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Introduction. The quadratic field of the title is Q(Vp) for the prime
1) p = 354 4-19° — 188184253,

Tt has class number 27: h(p) = 27, and its class group is a product of
3 groups of order 3: C(3) X C{3) % C(8). This field is of interest for its
implications concerning two conjectures.

Saferevié {137 raised the question whether there is a bound for the
number of generators of the class gromp that is valid for all quadratic
tields @{¥ £+ p) of prime digcriminant. If the diseriminant of a quadratic
field has sufficiently many divisors, he found that its class field tower
is infinite, and it follows that almost all guadratic fields have an infinite
tower. Now suppose the discriminant 1§ prime. If the class group requires
sufficiently many generators, then the teower is, once again, infinite.

But, as well-studied as quadratic fields are, no @ (1/ -+ p) hag heretofore
been discovered that required more than two generators, and even these
Jatter prime dizeriminants are quite rare. To name several, ef. [6], [10],
[11]: Q{¥32009) and Q(l/—4027) have the  gromp C(3)xC(3) while
Q(V—12451) and Q(¥ —37363) have the group C(5)x((5). Several
investigators conjectured {verbally, cf. [14]) that not only is the answer
to SBaferevié’s question “yes”, but, in fact, that the bound in guestion is 2.
By (1), we now know that this iy false. - _

A second (opposite) conjecture, cf. [6], states that every finite Abelian
group occurs as the clags group for some guadratic field. For example,
there are 40 distinet Abelian groups of order < 27, and, for each of them,
at least one imaginary quadratic field is known to have this group as its
clags group. But the conjecture is nonetheless known to be false if one
confines oneself to imaginary fields. Chowla [2] proved that there are
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a limited number of imaginary fields having one class per genus and that
implies that, for all # > some n,, each group

G2)x 02y % ... xT(2)
must be misging. It is probable, in fact, that the group
' C(2) % 0(2) x 0(2) x 0(2) x 0(2),
with class numbex 32, is already so missing; i.e., it is probable that #, = 4,

What ig the smallest Abelian group that does not occur for imaginary
fields % That iz nnknown, but probably it is
(2) C(3)yx CB)x O(3).
Up to A = 103387, all eases of class number 27, h(— ) = 27, either
hawve the group C€(27), or the group C(3)x C¢(9). It iz very likely that
A ==103387 iz the largest A such that A(—4) = 27; there are no other
examples [3] for A < 465072, and any sufficiently large example would
imply a violation of the generalized Riemann hypothesis, Therefore,
if every Abelian group nonetheless occurs for some quadratic feld, it
follows that we must have a real field for (2), and, with (1), we now do.
We discuss below our reasons for investigating the primes

(n factors)

{3) p(4, B) = A° - 4B,
and the quadratic fields
4 QVp(4,B) and Q(V-3p(4,B),

and we give the resnlts of these investigations. The case (1) is p(3,19),
and besides the already-mentioned fact:

Q(Vp(3,19)) has a group C(3)x C(3)x C(3),
we can add that |
Q(V—3p(3,19)) has a group €(3) x 0(3)x 0(3) % C (604).
Slmﬂmly, . '
- Q(Vp (29, 18)) has a group 0(3)x 0(3),
and
@V —3p(29,18)) has a group €(3) x C'(3) x 0(3) x (464).

In Section 3, we give a table of such p(4, B) together with the class
groups of both fields (4), and in this table one readily notices congistent
patterns in their class numbers, & (p) and k(—3p), and class groups. We
then prove that these observations remain true for all pmmes p(4., B)
and even for all gquare-free discrimninants:

(5) (A, B) = A° 4 4B5.

Excluding p(1,1) =5, we prove that 3|h(4) in Theorem 3 and
31 (—34) in Theorem 1. Surprisingly, the implied element of order 3
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in the latter theorem can be given explicitly in a completely elementary
way. One notes that whenever 3 v+ B, as in p(3, 19} above, the two 3-Sylow
subgroups involved have an eqnal number of factors, and this is proven
in Theorem. 2. But, when 3!B, as in p(29, 18), the corresponding sub-
group for the imaginary field has precisely one extra factor than that for
the real field. This is proven in Theorem 4.

