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L. Tt is well-known (see [2]) that if & is an algebraic number field
with the class-number & == 1 then almost all its integers have non-unique
factorization. This means that if one denotes by F {(z) the number of
nonagsociated integers of K whose norms do not exceed # in abgzolute
value and which have in X a unique factorization inte irreducibles then
the ratio F(z)/z tends to zero as # goes to infinity.

In this paper we improve this, giving am asymptotic formula for
F(z}) as well as for the number Fy(») of nonassociated integers o« of K
with |¥(e)] <2 and at most % distinct factorizations. We obtain these
formulas as a gpecial case of a more general result, which we are now
going to describe. :

Let I be any ideal which has no principal prime ideal divisors and
factorize it into prime ideals;

*h—1,1

_ L an e ap_
I =puope ot - ph{‘,l’l,;;k_f:

with pyeX;, X,, ..., X, ., being the non-principal ideal classes of K.
We shall say that the system

‘(1) T =t(I) = {{ay, ..., alul}': ooy (g ey ak~1,&7b_1}>

is the type of 1. Two types: 7, given by (1) and
7= {Bus s frgds oy {Bacray -eey Pr-ve_ 1>

are considered equal, if for each ¢ we have ¢; = ¢; and the sysfems

BRI az’c,,;}r {Birs s ﬁz‘c,;}
differ only in the ordering.



314 W. Narkiewic¢s

We have to admit also the possibﬂity of some ¢; being 0. In this case

we write @ instead of {o, .. s G, }.
8o the type v is determmed unmmblgously by L.
If 7 is @ type of the form (1), then we define its length 1{z) by

I(T) = 01+-‘-"‘|“ﬂh—1
and its depth &{z) by

d( ./V{aw-—l 1 ‘Zv“/h 1 l\*\jaa('“

Our main result consists in the following
TagorEM 1. Let o be any set of principal ideals satisfying the following
conditions : '
(1) If Teod amd v(J) = {I) then J e,
(i) & contains every ideal all prime ideal factors of which are prin-
oipal,
(ifi) There is a constant B such that I es/ implies &(x(I)) < B.

Then for the number A (z) of meals in o wilh N (I ) x one has
(1oblogm)u
A(W) "' (0'1"0(1)) (10gw)1_1m

where C = O(&F) is a positive constant, and
M = max{d(t{I): Te}< B

2. Before giving the proof we show how this theorem implies results
for F(z) and F(x).

Note first that every class of associated integers determines unigquely
@ principal ideal and the divisibility and factorization properties of inte-
gers are reflected by those of prineipal ideals. So we may look for prin-
cipal ideals with at most & factorizations into pTlIiG]I)'ﬂ ideals, which. cannot
be factorized into principal ideals.

We apply the theorem with o = .o, being the set of such ideals.
The properties (i), (ii) being obviously satisfied, it suffices to prove (iii).
This is done in

LouwaA 1, Let for ¢ =1,2,...,h—
distinct prime ¢deals from X dwmm J I Ifr c&if;c then Jor 4 = 1,2,...,h—1
oné has w (1) << h(k41)—

Proof. Let I be a,n\lcleal with w;(I)z k(k+1) for some 4. Let g be
the order of X; and let Py, weoyPrgy Pars - ooy PrprgeXy divide I. Then
the ideal I, = H py is principal and divides I and

%)
Il

PR T

=1

L wdly denote the -number of
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is one of its factorization into irreducibles. Bub interchanging‘ here pg,
consecutively with Py, Pay, ..oy Py, we get k41 factorizations of I,
and so I¢o/;. [ ‘

The application of Theorem 1 leads now to

TeworeM 2. If h(K)>1 one has

)J'I'I'r

z(loglogs)™k

Fr{2) = (G—f—o(l)) (log )"

where M), is the mavimal number of nonprincipal prime idedl factors which
con oveur in the factorizalion of a number with <k fadorization with the
erponent one. :

3. Note alse that in principle the same reasoning as that given in
sequel (with trivial changes), leads to similar theorems:

(a) One can in the definition of the type take in account algo the
principal class. Jo this case assumption (ii) of the theorem can be waved
and the asgertion will take the form

z(loglogz)¥—!

A(w) = (C+o(1)) — Tozw

, O=0.

