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ACTA ARITHMETICA
XX1 (1872)

On a linear diophantine problem of Frobenius

by
P. Erpos (Budapest) and R. L. Grazam (Murray Hill, N. J.)

Introduction. Given integers 0 < g, << ... < @, with ged (s, ..., 0,) =1,
k2

it is well-known that the equation N = >'z;¢; has a solution in non-
K=

negative integers m, provided N is sufficiently large. Following [9], we let
Gty ..., a;) denote the greatest integer NV for which the preceding equa-
tion has no such solution.

The problem of determining G{a,, ..., a,), or at least obtaining non-
trivial estimates, was first raised by G. Frobenins (c¢f. [2]) and has been
the subject of numerous papers (e.g., ef. [1], {21, [8], [4], [7], [8], [9], [11],
{127, [137). It is known that:

Gy @) = (e —1)(a,—1)—1  ([2], [11]);
Gy ey ) < (@~ 1) (@, —1) =1 ([2], [4]);

n—1
Gy eny ) < 2 O Qg [l
#=t
where d;, = ged(ag, ..., @) ([2]). The exact value of & is also known for
the case in which the a; form an arithmetic progression ([1], [13]).
In this paper, we obtain the bound

‘ Gy
G(alf R ) < 2, ["'q;b"] = Oy

which in many cases is superior to previoug bounds and which will be
geen 1o ho within a constant factor of the Dbest possible bound. We also
wonsider reveral velated extremal problems and obtain an exact solution
in the ease that o,—2n is small compared to n'%.

A general bound. As before, we consider integers 0 <Ta, <...<<a,
with ged (@, .oy d,) = 1.
THEORENM 1.

y :
(1) G(a’li v II,.‘,,) < za‘nwl [_(H/_] _?’n'
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. (ﬂ . \
Proof. Let ¢ denote a,, let m denofe [aﬂ and let A denote the
set {0, @y, ..., a,_;} of residues modulo g. Consider the wum

G oo Adf A e { b Dy bed) (mod g).
(S

m

By a strong theorem of Kneser ((107; of. also [6], p. 57), theve oxiuts
a (minimal) divigor ¢ of g sueh that

@ = A o] A (mod )

i et b, e e et
™

where
AYY = {g-lrg's 0Ky < glg'y acdl (mod g)
and such that
€] mm m—1

2) el
) A

!

Assnme ¥ does not contain a complete system of residues modulo ¢.
Sinee ged(dyy «..y @y, g) = 1 then AY? must congist of more than
one congruence class mod ¢'. By the theorem of Koeger and the minimality
of ¢', it follows that % must contain at least m -+ 1 disgtinet residoe classes
mod ¢'; thus _

%] m41
(3) o
g ¢

Noto that g=n and m = {g/n] imply

4 1= 1 9y -1
(4) mel>5 wh 1
=y

Suppose now that |%] < $g. By (2) and (4) we have

mn w1 1
e e e
g g 2

Hence, by (3),
_Iﬂ S m 1,

w4 1. 1

g9 7 Zim+1)y 2

which: is ‘a contradiction.
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Wo may therefore assume |%| > §g. Bub in this cage it is easily seen
that ¥+ % contains a complete residue system mod ¢. Tt follows that the
least possible integer not representable in the form

@by b Ty by - 29

with @, 2 0, 2> 0, byed, is given by

&
2m-max (a)—g = 2a,_, [——”—] — .
ae.d i
Thiz proves the theorem.
Note that in the case that # = 2 and & is odd we have

a/ﬂ
Glay, ag) < 2ay [»9_-] — gy = Gy Oy — Oy — g
E<

which is best possible.

An extremal problem. The question of the estimation of ¢ naturally
suggests the following extremsl problem. For integers n and {, define
g{n, t} by

gin, 1) =max@(a,, ..., a,)

oy

where the max is taken over all «; satisfying

(3) O<o<...<a,<t, ged(ay,...,0,) =1.

By Theorem 1 the following result is immediate.

COROLLARY. g(n, 1) < 2¢%n.

