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Simultaneous diophantine approximation of rational numbers
: by |
T.W. Custox (Buffalo, N.Y.)

1. Introduction. For any real number #, let |jz|| denote the distance
from # to the nearest integer; thus 4 > ||lz) = 0 for all x.

Lat " b'e-a:ny Dositive integer and let o = (s, ..., 5,) denote an arbi-
trary pfnnt in the set 8" of n-dimensional points all of whose coordinaies
are rational noninteger numbers. Define the function w(n) by
(1) w(n) = inf sup min jgs,|

ac§® - g 1<Ciin
where the gwpremum (or maximuwm) is taken over all integers ¢ (in what |
tollows, ma.t will always be taken over all 1ntegers g}

e > 1 is an integer with prime factorization H 5, define h( )y =k

Then for each positive integer n define the functlon w(n) by w(l) = 1/3,
w(2) == 1/5 and
(2) w(n) = max{z: hiz)+ dp(s) < n}

for m 2= 3 (here ¢ iz Euler’s function).

The main purpose of this paper is to propose the conjecture that
Eo(n) = 1/w(n) for every positive integer n, and to prove the conjecture
or ns 7.

TeEoREM 1. For n < 7 w(n) = 1/w(n). Numerically,

(1) = 1/3,
w(2) =1/5,
w{3) = 1/8,
w(4) = 1/12,
w(5) = 1/18,
w(6) = 1/24,
w (7} = 1/30
The problem of evaluating (n) originated in two papers of Wills
{[6], [71); he showed w(l) = 1/3 and (20"} € w(n) < Ljw(n) for n= 2.

In a. later paper, Wills [8] obtained the better lower bmmd win)
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= e(nlogn)™!, and found an asymptotic formula for w(n) (see Lemma 7
below).

Actually, the funchion considered by Wills wa# defined by (1) with
the infimmm taken over all pointy in the sot of #-dimensionsl points none
of whose eoordinates is am integer. The fnet that Willy’ funetion can wlwo
be defined by (1) (which simplifies the windy of wm(n)) was proved by
Wills [7].

The results of this paper wero announeed in [3],

2. Preliminary results. T bogin by giving a proof thad b eo{m) < 1/w(n)
for every n; this proof uses the same idea a8 the oue given by lelfa (1,
P 376—377) but avoids his unnecessary ude of certain suxiliary integer
sequences in the argument.

Lmvwa 1. Tor each positive integer n, o (n) = 1Ljw(n).

Proof. The result is obvious for » = 1, 2, o suppose u = 3 and w(n)
T

has prime factorization [ ] pii. Define g, 1< 05 b p(w(n) by

o o 7 (Li=h),
= ,
S fw(n) (Rl S8 b dplw (),

where the numbers a; (1 << dp(w(n))) are those positive integers logs
than 4w ) which are relatively prime to w(n), taken in somo orvder,
Since k- 1};(;0( (fn,) < n by the definition of w(n), there are no more than
w808, If in fact Bt plw(n)) <n, define s = p;* (h-- joplw(n))+ 1 <4
< m), say. In order to prove the lemma, it suffices tio show max min sl
Ql/ ( ) ¢ leden
Clearly we need only congider integers q Ra.mwmg 1 = g <w(n),
It g is not relatively prime to w(n), then - mm ligell = 0. T g ia relatively

prime to w(n), then min g5, < l/w(fn fm each of the pfw(n)) con-

It dmrden

gruences ayw = £lmodw(n) (1< j < fplw(n)) has a wnique solution
@ == gwith 1 <0 g < w(n) and ¢ prime to w(x), and no two of thesa solutions
are the same because the a, are distinet and sotisiy 1 - wy << oo (n). This
proves the lemma.

Thus in order to prove Theowm 1, it is only necossary fio show that

n) = 1fwin
role.

LuvmA 2. et %, b and m be any positive integers, and suppose m ﬁaﬁ
prime factorieation H P If there ewist rational noninteger numbers 8yy ...y 8,

such that max mm ||qs | < kjm, then we may agsume without loss of gene-
sSHEn

q
rality that h < {n, 8 = byfp; (LT h) where the by are integers satisfying

icm
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0 < by <pgyonds; =ayfm (A1 <ig
0 < a; < m.