(b) Insbead of considering absolufe ideal classes one can consider
any partition. of the prime ideals into a finite number of classes X, ..., X,
guch that the eondition

1
ZN 5 ailOgs—

peXy;

1 _I"Q’i(s)s

with ¢,(s) regular for Res = 1 and o, > 0, i3 satisfied for 4 = 1,2, ..., m.
The definition of @ type should be modlfled eorlespondmgly
In thiz case the-asserfion takes the form

1 1 A
A(z) = (0 +o(L) fﬁi

(0= 0}
if the class X, plays the réle of the principal class in the agsumption (ii),
and

z(loglog x)™*

A(w)y = (C4-0(1))

logz
if we extend the definition of a type as done in (a).

4. Denote by S(r) the set of all ideals of the type r, and by S(z)
the set of all ideals of the form J-J, with JeS(r) and with J, having
all ity prime ideal factors prinecipal. Then by the condition (i) of Theorem 1
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we oblain the existeﬁce of o set T’ of types, such that

(2) : 4 = L% S(z}.
By the condition (iii) every 7«1 satifies d(z) < B.

To get insight into behavior of §(z) we prove.

Lmyea 2. Let X be on ideal dass, 4220, n= 0, and F,(1), ..., T, (&)
real functions with 0 < Fy (1)<t Let 8(s) == 8(s; X; Py, ..., F,) denote
the sum (well-defined for Res > 1)

i .
2 EN 8 N & 2 Fl(Nq?)"'FQL(”qu&)‘
Plaen P geX - Preee Py e, By X
distingt 03P distinet
Then for Res > 1 we have
8§ =P (log W—)

where P (f) ¢s o polynomial of degree d over the ring O of functions reqular
in Res>=1, with leading coefficient positive at s = 1. (Needless to say
that the coefficients depend on X, Fy, ..., F,.)

Proof. We utilise induction on d. For & = 0 and every « clearly
B(s)e2{s) and

8 = 2

LETEERE rlﬂ,EX
digtinet

Fl(qu)" 'Fu(Nqu) > 0'

Assume thus the truth of the lemma for all 6 < 4, all #, and all fune-
tions 1y, ..., F, subject to 0 < F,()<<¢™" Then one can write

8(s) = 8,(8) = Sa(s)

where
» : . 1 X g
B SO = D s RO L RN,
pla..‘_,pdex R Glpreer e X
{gtinot distinot
and

_ 1 W
Hy(8) = Z mﬁzﬁﬂme----m(Nﬁ)

PlacsPged
digtinot

where in the last inner sum the summation is carried over all prime ideals
9;¢X which are distinct, but at least one of them is equal to some p,.
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We deal first with 8,(%). Take any non-void subset A of
1,2,...,u} and consider the family F, of all injective maps
Jr A ={1,2,...,d}. With every such mayp associate the sum

1 ‘
sp = ot g O PR - Fu ()
Pl PgeX
distinet
the inner smnmation carried over all distinet prime ideals gy, ..., q,<X
for which :
(li) ].f @¢A theﬂ q,,, #pl, "'?:pd'

Clearly
Sols) = 1 D 8y(s)
AEG feFA_
but
1 - F;(Ng3)
St = 3 e 3 ([ miv [TREE
s ied Pi Oformns TyeX 95 A *
distinet fed distinct
g Ry (F94)
)
= i G, (Nq)) ... G, (NG
DZIE; anf s 1 1 [13 L1784
aisbimet ¥4 distingt :
ied a;£p;(4d)
where '
( Fi(t) H i #A:
Gy{t) = iFi(t) fed
5 .

To the last sum we may apply the induective assumption and so it

turns out that §,(s) is 2 polynomial in log

1 .
1 over £2 of degree at most
S —

equal to d—1.
It remaing to deal with &,(s). As the inner sum in (3) is independent
0L Py, .-+, Py and i3 obviously an element of 2 it suffices to consider

1

83(3) = ? — .

. 91,‘1.4,335XNPI--~N3!3& .
digtinet .

Obviously
d
. s | l
= Nt Pl 1 ] Z_s‘
Pro--PgeX Npl di T g=1 PiEX" Npi .
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1
is a polynomial of degree 4 in log——f over 2 with the highest coeffi-

and we consider now the difference S,(s)—8;(s).

1
2w

taken over Py, ..., pzeX, at least two of them being equal. Let P be the
seb of all partitions of {1, 2, ..., d} into digjoint non-void subsets at least
one of which has = 2 clements. Let

cient equal to 1/h*
It equals the sum

v {ilz__l-F-lﬂ ..