On the other hand, it is not hard to see that for he get {w, 2z, ...
vy (r=1)w, 2 with & =[#(n—1)] and 2* = (n—1) [t (n—1)]—1,

tE
— —5¢ for

g, ) =0, ..., ") = p—

07,22T

Thus, g(n, t) is bounded below by essentially 12/n.
Of ecourse, for m = 2, the exact value of g iz given by g(2,1%)
== (- [ {I—2) =1, Tt appears that

tm )2
M&ﬂw[(q)]wL

2

with the sets {£/2,1—1, £} or {t—2, t—1, 1} for ¢ even and {t—1)/2, -1,
for ¢ odd achieving this bound. However, this has not vet been egtablished.
It follows from the Corollary that g(n, on) < 2¢*n and g(n, n?) < Ins;
again, the truth probably differs from these estimates by a factor of 1/2 for
large .
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Determination of gi{n, 2n-+ k). The remainder of the paper will be
coneerned with the determination of g(n, 2n--k) for » large compared
to k Tt follows easily from density considerations that g(n, 20 k)
w02k —1 for k< —1 (ef. [12]). Tt was shown in [5] that g(n, 2n)
= on1 and gm,2n--1) =2n43. It was alse proved in [5] thai
tor % ftixed g(n, 2n--k) = 2n--h(k) for some fnction b of k provided
is sufficiently large. The exach value of 2(k) is given by the noxt resalf,

TuroreEM 2. For k fived, if n is sufficiently lorge then
on--2k—1  for ket —1,
2m L Jor ko= 0,
2n4-4k—1  for
mdl4+1  for

glms b) = Bzl and % == 1 (mod 3),

kzl and n—F s 1 (mod 3).

Proof. By previous remarks we may Testriet onrselves to & 2,
Assume for a fixed integer K 3= 2 the theorem holdy for all k< 0 Twb

specified later). We first establish

6 < 4K -1 i #»—K =1 (modd),
(6) g, ) < - 4K -1 i a—K w1 (mod 3).

K
Let §(4) denote the set of sums { N @ya: ;2 0} wo are considering

. \ e )
and let G'(4) abbreviate @(ay, ..., a,). Note that if there exists an 2,
1< o<+ K, with e8(4), w¢d, then the set A = 4 v {m)} satisfies

0 <oy < ... <y =2n+K =2(n+1)+K-2.
By the induction hypothesis

so that (6) certainly holds in this case. Hence, we may assome 4 and S(4)
agree below 2n-+ K.

Next, -suppose 2n--H-+1e8({d).
we have

Then for A = A o {204 K41}

0< < oo < lpyy =2+ K +1 = 2m-f1) g L
%0 that by the induction hypothesis !

F(A) = GFA)V <2+ 1) -4 (K —1) -+ 1 = 2 4K 1
and (8) holds in this cage. Hénee; W6 Iy Assnme

2+ K+ 1¢8(4).

icm
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Now, suppose 2n+ K +2e8(d), 2n--K +3e8(4). For 4' = A U

U {2n+ K+ 2,20+ K +3} we have
D<oy < <ty =20+ K+3 =2(n+2) LK —1.

By the induetion hypothesis
InA42)+4{E—-1)~1 if (n+2)— (K —1) = 1(mod 3),
2n+2)+4(E—1)+1 i (n+2)—(K—1) = 1{mod 3)
_ \2%—}—4]’1’_’—1 it n—Fk =1 (mod 3),

In+4K+1 i w—% £ 1 (mod 3),

G(4) =G4 él

50 that (6) holds in this case. Hence we may assume that either

2n+ K +2¢8(4) or 2n+K-+3¢8(4).

There are two cages:

(I) Suppose a, < 3K. If at least 3K consecutive integers belong to 4
then by successively adding e; to these ihtegers, we infer that G(d)
< 2n+K and (6) holds in this case. Therefore, we may assume that 4
does not contain 3K consecutive integers.

Since we have assumed 2n4- K +1¢8(4) then forall4, 1 <4 < 2n+- I,

either 7¢4 or 2n+ K -+1—i¢4d. Thus, for exactly [K

1
;!_—] values of j

we have j¢A and n+ K+ 1—j¢A. For a given integer jT{(E), it o ig puffi-

clently large- then for some tg[?} SUE), each of the integers i+4-%,

1<t f(H), satisfies either ' |

t4+4ed  or 2n+ K41 —(t4i)ed.

Consequently, for some ¥/, t-1<t' < ¢+ 3K, we have
24K~ +1ed.

There are several possibilitices: i
(i) Suppose 2 + K — ¢ ¢4, 14’ + 2 ¢ 4 then we would have 2n - K — 1’ -4
42, M+K—t43¢8(4) which contradicts our assumptions on A.

We may therefore assume

I+ K 1 —Ted.

But now consider ¢ 4-3. If ¢’ 3¢ A then as before we find 2n+ K —1' 42,
20+ K—1'4-3¢8(4) which is a contradiction. Hence, we must have

N+ K —t —2e¢4d.
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We can confinue this argument to conclude that

an Kt —sed for O<s<IK-—1,

provided f(K) = 8K and » is sutficiently largo, But this is o sequence of 34
consecubive integers in A and since this contradiets our axsamption on 4,
then cage (i) is impossible.
(ii) Suppose 2n-+K—1'¢A. Then we have
P4-led.
If we now have ' -+ 2 e A then as before 20+ K — ' -2, 20 K 1" -1-35(4)
which is a contradiction. Therefore, we may agsume t'--2¢4, Le,

I K —t —led.