Proof. This is a lemma of Willy ([7’ 1, Lemma 3, p. 372) expressed
in a different form. I give a simplified proof, as follows:

We may obviously assume that max min [gs;| = k/m and s; = a,;/m
¢ Iig<n
(L=< i< ») where the a; are integers satisiying 0 < a; < m. Lot p be any

prime dividing m and suppose that ps; is not an integer for 1 <4 << n.
Then if we define s; = ps; (1 <1< n) the s; are rational noninteger num-

hers and clearly max min lgsyll < %efm. Hence we need only consider
¢ l<isn

the case where for each g dividing m, ps, is an integer for some subscript
i == i(p). The subscripts i(p) must be different for different p, and this
proves the lemma,

The arguments used below to establish w(n) > Ljw(n) for < n< 7
do not seem to apply for n = 1, 2, 50 I give .spema,l proofs fer these cages.

Loomma 3. The equality w{n) = Ljw(n) holds for v = 1,2

Proof. The case n =1 is trivial. For n = 2, we have w(2) = 5, 8o
it suffices to show thai for any twoe rational noninteger numbers a/b and
o/d which satisfy :
(3) maxmin (llga/bll, lge/d]) < 1/5,

a

n) wheve the a; are integers satisfying

equality must hold in (3).

We agsume without loss of genernlity that a/b and e/d arve in lowest
ferms, There ave clearly < d(2[b/5]-+-1) integers ¢ in the range 1 < q < bd
which satisfy |ga/b| < 1/6, with a similar result for the inequality [ige/d
= 1/5. It follows that (3) implies

o el

Uning the trivial estimate for the greatest. integer function in (4), we
obtain b=+ 471 > 1/8, so ab leasgt one of b, d iz < 10. We assume without
loss of gemerality that 2 < b< 10, b< d. Then a little arithmetic shows
that for b # b5, the only pairs (5, d) which satisty (4) are (2,35), (2, 6),
(2, 10), (6, 6), (6, 10) and {10, 10), It is a simple matter to verify that (3)
cannot hold for any fractions a/b, e/d in lowest terms if (b, d) is one of
these pairy.

Hence ¥ = 5, and it is casily seen that strict inequality cannet hold
in (3) for any choice of a, ¢ and d.

3. The cases 3 <5 = 7 of Theorem 1. Assume that for some n, there
exist positive integors % and m such that

1

(%) o(m <= < o
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I prove Theorem 1 by showing that for 3 < n -7, the assumption (5)
leads to a contradiction.

By Lemma 2, we can suppoge without loss of generality that thoere
exist distinet primes 7, (1 <4< h, ry < vy < ... <0 7} and radional nembery
8 = ag/m (1< i< n) such that

1)
(6) M == f]rgi, b omy
ol
{0 max win {lgsl < ks
g =t
and
(8) 0<ay<m (Li<n), o = mhfr, lor integers b,
O w2 by ez vy (Le 455 R
Define

v, (m) = the number of distinet primes p such that p divides m and

P < wn).

TmsMa 4. If (3), (8), (T) and (8) hold, then

w(n) m even
m 20— h{m) — v, (m) ’
et >
m
o (m) _w(n) - m odd,

2{n — 1, (m))

Proof. Let (a4, b) denote the greatest cominon divisor of the inte-
gers a and b. There are at most 2k different values of @, 1 < @ < m, which
satisfy at least one of the 2k congruences

(9) a0 = Ljmodm (1£i<hk).

This is- elear if {a;, m) =="1, for then each of the congruences in (9) has
o tnique solution modm. If {(a;, m) > 1, the congruence an == imodm
i8 golvable if and only if (a;, m) divides j, in which caso there ave (a;, m)
solutions », 1< 2 < m. The number of § yuch, that 1 3 [J] = &k snd (o, m)
divides § 38 2 [%/(ay, m)], s0 the total number of different @, L » = m,
which satighy mt least ono of the congruences in (93 is << 2 (ay, m) [k/{a;, m)]
< 2k.

Bince 0 < g; << m by (8), any integer ¢ such that (g,m) ~ 1 and

min flgg;ll < kjm must be-a solution of at loast one of the congruences
[E ) '
in (9) for some i, v, (m)+1 < i < n. The range 1 < i <% v, (m) need not he
congidered, because for these 7 we have

w

m
(a@-, m) = _’I":—> :t:t;(ﬂm)—% k

icm
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by (8), the definition. of v,(m) and (5); thus none of the congruences in. (9)
has solutions if 1 << ¢ < v, (m). There are g(m) values of ¢ such that {g, m)
=1 and 1 < ¢ < m, 8o (7) implies that there arve at least ¢(m) /2% different
values of a; (v,(m)+1 <1< n). Hence, nsing (B},

2m(n—v, (Im))

(10). () < 2hfn— v, (m)) < e

)
which gives the lemma if m is odd.