F: {‘il,.--.,'f:h}u {7:11+17...,’1’;12}U . u,?:zz}
be & typical representative of P.
If
u 1
Arp(s) = .
by, = Ty aX Npi... Npg
b

(p.,;zl ..... I dlstmci)

By(s)—8uls) = D Ap(s).
: FeP

Congidering a particular I, we may assume :tham Lh=..=1 =1;
brg ooy ;> 1 (0L <L 2~1) and, permuting the indices if neecessary,
that ¢, = k. Then A4z(s) becomes

Y 1 1 1
Ld  Npi.. Npt Nqrat® ... No&
o B Pr R a5y ag
distinct dmtmct,

then clearly

which ig, according to the inductive assumption, a polynomial in log P

a—1.
Hence S3(8) = 8,(8)— 3 4,(s)
TIeP

over £ of degree + <

is a polynomial of degree d in P

over £ and its highest coefficient equals

1 .
= > TN ... Py ()
M Ay X )

distinet

at go has # positive value at s = 1. J
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CoroLLARY 1. If X; is a given non-principal class ond
T = (Q, ey @, {ajl, ey (chj_}, @7 ,_,,\@)
then for Res > 1
1
—1

where ¥ p(t) is o polynomial over Q. The degree of ¢ equals the depth
d(z) and the value of leading coefficient at 8 = 1 s positive.

Proof. Assume freely, that aj = ... =gy =1, with d = d(z).
Moreover leb r(r) be the number of permutations = of the set {1, ..., ¢}
for which

2T

TeS(}

—
Wy f(hg ;

Lmprey = -

- 1 1
¥ T) 2./ NpS ... N 2 Npoa+it .

Then we have

2wy

Npgid®
TeS(7) pl.,‘...,PdEX Pd+1:----pchX ¥
distinet distinet
and #n; (i<d)

and so the lemma is applicable with
Ty(t) = 150+, O

Cororrary 2. If = is ai mbztma*y type, given in the form (1), then

for Ros>1 one has _
1 1
=771
> L NP ’(Ogs_—l)

Ie8{z)
with ¥ (t) being a polynomml over 2, of degrea d(z), and highest coeffi-
etent pomwe at 8 = 1.
Proof. In fact, if

7 = (. 0 {e, ey aj‘c:,-}} 8,..>
then -
h—1 — D1 1
i = 1] 2 s = []7dos i)
Te 'r) i=1 IS(: =1 .

by Corellary 1. [J _
CoroLLARY 3. If v 4% any type, then for Res > 1 one o has

o ¥ 1o 1 )
y 1 () " --gs——l
A 75 A P S
ZeS(7)
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- where g(s)e 2 is independent on 7, g(1) > 0 and ¥, is the polynomial from
Corollary 2.
Proof. Write

= 1
21\7(11)3 =” 11 Z‘N(I)s’

TeSr) PE ] — Npa- FeSi(z)
observe that
1 908
1 (s— 1) (ge2,9(1) > 0)
Np®

and apply Corollary 2. [

CoroLTARY 4. Let <7 be any set of types of the same depth d. Then
Jor Res > 1 one has

ho VYt 1
weed Tel{T)

where ¥ 4(1) is & polynomial over Q of degree d with the leading coefficient
positive at § = 1.

Proof. Let g,...a,_, De the set of all tiypes ~ of the form (1) with

. JV{CC:,R— 1 1 } = dj
Then

=G¢: U ‘Md ﬂnﬂ

1s-ers Gy
dyt e t-dy_y=d *

and so it is sufficient to prove our assertlon separately for each set
gyt O = A,
We use induetion in 4. If d = 0, then

C(Se2

' 1
a8 the series is majorized for Res> 4 by » ——
J t by < Wy
- 18 taken over all ideals I with pi7 — p*|I.
Asgsume the truth for all 8 < d a.nd write our sum in the form

in which the sum

1 1
dldy) .. dy ] s ANps C
e n-1 Ppie Py e¥y Npi ... Npg
p_1+d1:---=Pd2+d1‘X2 :
T distmet” T
0
X 2 y L
c(r o shy 3y
] ' sl 01 a
1(r)=='u.+d Lot
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where the last inner sum is taken over distinet (and £ yp,, ..., p,) prime
ideals gy, ..., q, 1ying in classes preseribed by = and the exponents Biseevs Bu
= 2 are also pregcribed by 7. The coefficient c¢(v) denotes the number
of permutations = of {1, 2, ..., n} such that i