One also notes that 8| h(—3p) if and only if 3| B, and this is proven
in. Theorem 5. We deduce this Theorema 5 from a more general result
that gives an analogne to a recent theorem of Barrucand and Cohn [11
In offect, they showed

Taeorem BC. For primes p = 8k-+1, these three conditions are

equivalent:
(@) p = a’+3282,

N
(e) 81h(—4p).

We proved

THEOREM A. For primes p =12k -1, these three conditions are equivalent:
(a) P = a*+ 367,

-3

() ‘ ( ¥y )4 —_ ti
(c) 8| h{—3p).

Subsequently, we learned that a special case of Rédei’s Theorem
IT [7] implies most of Theorem A, and go we omit most of our own proof.

Finally, for those interested, we give in an appendix further detail
concerning Q(i/ p(3, 19)), such as its fundamental unit, o list of equiva-
lence classes and their multiplication table. Corresponding data, and some
discussion, is included for other fields of interest such as Q(V —34(17,9))
which has the remarkable class group:

C(3) % C(B)x O81) x €(2) x 0(2) x O(2).

2. The plan of the search. The class group of G(Vd) is the group of
ideal classes under ideal multiplication. More elementary is Gauss’s ori-
ginal version: it is the group of equivalence classes of primitive binary
quadratic forms of digeriminant 4 nnder composition. If p® is the largest
power of p dividing the class number, the corresponding subgroup Is
the p-Sylow subgroup. We wished to find quadratie fields whose 3-Sylow
subgroups contain at least 3 factors.

Our plan for this search combined a technique for finding IUIMerons
real fields having at least 2 factors with a nse of Scholz’s theorem [9].
A version. of this can read
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Qomorz's THROREM. For square-free @ satisfying d > 0, 3 1d, the two
guadratic fields ' '
QUd) and Q(V—3d)
have class groups whose 3-Sylow subgroups are related. If, for the imaginary
Field, this subgrowp is « product of v eyelic groups O(3%), and if, for the
real field, this subgroup is a product of & eyclic groups (0 (3%), then
r=28 0or s+1. ’

The class group for the imaginary fields can be readily computed
by a new technique [12], and, given sufficiently promising candidates,
one can now easily test them for

rz=3
{in Scholz’s mnotation). The sufficiently promiging candidates are the
QV-3p(4, B))
gince the real fields
QVp(4, B))
have a strong tendency towards sabisfying
8= 2
{in Bcholz’s notation).
The reason [11] for this asserted tendency is that for the diseriminant
p{d,B) = AS [-4B°
there is a gquadratic form
(6) - F(u,v) = Byt A e — B
which represents both B* (by w = 1, v — 0) and 4* (by » =1, v = 1).
This form: ' :
(7) ' _ F = (B37 Aﬂr __Ba))
is equivalent to o
( “"Ban ) *Asr Bs)#
and so, by composition, B represents — 1. Thevefore,
& . P10 -
the principal form, and 7 is of order 1,2, or 4. But Q(¥p) hag an’ odd
class number since p is prime. Therefore,
o P =1,
and I, the prineipal form, represents both 4* and B That “encourages”,
but does not force, two forms that represent A and B:

(10) F1=(A1B1501): Fa :(BerGE)
to both be of order 3, and, possibly, independent.
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The following impressive fact illustrates both the efficacy of the fo-
regoing construction, and ity necessity. The first 5000 primes P =1
(mod4) are 5, 13, ..., 105269. Al but twe of the corresponding real fields
Q(ﬁ) have cyclic groups. The two exceptions are 32009 = p (b, 4), found
by Shanks [11], and 62501 = p(1, 5) found much earlier by Schaffstein
[8]. These two fields have the group C(3) x ((3) with s = 2.

3. The results of the search. Tn Tables 1 and 2 we list all p(4d,B)
bhaving 4, B < 30 together with the class groups of the fields (4). Table 1
lists those having 3 {B. Table 2 lists those with 3 +B except that we omib
35 cages having r ='s = 1 since they are of lesser interest. We show each

3-Bylow subgroup and its cofactor. For example, Q(V—Sp(Q, 17)] n
Table 2 has the (unusual) group

C(9) % C(9) x C(172).

We ghould add that the cofactor iz cyelic in every case listed even if,
e.g., see p{19, 20}, the ¢(550) shown has an order that is not square-free.
As was indicated, one readily observes patterns here concerning

3ik, Bikh, r=2u ors+1.