For m even, we shall show that if o, (m) +1 < h(m), then there are
ab most & difforent values of @ such that (@, ) = 1 1go<mand 2
satisfies at least one of the congruences in (9). Then the argument which
led to (10) will give '

m(2a— h(m) — v, (m))

p(m) < 2h{n — h(m)}+ k{h(m) — o, (m)) < Py

2

which is the desired result. -
The (a;, m) solutions of any solvable congruence a;z = jmodm are
given by '

W
11 o = Ly -+t (1<t < (0, m))
(L) 0 (@, m) . "
where
l’l,; Lo = j - . ¥
{a;y m) ¢ (@, m) (@, m)

H m is even and v, (m)-+1 < ¢ < h(m), then by (8) (a;, m) = mfr, iy even
and mf(a;, m) = r; is odd. Hence exactly half of the solutions (11) are
even, namely those for which ¢ has the same parity as 2.

We saw previously that at most 2k different values of z, 1< 2 < m,
satisfy at least one.of the congruences in (9). The above remarks show
that at most & of these values of # also satisfy (x, m) = 1. This completes
the proof of the lemma.

Define for each positive integer n

where p, =2, ..., p; = the ith prime. Values of P, for various n < 20
oceur :[requently in the caleulations necessary in the proofs of the next
two lemmas. For thiy work a table of P, (or P;?) is very convenient;
sueh tables are given in [17, [4], [3]

Tmma B, If (B), (6), (T) and (8) hold and n satisfies 3
18 Uen.

n < 7, then m
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Proof. If m is not even, it follows from (6) that

R
: w ¥ 1
1 S
@ s 4L v e

For each » in the range 3 < # < 7, it is a simple calonlation to verify that
for any odd m the inequality (12) contradicts the inequaliby of Lemma 4.
Tor example, if # = 4 and both inequalitics Told, then wo,(m) 4—
—(w(4)[Ps} = 1.50... Thiy implies cither v,(m) == 0, 8o that m/p(m)
in both cages the inequality of Lemma 4 Iy contradicted. o

The range of # for which Lemma 5 is valid could be greatly extonded,
by the same type of caleulation. It iy tihe next lemma which leads to thoe
restriction » < 7 in Theorem 1.

_ LumMa 6. If n satisfies 3 < n = T, then there 48 no even {ndeger m for
whick (B), (6), (7) and (8) are walid.

Proof. We show that for 3 < » < 7, the agsuruption of the existence
of an even m such that (5), (6), (7) and (8} hold contradiets Lemma 4.
TFor each #, the first step iy to deduce an uppor Lound for h(m) -, (m)
from the inequalities

) . . b1 f
(13) Prse o 2 o) )
: p{m) = 2n—h(m) v, ()

Which tollow fro_m {6} and Lemma 4. Then calculations similar tothore
in the pro_of _of Lemma § show that the conditiong impoded on i eannot
all be satisfied. I illustrate the caleulations with the cases n == 3 and
n = 7; the othoer cases are much the same. Notice that the trivial inequality
hlm) = v, (m) is frequently used. _

‘T.h‘e‘ cage n = 3. Here (13) implies A(m)-}og(m) = 3, so tha ounly
po:‘sﬂlbllﬂnes are wy{m) ==1, A{m) =2 or 1, If h{m) = 2, then wm/fp(m)
= 13(.11/10} = 2.2 if h(m) = 1, thon mipn) < 2. In hoth eases the ine-
quality of Lemma 4 iy contrndicted.

The casa n =7, Here (13) implies him)-| o, (m) < 8, 80 o, (m) -2 4.

It ?J,(m) = 4, then also A(m) == 4, w0 mip(m) = Py= 4376, Thix
contradicts the inequality of Lenma 4.

If we{m) = 3, then 8  him) < 5. If A(m) == B, wo haye Py - 4.5125
= mlp(m) > 30/6 (contradiction). If him) = 4, wo have Py = 4370
=2 mp(m) > 30/7 (contradiction). I8 h(m) =3, Py = 3.75 om/p(m) > 30/8
(contradiction).