Now, by using the same arguments as in (i) we can argue that ¢ - 3,
oA+ K ' —3, .., 241, a4+ K —t—2r—1ed for 2y < f(K)~3K
it m iz sufficiently large. In: partieular we have

Po2itled,  0<j< §{FU0)—3E)

K-+1
whaore ¥ < [— j—

] FUE) 431, Sinee a, <5 3K then by successively adding
24, to the integers ¢ + 2§41, we seo that all inbegers @ of tho formu o = ' --

42841, 82 0, belong to S(4) provided
61 < f(H)—3K.

Of course if ¢ = 0 (mod 2}, then by adding #+lecd to the integers
M1 "
' 4-2s-+1, §» 0, we see that all intogers };2[%-«& FU) 61042

3

belong to S(A4). For n sufficiently large, this certainly implies (6). Weo
may therefore assuine '

" == 1 (mod 2)

and consequently all even integers 7= ¥ -1 belong to 8{4). Tn fact, is
it clear that if wed iy an odd integer and @ = 2n-- K —~ (#--1) then all
odd integers =» 2n-- X (and hence all integers 22 2n - 4) belong to §{A).
Thus, we may agsome thatb

K41

wed, o odd =>w_>2n—-[ -‘f(IC)-—Q.RT.

Further, if K is odd then 2n+4 K +1 i8 even and therefore belongs
to 8(4) for » sufficiently large. This contradicts our agsumption on 4
and we may assume K 1§ even. o

icm
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Now, let w be the largest integer sueh that 2n -} K - 2u--1e 4, Since A
ig even it follows that

1{fE+1
< ~f([mim]f(K) +3K+1)-
a2\l 2
Congider the A -1 integers 24424, 1 < j < L+ 1. By the definition of P
none of thé integers 2n-3- K — (2u+27)+ 1 belongs to 4. Since there are

K+1 X , . .
at 1most = of these integers for which both 2u-2j¢4
' . ' ® K
and 2n -+ K — (24 + 27) -+ 1 ¢ 4 then we see that at least K 1 — - =3 +1

of them belong to A, say,
C2u+2§,, ., 20 2 A,
Forming the sums

(20 + K — 20 4-1) + {20+ 24,),

{2 K[241.

T =1,2,..,1,
we obtain at least K /2 +1 sums 2n4-H -+ 24;-+1 which are = 2r4+ K43 -
and < 2n 8K -3 and whith belong to §(4). But all the even integers
On+ K +2 L<r< K+1, also belong to S(4). Hence, S(4) confains
at least n-4- (K/2+1)-+ K 41 integers which are less than or equal to
9n 4+ 8K 3 and we can find n subset 4" = §(4) with

0 < a, < 0o < By ypppe = 203K +8—d,
for gome integer d > 0. Since
(on+3K+3—d)—{2+3K/2-2) < —1

then by the induction hypothesis we conclude that all inbegers = 2n+
43K +3—dbelongto §{A). I d = 1 then in fach all integers 2 2n4- 3K 12
belong to S(4); if & = 0 then since 2n-+3HK -2 is even then we still
have all integers = 2n--3K--2¢8(4). Thus,

=

G(A)= Bn-F3K 4 1.
But for K2, 40—1= 3K 41 so that
GlA) L 2n+ 4 —1

and (6) holds in this case. This concludes cage (T).

{IT) Suppose a, > 3K. There are two cases:
41

K-+1
(i) Buppose ay > % [—5———] Thus, exactly [ ™

] of the. inte-
K+1

gers which are > n—]—[ ] and < 9n-+ K are missing from 4. This
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' K1 K4

imyplies that for some ¢, 1 K I < [———O—E—] -1, bothn -2 [mm m] 4 1--ded
1 K41 ] .

and n+2 [K;' ] +Z—ied, 10, Dn-- 4-[ ; ] +3e8{d), Of ecourse,

(W X

the same argument can be repeated for 2n -+ 4 [ME-—-—J -1-4, efe., so that

K41 C K1
for » sufficiently large, 2ﬂ+4[——~;«—] 4 2e8(4) for 1 =5 j = 4[ . Jl ] -

43, Hence S(4) contains a subset A" with

’ r ’ ]{ "l“ 1.
O<a<<... < @ .. [Kizl]e—’: == 2148 [ I-] B dd
for some o= 0. Since
K41 A1
2(41,4—4[ - ] + 3)> 2n+8[ s ] +5—d
2 2 :