We give the theory in the following sections but first some remarlks about
the exceptional p(3,19) of the tifle.

That Q(l/p(S, 19)} comtains C(3)x C(3)x C(3) may be verified
without excessive computation. The prinecipal reduced binary quadratic

Table 1, 3{B

4 B Q(Vr(d, B) Q¥ —3p(d, B)

1 3 3 3Ix3x8

5 3 3 3x3x16

5 12 3 3 x3x136
19 3 Ix5 3x3 x1072
17 15 3 3 x3 %808
23 6 3 3 %3 =568
25 i 3 9 x3x152
13 21 B 9x3 %1360
17 21 3 %5 9321280
25 18 3 3 x3 x 0608
53 24 3xT 3 %3 %680
11 27 9 27 x 3 X616
25 27 3 -27 %3 x 352
29 27 3 3 3x5408

1 30 27 %239 9x3 x608
13 30 9 3% 3 x1856
17 30 3 33 %1816
19 30 3 33 x1760
20 18 3 %3

3x3 %3 w4bd
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* 35 examples of r = § = 1 omitted here.
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20

23
23

17
2

25

22 -

28
28
29
29

19

Table 2, 378

QVp(d, B))

Ixb

Ix3
3x3
3x3
9%x3
3x3xT
3X3
Ix3
Ix3xl3
3x3
Ix3
3x3
Ox3 xB
3 %3

3 %3
3x3
@x3
3x3
8l w3 x7
3x3

3 %3
93
9x3
9x3
3x3
93
3«3
3x3x1l
4x3
33
Ix3
3x3
3x3x388
Ox3
Ix3
Ix3

3x3x3

GV —3p(4, BY)

2

3x2

9 % 2066

Ix3 =2

Ix3x26

I %3 x70

3 x3 x34

3x3x76

3%x3x106
I X3 X362
Ox3x170
3x3 %316
27T X3 xX44

Ox3x134
IxPx1T2
3x3x374
9 x3 %9032
3 %3 %694
3 %3 x422
9 %3 x410
I %3 x506
9x3x254
3x3x850
3 X3 %2542
3x3x1582
9 %3 %140
81 x3 x44

9%3 x1484

3x3 %3220
Ix3 x1274
3 %3 <866
I X3 %3706
27 %3 x 334
3% 3 %1366
27 % 3 %314
93 %554
9 %3 x 2044
3 X3 %3740

3x3x3 %604 .
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form having this diseriminant is
(1, 13717, — 7041),
and its period of reduced forms continues as
(- T041, 36b, 8677}, (6677,12089, - 729), etc.
antil one reaches its midpoint ab
(195, 3%, —19%
as in equation (7). En roule, one encounters
(17%,12729, —11*)  and (—3°, 13691, 6859)
8o the principal form represents
3%, 11°, and 17°.
On the other- hand, :
+3, +£11, £+17
do not occur as end coefficients and the forms
J = (3, 13717, —2347),
(11) K = (11,13715, —1887),
' L = (17,13715, —1221)
are therefore all of order 3.
But, one also finds that
433, +51, L+187

do not oceur as end coefficients, so none of the forms (11) is either equi-
valent or conjugate to any other. Finally, +561 does not oeccur so I is
not equivalent to any product generated by J and K. Therefore, each
form {11) iz an independent generator of order 3, and C{3) x C(3) x €(3)
iz contained in the class group. Further compufation shows that 27 is
the class number and therefore (3) x ¢(3) x 0(3) is -the whole group,
as was stated.

That Q(V —3p(3,19)) also contains C(3)x 0(3)x C(3) is easier to
verify. The reduced forms
J = (1110, 81, 137153),
(12) K = (1812, 1509, 78205),
_ L = (2082, 411, 67810)
may be seen to satisfy J*=J"!, K? =K', I} = L' by squaring them
using composition. As before, their producty under composition
constitute the 27 cabe-roots of the identity:

(13) I = (1,1, 141138190). .
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In the Appendix, we give further details concerning these two fields
for those interested. We also give this data for the previously-mentioned
p{29,18) and for a smaller, composite diseriminant

A(17, 9) = 101-457-569

that also has ¢ = 2, and therefore v = 3.
As an example of Theorem 1 we shall sce that the form J of (12}
could have been easily computed a priori from 4 = 3, B == 19.