If o(m) =2, then 2 h{m)=<6, 80 mp(m) = 3P PR = 834 ...
However, by Lemma 4, m/p(m) > 30/(12—h(m)) 2 376 for him) - 4;

?

this eliminates the cases 4 < h(m) < 6. If h(m) == 3, we have 3(31/30)

icm
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= 3.1 m/p(m) > 30/9 (contradiction). Xf &(m) = 2, we have 3 > m/p(m)
> 30/10 {contradiction). -

I v, (m) =1, then 1< h(m) <7, s0 mjp(m) < 2P, Pyt =232 ...
However, by Lemmna 4, mjp(m)> 30/(13—k({m)) = 2.5 for h(m)>1,
which gives a contradiction for any possible value of A(m).

Temma 6 completes the proof of Theorem 1. The method used to
prove Lemma 6 breaks down for 28 by failing to exclude all possible
oven values of m. For example, in the case n = 8 (w(8) = 36}, the method
excludos all even integers m exeept m of the form (6) with h = 3, r, = 2,
7y = 3, vy = §; that is, the assumption that m exists leads to a contra-
diction except when vs(m) = h(m) = 3 and 30 divides m. Thus the tech-
nique of Liemma 6 is insutficient to evaluate o (8), although the caleulations
will give the cstimates 1/36 = w(8) > 2/75.

4. A theorem about w(n). The function w(n) is of some interest in
ity own right. (See table of w(n) below. This table was easily congtrueted
by using Tables I and II of [2]. Table I gives n, the factorization of n,
and @(n); Table IT gives the values of n for which ¢(n) takes on a given
value,) _ :

Theorem 2 below states one of the more striking properties of w(%).
The proof makes use of the fact that w(n)/n tends to infinity, which is
an immediate consequence of the following known result:

TmvmA 7. If p denoles BEuler's constant, then

win) o

im - Ze”.
noo N 1og log n

Proof. This was proved by Wills ([8], Lemma 1, p. 167).
THREOREM 2, Given any prime ¢, g divides w(n) for all sufficiently large n.
Proof. We first obtain the weaker result that Alw(n)) - oo as % — oo,

Firgt, we have .
— 1 -~ ,.,_Jﬁ)_.i_
(n)];] (1 }T)‘& B (n)} 417

where the product is over the A (w (%)) primes p which divide w({n) and the
inequality iy trivial, Second, we have w(n) [plw(n)) — oo a8 m - oco: for
it w(n)jp{w(n)) < B for infinitely many », then the tnequality n > p(w(#)
implies w(n)/m < 2B for infinitely rany n, in contradiction to Lemma 7.
Tt follows ab once thab h{w(n)) - co ay # - oo

Sappose now that w(n) =z, and the prime ¢ does mot divide 2

we shall deduce a contradiction if » iy sufficiently large. Suppose the prime
3 .

factorization of 2, v [] i, P < P2 <... <Py
fual .

plw(n)) =
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Let N {(#) be. a function with the property that x:: N (#) implios the
axigtence of a prime p satisfying o < p < (1-b e (0 < v 1), The oxistence
of such a function of course follows from the prime number thoorem.

Since h(w (n)) —» 00 Of 9~ 00, W My suppose that n iy 5o large that
Tz 3 and p,. ., py satisty

Py =1V [ pr—11, 1
(14) (1'* (:p}'!,I ) (-_[’?f ) 14 ey
g1\ Pr P %y
P 1P {1
(15) 7 59
and
(16) . ‘ | Pt > . b
Then (15) and (18) imply that there exists n prime p sueh that
i [+ 1 I3 o P
(1 P P pt gt < p < ( 1+ Zg) P PR 'l-_

fa-2
Now define 2, = pg [] pi; neither p nor ¢ is one of the p,’s because
g :

Pre < Pp<p by (17) and ¢ does not divide z, by hypothesis, We have
2> 2y by (17), h(2;) == h(zy) and @(2,) << p(2) (becanso

9(PQ) = (p—1) {(g—1) < p(piF 2 p3) = (P —1) (P~ 1) pist pj!
follows from (14) and the third ineguality in {L7)). This contradicts the
hypothesis w(n) = 2z,, and so proves the theoreni.

Table of w(n), 1< w50

% w(n) R w (n) n w (1) [ ’ wn) Hr wn)
1 3 1% GO 21 126 31 210 41 270
2 b 12 60 22 126 32 210 42 270
3 8 13 66 23 150 33 210 43 200
4 12 14 7% 24 150 4 210 a4 380
5 18 15 - ho Pis 150 33 240 45 - Jan
] 24 16 ] 26 150 34 240 44 330
7 30 17 B0 27 180 il 240 47 A}
8 34 I8 | Do 28 210 38 240 48 Ja4
9 42 - 19| 120 29 210 ) a%0 444 380
10 48 20 120 30 210 44 S 270 Wil B0
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