Gy - ey Chlel:
Qrtgyy +ors Oz, € Ko,

are the conditions given by 7, then the sets {1, ..., I}, {I+1, ..., L}, ...
are stable under = and moreover f; = f;

Now the last sum. equals

ST 1 1 _B B
T 2 @ BB

nd q

QY5 =nes 0y TLyoeer Oy
dist.inct

distinct
some equal to
certaln P8

But

o0

> Y Bis)en

=0 e
Ir)=n-4-d

and

B 1 -
2 T o B

crasb g e X ’ w=0 red’
P Pdl 1 Ue)mutd

can be dealt with in the same way as S,(s) in the proof of the lemma.
We arrive thus at

1
0w = B.0) 2 ey o[l
:Pafll Pl g

where ¢{) is a polynornial of degree << d—1 over 2. Ttilizing Corollary 2
and the obvious inequality B,(1) > 0 we arrive at our assertion. [J

COROLLARY 5. Let &7 be any seb of types of the same depth d. Then
Jor Res> 1 one has

1
90} 4 (log 8_1)

2 ZNI)"’" =— (s—1)%

Tesd TeS(r)

Proof. ITmmediate. 7
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5. Proof of the thesrem. For Res > 1 we have

e 1
s T Iy
f’;;j N(I) rel' TeS(z) N( )

with d(z} =< M for each reI, thas
M

1
Vol 2“ VS
£t N(IP 2 <4 N (I
Tesd =0 r:i;j TeS(r)

d(r)

and by the last corvollary this equals

g(s)"//"(log sil)
) (8___1)1,%

with ¥"(¢) being a polynomial over 2 of degree M, with leading coefficient
pogitive at s = 1 and g(1) > 0. Applying the tanberian theorem of M,
Dela.nge ([1]) we get our assertion.
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Uber die Idealklassengruppe des Dirichletschen
bigunadratischen Zahlenkdrpers

von

Hang REICHA®RDT (Berlin)

Zum Gedenken on . Sierpinski

GauB hat seine komplesen ganzen Zahlen nicht nur wm ihrer selbst
willen eingefiihrt, sondern um eine Theorie der biguadratischen Reste
in Analogie zu der der quadratizehen Reste aufzubauen, was ihm, solange
er viele Jalire im Bereich der rationalen Zahlen blieb, nicht in befriedigender
Weise gelingen wollte, aber dann im Komplexen sofort znm Rezipro-
zitidtsgesetz nebst Erginzungssitzen fir die 4. Potenzreste fithrte. Tm
Gegensatz zu Gaub schlug Dirichlet [1] vor, die ganzen Gaubschen Zahlen
als selbstindiges Forschungsobjekt zu betrachten und deren Theorie
ganz nach dem Muster der Theorie der rationalen Zahlen soweit wie
moglich aufzubauen. Es lag fiir ihn natixlich besonders nahe, seine eigenen
neuen Methoden, vor allem die analytische Bestimmung der Klassenzahl
quadratischer Formen, zu ibertragen, also die Klassenzahlen solcher
quadratischen Formen zu berechnen, deren Koeffizienten und deren
Variable ganze GaufBsche Zahlen sind. Das fiiv ihn itberraschendste und
schonste Ergebnis war die Erkenntnis, ausgedriickt in unserer heutigen
idealtheoretischen Betrachtungsweise, daf die Klassenzahl  eines Kor-
pers B, der von 4 und VD, wobei D die Diskriminante eines quadratischen
Zahlkbrpers iber dem Kérper ¢ der rationalen Zahlen ist, tiber Q erzeugt
wird, gleich fiyhy oder by hyf2 ist, wobei h; die Elassenzahl von @, = (VD)
und k, die von @, = Q(V - D) ist. Daittir, welcher der heiden Fille vorliegt,
gab er ein einfaches Kriterium an.

Spéter hat Hilbert {3} den Vorschlag von Dirichlet weiterverfolgh
und eine zur GauBschen Geschlechtertheorie ¢ analoge iiber @, =@ ()
aufgebaunt. Die Ergebnisse konnte er zu einem newen und rein arithmeti-
schen Beweis des Resultats von Dirichlet verwerten. Zwar lautet dag
Hilbertsche Kriterium anders als das von Dirichlet, doch lagsen sich
beide leicht .ineinander iiberfithren.