4. The eleméntary, explicit cube roots. The genemhmtmn of this J
is given in

TarorEM 1. For natural numbers A, B, a squave-free A= A6—|—4B“3
and & discriminant — 34 < —15, the quadmtw Sform

(14) J = (3[47+B], 345 A%~ LB L BY)
s @ primitive form of order 3. Thus, 3|h(—34) andr 2 1 A
Proof. Since 4 is square-free, (4, 2B) = 1 and J is primitive. Now. J
may be factored as J = @H, where
G = (A"+ B, 34% 3[A"— A*B*+ B*)), H =(3,3,[3+4]4).
Then J% ~ @&* since H .is ambiguous: H* ~ 7T = (1,1, [34+17/4). But
(14a) G~ (A% B 34° —BA[A®+ B, 3[A%+ B,
and so, by composition,
6 ~ ([A°+ B, 34° —6A[A>+ B*], $[A%- BY)
~ (3[AP+B], —3A4'+6A[AT+ B, (42 +BT)
~(3[A*+ B, —84% A'— A’B* - BY) = J!,

Therefore, J° ~ I and the theorem follows if we can exclude J ~ I.
TFor the excluded case A =B =1,
J. = (6,3,1) ~(1,1,4) = 1. But, from (14), it

(15) (3[A* + B}y < 34/4,

then either J is already a reduced form, or, when it is reduced, the left
coefficient 3[A*-+ B'] remaing unchanged. Then J ~ I since & [A*-+B2]
# 1. Assume 4 << B. Then (15) holds if

(3[A°+ BY) < 868 < 3B < 34/4
or B> 3. But (15) also holds if B — 3. And it B =2, 4 = 1,
J = (15,3, 13) ~ (13, —3,15) + I.

Assume A > B. Then (15) holds if 484%< .45 or 4 = 6. One may veniy
that (15) holds if 4 = 5 also. Finally, if 4 = 3, B =1,

J = (30, 81, 73) ~ (22, —21, 30) ~ I,

A =3, we do, indeed, have_
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while if 4 =3, B =2,
J = (39, 81, 61) ~ (19, —3,39)~ 1,
which completes the proof.

5. The real fields Q(V4). Let 4, B, 4 be as before, and let & be the

fundamental unit of K, the ring of integers of Q(VZ). Seholz [9] gives
the following criterion for his theorem:
One has » = s+1 if, and only if, ¢, and all infegers ¢ that are cubes

of ideals ¢ in the ring of mtegers of Q(l/d)

(?") = CSJ
are cubic residues modulo 9.
Define two ideals of K:
(16) a = {4, d,—vy}, ,b = (By 81},
where :
(17 & =2BP VA, 8y = (L+VA)2, y = @B +A+VA)2,

and where (e, f) means that « and § are a Z-basis for the ideal. Then their
produat

(18) : ¢ =ab
is given by ’
(19) » - : ¢ = (4B, y)

and one may verify that ¢, of, and b° are all principal ideals:
(20) ¢ =), b* = (35).

We need the cubic residues (mod 9) in the three cases that occur.
They are .
81B, 4 =1 (mod 9): 0, £1, £V A, =44/ 4.
314, 4 =4 (mod 9): 0, 41, +4V 4, 4412V 4.
3 14AB, A =5 (mod 9): 0, +1, +£4V4, 424V4.

Thus, y is & cubie residue (meod 9) if, and only if, 3|B. Therefore, we have
TuroREM 2. If 3¢B,r = 8.

Proof. This follows at once from (20) and Seholz’s criterion.
A number « of K is called primary if « > 0 and

af = (61)_:

(21) , 1< |afal < €%,

Every principal ideal of K is generated by a unique primary nuwmber,
and, for (20) in partieular, we record
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LEmma 1.
1. v is primery if AB £ 1.
2. &, is primary if 4 £ 1.
3. 4y 48 primary if B = 1.
Proof. We may rewrite (21) asg
1 gloa/’lN(cc)Il"2 < &,
The lemma then follows from the inequalities:
AP 2B < VA < 2e. |
Levwma 2. If AB # 1, (m—l—m/Z)/Q 15 net a eube in K for n =1
or 2,
Proof. If (m—l—m/Z)/?, =[{r+ SI/Z)/Z]E‘, one has
§(37"+ 5" (A°+4B%)) = 4n
which has no solution forn =1 and only s =12 =4 =B = 1 for o — 2.