, . . . K41 '

then by the induction hypothesis all integers > 2n-- 8§ 5| -+ b belong
' +1

to §(4). Bub since 2n —|—4[ k ]-; J42e8(A) for 1 a5 4 =5 :1[ K Ul 1 ] 3

I .
then all integers > 2n - }—4[--_—;——] -2 belong to S{4). Iowover, 4[{ IJ}] ]

+2 < 4[( 1 f01 I = 2 go that (6) holds in this case.
K1

(if) Buppose a; = fn—}—[ ] Consider the 3K —1 integars 9a -4

b K i1, 1<

4
at leagh 3K —1 — I} :

3K —1. Since a, i3 the least eloment of A4 then

] of these integers must belong to 4. Adding

Lo each of them:. gweq at least 3K —131 — {I\i—;»l-] integers in §(.4) which

are > 2n+ K and < 2n 44K, Thus, §(4) containg a subset A’ with
(I‘ N e ! . w. e AR e ¢
0 < < < an{.:;]gjml..,,[f‘!‘_'gl:!..l 2 F AR —d
for sorme d = 0. '
~For K =4,

K41 -
2 (% +3 -1 — [——-él——_]) = M d K~
80 that by the induction hypothesis
G(A) < G(A') < In 44K —1

and. (6) holds. Hence, we may assame I < 3. There are two cases.

icm
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Suppose K =2. If 2n—a,+jed,
4 <7< 6. Thug S(A) contains a subset A’ w1th

< 6, then 21@+3¢S( )

0 <) <o < Gpyy = 20+6

and by the induction hypothesis

G <G < mAT

g0 that (6) holds in thiz cage.

I ot least one of 2n—a,-j, 45§ < 6, 1§ missing from A, then in
fact, exactly one of 2n—ay -4, 4 < § < 6, is missing from 4, and all of
2n—a+jed, 1)< 9. Hence, 2n+7je8(4), 7<j<9, and S(4) con-

tains a subset 4’ with
0<ay < e < Qs < 20+ 9.
By the induetion hypothesis

GA )< 2n+8

and sinee 2n4+7, 2n+88(4) then

G{A) < 2n+6
which satisfies (6) in this case. '

The case K =3 is similar and will be omitted. It can be checked
that the condition that » be sufficiently large in the preceding arguments
is satistied, for example, by taking » > 20K*

This eoncludes case (IT) and (6) iz proved.

We next exhibit specific sets 4 which satisfy (8) with equality for =»
arbitrarily large. There are three cages. ‘

(i) n—HK =1 (mod 3). Write # = 3m+K+1 and let

2m+4- K Ml

A= U Piju U {am+ 3K +5-3)

The least element of 8(A) which is = 1 (mod 3) 18 2(3m +3K +2) = 6m +
A GI -4 8o that

2n--4 K —1 = 6m -+ GII’:-[—IQUS(-A)
< oy, = 2n4- K and G (A}

Therefore 0 < a, < ... >+ 4K —1.

(i) n—K =2 (mod 3). Write » = 3m+K 42 and let
2m-- B 41 a1
4= U {3@}u U {%m% 3K - T-3f}.
qe=l

(iil) - K = 0 (mod 3). Write n = 3m K and let
) am 1—K

A= J {3} U {6m+ 3K +2—3j}.

e
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Tt is easy to see in (i) and (iii) that A satistios (3) and G(4) = Zn 4
+4K 41

The examples in {i), (ii) and (iii) together with (6) establish the tho-
orem for & = I, Thig completes the indoetion step and the theorem is
proved. '

Acknowledgment. The authors wish to thank L. (. Strauns for
important suggestions in the proof of Thoeorem 1,

b 2)P .
Added in proof: The conjecture ¢ (3, 1) = [L_a,.)] w1 hadt recently hoeen

sebtled in the affirmative by M. Lewin {personal communication).
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Remarks on some new applications
of the dispersion method

by

B. M. Brepimn (Leningrad) and [Yu. V. LINNIK|

Digpersion method as expounded in the works [17] and [2] can be
applied to proving a general result on the equation

Vi1 — Ve

ViV

7 =

for large »'s; »;, @; being rather general system of numbers the equation
is solvable, and a lower estimate of the asymptotic can be obtained. The
particular cagses are: :

The equation:
(A) — D.p ““Pllin
‘ Pi1—0

with 2, ', p,, p; primes,  p < n, p,, p; < (INn)% a > ¢ hag the number
of solutions:

9 4(n) = (Ina)(ina—1) 1]?%*0( " )

Innlninn
The equation:
(B) 9 = PAP TP
R 1

with p,9', Py, P, 28 above, n — co has the number of solutions:

7 7%
Unn) = lna(lna»w-l) Inm +O(1]1n1111nfn)'

~The equation:

(C)

" = Plli“?lwp
=M



