these, the first and the third aré cubes, the second a biguadrate and
all the other squares.

It can be easily shown that, if a solution mentioned in the labter

part of Theorem 7 exists, then » and m satisfy the condition
| Qg @) = ",

where g is a prime and 2 an integer. This reveals the decisive importance
of the cage a =— 1 in the study of the diophanfine equation (1). -
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