TBEOREM 3. For 4> 5, at least one of a® end b? is not principal in K
and therefore is of order 3. Thus, 3|h(4) and s = 1.

Proof. Assume the contrary:

{22) : a* ={a), Bb*={(f),

with ¢ and # primary. Since & = o*b® iy principal, then so is c:
{23) ¢ = (o)

for some primary ¢. Then, from (20),

{24) & =8¢, f=2d4 o=y

for certain exponents 4, j, k. But we also have

{25) o = afs™

from (18), and therefore must have

{26) 2k = {+j+ 3m.

Since 4 > 5,y ig primary, and so % = 1 or 2 from (24) and Lemma 2.
Let us first dispose of the case A = 1 and the case B = 1. If 4 == 1,

a=1, e=4§8, i= -1,
and j = 1 or 2 since 8, is primary. If B = 1,
B =1, & = Jy, j=-1,

and 4 =1 or 2 since 8, is primary. In either case, me = 0 or 1 and thus,
- from (26), we must have & = 2. Therefore,

{27) (ofe)' = y/e

A guadratic field of prime diseriminant 8L

from (24). The two cases now require

(o) = (1—2B°4+VA)j2 or (2— A1V 4))2,

respectively. Both cases are thus excluded by Lemma 2.
In the main case, 4, B > 1, both §, and 0, are primary. Therefore,

both ¢ and j are 1 or 2, while m = —1, 0, or 1. The only solution of (26) is
m=0, {§=7j,
and it follows from (24) that
. aa 62 = ,83 61.

Multiplying both sides by —4, gives
(B'a/f)® = (V4 — A 2B +Va)p2.
Since B*a/f is an integer, say, (u+'ul/Z) /2, we must have
v[3u” 0" (A°+ 4B%) = 44°— 8B
‘which is impossible if » = 0; and also if © £ 0 since 4, B> 1. That com-

plefes the proof.

This Theorem 3, and. similarly, Theorem 1 above, can be generalized
but this is of little interest for our present purpose. It is not NeCessary
that 4 be square-free. It suffices if (4, B) = 1 and K is the order of Q(I/E).

Note that unlike Theorem 1, and its unequivocal form (14}, here
we can only point to the two forms corresponding to the two ideals o
and b% : .
( _-Azr 2B3"”-‘4~37 ABS): ( ”*-Bga Asa 34):
and assert; that at least one of them is of order 3. The other may be equiv-

alent to the principal form. In effect, we now return to this uneguivocal -
form (14) to settle the escalatory case: r = s4-1. ‘

6. The escalatory case. Scholz [9] gives a second, complemenfary
criterion for his theorem. Consider sqnare-free d > 0 ag before, and, for
our present purpose, assume 4 = 1(mod3). The hiquadratic ficld

P =Q(/d,V—3d) has quadratic subfields Q(V—3), Q(Va), QY —3d),
and, in this P, we may factor the principal ideal (3):

(28) (3) = p*p* |
into certain prime ideals p and their conjugates p. The criterion referred

to is this:
One hag » = ¢ if and ouly if all integers w that are cubes of integral

ideals ¢ of Q(I/—Sd):
' (@) =¢
are cubie residues modulo p.

§ ~ Acta Arithmetica X%T.
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Lemua 3. In P, if & ==1(mod 9), all cubic residues (mod p¥) are
=0,1,0r —1.

Proof. Since 9 = 0 (mod p*), one has
(29) _ =1 and ¥d=1or —1{modp?.
Néxt, since (¥ —38) = pp, ¥ —3 = 0 (modp), and so
(30) 3-8 =3V _3d =9 =0 (modp?).
Let e be an integer of P. Then

a = vroVd+wV —3-zV —3d (modyp®)

for rational integers s, v, w, #. Therefore, by (29) and (30),
(31) a® = (u-+o) or (w—v) (modp®).

.Reduetion of (31) modulo 9 proves the lemma.
THEOREM 4. For squarefree d = A(A, B) = A*+4B% and 3|B,
¥ =541, :
Proof. From (14a) we obbain
3(A' BY = N([—34 (42428 +V —384]2),

and, sguaring this,

(32) (A*+B*)° = N{w)
with
(383) @ = [AS L GA'B 4+-647B*—2B° — A (A+2B*W —347/2.

Therefore, there is an integral ideal g® of Q(V —34) whose eube iz prin-
cipal: ¢® = (w). Tf 3|B, and therefore A = -1 (mod3), 4 =1 (mod9),
one has . e
(34) w =12V —3]/2 = 545V — 3 (modp®),

and, since w is not a cubic residue (modp?), by Lemma 3, we conclude
that » = s+ 1 from Seholz's criterion. ’

Tt may be ngeful to add that the more general condition d = 1 (mod?9)
does not suffics for » = s+ 1. For example, for ¢ == 2089, one has i(d) = 3,
h(—3d) = 12, and therefore ¢ = ¢ = 1. In contrast with (34), here we
find -

43* = N(152+ 8/~ 38d) and 18243V 34 = —1 (modp?).

7. Analogue of a recent theorem. Retufning to diseriminants
—3p (4, B) with p prime, one easily finds that

(38) M—3p(4, B)) = 0 or 2 (mod4)
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according a8 3[4dB or not. Thiz is because the smbignous form
H = (3,3, [3-+p]/4) of Theorem 1 is in the principal genus or not aceord-
ing as (3fp) = +1 or —1. Thus, H is a square, and 4|k(—3p), if and
only if 3| AB and thereby p =1 (mod3).

The distinetion between 3|4 and 3B is more subtle. We found

THEOREM 5. If, and only if 3|B, 8|1(—3p(4, B). The subgroup
of order 8 involved is cyclic. '

Proof. We prove this by using our Theorem A. '

We have already shown that 4|h{—3p(4, B)) if and only if 3|AB.
If 3|48, p(4,B) =12k-+1 and Theorem A applies. Thus, 8% if and
only if p (4, B) is of the form a® - 3652, This condition holds for p = 45+ 4B°
if 3|8, and does not hold if 3| 4 since p(4, B) has a unique decompogition
as o sum of two squares. That the subgroup of order 8 is cyclic is clear
since the only reduced ambiguous form besides the identity is
H = (3,3 B+pi4. -

Now, in Theorem A, the equivalence of (a) and (b) is eagy to prove.
By the method, say, i Emma Lehmer [4], one shows that — 3 is a quartic
residue of p = 12k--1 if and only if p = 4>+ 3652 One could complete
Theorem A either by proving (a} and (e) equivalent, or (b) and (¢) equiv-
alent. We did the former by analogy with the Barrucand—Cohn The-
orem BC [1] mentioned in the introduction. Essentially, one shows that

the H = (3, 3, [342]/4) above is not only a square, bub also a fourth
6____
power, if and only if (a) holds. We used the field ¢(¥ —1) instead of the

P
Q¥ —1) used in [1]. _

We omit this proof since subsequently we learned that a special
cage of Rédei’s Theorem IL [7] implies the equivalence of (b) and (e).
If one adds the equivalence of {a) and (b} mentioned above, that suffices
to complete Theorem A, and thereby Theorem 5 also.

We may now utilize almost the entire theory by combining Theo-
romd 3,4, and b into the

CoroLLARY. Hor primes p = A°+4B° and 3| B, one has

72| h(~3p).
More specifically, .
. CB)x CB3)yxC(3)

18 a subgroup of the class group of (Y —3p). _
The smallest example is Q{I/—Sp (1,3)}, and we observe in Table 1
that we have accounted for its entire structure.

»
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Appendix. Here are further data on @(V —3p(5,19)). The products
of the three generators J, A, L in (12) are

JE = (3211, 3085, 44686),
J'K = (4822, 3363, 29856),
JUIF = (33186, 2957, 43222),
S = (5095, 2681, 28054),
(36) KL = {6780, 5301, 28153),
KI? = (970B, 8871, 16570),
JE'I? = (8362, 1931, 16990),
JHL? = (3154, 26, 44749),
JUH'L = (6033, 5349, 24580),
‘ L JEIL = (2110, 399, 66909).
The 13 reduced forms (12) and (36), the 13. inverses:
J* = (1110, — 81, 127153),

etc., and the identity (18) constitute the 27 cube-roots of the identity.
Similarly, for Q(l/fp(S, 19)}, one has the products Qf the J, K, L
in (11): ‘

JE = (13, 13709, — 4761),
JR = (23, 13709, —2691),
L = (29,13699, — 4497),
. . JUL = (349, 13377, —6619),
(37) KL = (19,13691, —9747),
KL = (293, 13585, — 3099),
JE'L? = (87, 18715, —561),
J*RIL* = (557, 12677, —12333),
JEI? = (103, 13663, — 3657),
JERAI? = (80, 13589, — 9897).

In (37), as in (11), we have represented each equivalence class by that
reduced form which has as its left coefficient the smallest prime repre-
gented by this class. '
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The fundamental unit « of this real field is.rather large. It is
HT+ TVp)
where .
T = 1375789524 *(92)*2925098389,

38
(58) U = 1002906297 *(88) *1417062305

in which * (¥)* means that ¥ digits are omitted. Since T and 7 are odd,
that implies that the primitive forms of discriminant 4p (or, of what Gauss
calls the determinant p), also have h(dp) = 27 and the same structure.
These numbers 7 and [/ were computed by a new, abbreviated method
that allows us to write (38) even if we do not know the missing * (N)*
digits. In fact, these missing digits are of little use since the high-order
digits suffice for evalnating the regulator and (1, y) accurately, while
the values of T and U7 (modn) suffice for other theoretical purposes. Thus,
above, with n = 2, we determined 2(4p). We may explain this new method
elsewhere, ' '

For Q (V'W)) we have the r = 3 generators
J = (3495, 3267, 157603),
{39} K = (2613, 2577, 210415),
' T = (4141, 207, 132375),
and for Q(V 13_(25;@)) we have s=2 and can obtain the 9 cube-roots from
T = (29, 26993, —-19308),
H = (18, 27017, —13249).

(40)

We omit these produects and those of (39) for brevity. They are easy
enough to compute by composition. The ¢ for this Q(l/p (29, 18)) is very
large and it was not computed aceurately, but since £(29,18) =1 (mod 8)
one can once again state that the determinant p has the same strncture:
C{3) x G{3).

Finally, for the composite 4(17, 9), the real field Q(]/Z) has a class
group '
C{3)xC0(3)x C(2) x C(4).

For the s = 2 generators of its 3-Sylow subgroup we may select the (un-

reduced) forms:
' J = (—81, 4013, 812),

(41) .
K — (—87, 4861, 872).

Note that nnlike Q(VHZ*Q,—iS)) where the a? and b2 of Theorem 3 are both
nonprincipal, here only b® is of order 3 while a2 is principal. Nonetheless,
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s = 2 again owing the (unexpected) generator K of (41) This doeg suggest
that we would also find cages 4(4, B) with 3[B and & = 3, and therefore

# = 4, it only we searched long enough. .
We also record the (modest) fundamental unit

(42) — 13379443326 -+ 2610737V 4.

The imaginary field Q(V—:E-’TZ) hag a class group
' 0(3) x C0(3) X 0(81) x 0(2) x €(2) X € (2).
We now have cube-roots
' J == (1110, 801, 17890),
(43) & = (660, 399, 29903),
L = (682, 157, 28891)
“of order 3, and ambiguous forms
. P =(3,3,6565834),
(44) ' @ = (101, 101, 195050),
R = (457, 457, 43216},
of order 2. The six forms (43) and (44) generate a subgroup that consti-
tutes the 216 sixth-roots of the identity
| I = (1,1,19697500).
It follows that the dicphantine equation
40t = w? 349

has an exceptionally large number of relatively small solutlons n< V4.
One of thege: _
n = 370, 4 = T5042667, v = 7667,

is the elementary solution (32) upon. which we based the proof of r = 841,
but there are any number of others here, such as

n w W

212 12555431 1613

220 4967333 2333

293 21269630 712
that would serve the same purpose for A(17,9), except, of course, that

they were unknown a priori. Alternatively, » = ¢+ 1 is also 1mphed fo:r
A7, 9) by (41), (4! ), and Secholz’s other criterion (mod 9).

icm

{1]
2]
{31
{4]
15]
16}
7

18]
[e1
{10]

{11]
£12]
113
{14]
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