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On the maximum modulus of cyclotomic integers
by
J. H. ToxroN (Cambridge)

1. Introduction. Let 8 be a cyclotomic integer, i.e. an algebraic
integer in a cyclotomic field. Then # can be represeinted as the sum of
roots of unity. We denote by N(8) the least number of roots of unity in
any such sum representing g. Also, as usual, |81 denotes the maximum
of the absolute values |8’ of the eonjugates 8’ of 8. Following Robinson [4],
we shall say that two cyeclotomic integers fand §* are equivalent if g* = e
for some conjugate §' of § and some root of unity g. Clearly 8% = [#] for
equivalent 8, 8%, The object of this paper is the following :

THEOREM 1. Suppose that k > log2. Then there is a positive number ¢
depending only on % such that

(1.1) [B] = enexp(—Eklognfloglogn)

for all oyclotomic integers_ g with N(B} =n (1),
The statement of Theorem 1 fails when % = log2. In fact, we shall
prove :

THEOREM 2. Suppose that o > 0. Then there are infinitely m_any positive
integers n with the following property: There are tnfinitely many tnequivalent

- eyclotomic integers 8 with N(B) = n and

W3'< enoxp( —log2-logn/loglogn).

These theorems give an answer o a conjecture of R. M. Robinson [3], -
namely, if #is a eyclotomic integer and [8] < n, then § can be expressed
a8 a swm of at most » roots of unity, except possibly for a finite number
of inequivalent cases for each n. That this was rather too optimistic in
general was shown by Schinzel [5]; he proves that there are infinitely
many inequivalent eyclotomic integers 8 with |81 < 3 which are not sums
of 3 roots of unity. Theorem 1 can be reformulated to apply to this question
a8 follows: If % > log2, there is a-positive number ¢, depending only on %

() The function on the right-hand side of the inequality (1.1) is taken to be 0
for w = 0 and ¢ for m = 1.
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such that any cyclotomie integer # with | ﬁ|
can be expressed as a sum of at most n— IOO‘LH of mnity. Turther, from
Theorem 2, this is not true for k = log2, even it we allow finitely many
inequivalent exceptions for each » and finitely many exeeptional n. Theso
ghatements follow from Theorems 1 and 2 at once becanse, as shown
in § 3, the function nexp(—klogn/loglogn) increases with » for all saffi-
ciently large «# and tends to oo ag n— oo, ‘

The layout of the proof i as follows. Instead of dealing with the
maximum | 8] of the absolute values |47 of the conjugates #7 of f, it is more
convenient to use the mean of 8|3, an idea due to Cassels [, This 8
detailed in. § 2. In § 8, we derive zomoe estimatos and inogualities for the
funetion %pr(-.'lr“mgw/logloc n) and also for a clogely relatod function
which proves ecasier to handle. § 4. and § © confain intermediato results
towards the proof of Theorvem 1, whlch followsy in. § 6, Fmajlly, Theorem 2
is proved in § 7.

- I would like to cxpre% my thanks to PI‘DTOHHOL J. W. B, Casselg,
my supervisor, who suggesi,gd this problem Lo me and helped greatly
Wlth the presentatmn of the preof.

2 eghexp (- klognfloglogn)

2. The function . Yor any allgcbm.a(' umnbm' %, we shall denote
by o (%) the mean of |»'|* taken over all the conjugates »' of », Trivially

(2.1) k25 e M ().

Algo, if » i¢ @ non-zero 1n1,0gur, ity norm ig a.t lwubt 1 in &baolube value,
and 8o : ‘

(2.2) ° - “‘“wM?M“
by the inequality of the arithmetic and geometric means applied to the
e, - | \
We shall need some formulae for . (f) when g iy « cyclotomio integer;
the staternents and their proofs are all from Cassels |17,

Tor any integer P > 1, we denote by Q(F) the field obtiined by
adjoining all the Pth roots of unity to thoe rational field €.

Firat omm Suppose that £ = pPy, whoere p i a pmmn aiul g4 Py,
Any ﬁeQ ) may be WrH.Len in the form

(2'3) ) ﬁ s ;Ej ajE}

T e

where & is a primitive pth root of unity and aeQ(Py) (0 f«p—1)
When. £ i3 an integer, the a; can be c.hosen to be integers. 4 (B) is given by

(2.4) | 2(p —1)H )‘ - a,'

'L.fﬂﬂ
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Ii pi’eeisely X of the a; are non-zero, we may write (2.3) in the form

X
(2.5) B o= Zngj
where y;e Q(P;), ¥; # 0 and the r; are integers incongruent modp. From
(2.4),
x
(2.6) 2(p —1)#(B) = 2(p— XZM% D (yi—vy).
Je=1 id=1

bccond case. &uppo&e that P = pP,, where p is a prime, p +P,

and N = 2. Put P, = p¥'P,. BEvery f¢Q(P) can be written uniquely
in the form '

(2.7) . B

-1 ’
= Fut
=0

where £ iz a primitive p¥-th root of unity and o Q(P,)
The o; are integers if § is. In this case

-1
= ) H (o)
=0
3. The functions f and g. Let k > 0. To prove Theorem 1, we have
to investigate the function defined by '

F@) = J(t, &) = texp(

(0<ji<p—1)

(2.8) H (B)

—Klogt/loglogt) (> 031 #1,6)

and

Since f behaves rather irregularly for small values of i, we shall prefer

to consider the funetion ‘
g () = texp(~Fklogt loglogi’) . (1= 0)

where 1’ = {4+ ¢, and e, is & positive constant, possibly dependmg on. I’a,
which is to be chogen later. Now

1) = ex ( Elogt’ ){ Kt b ket }
gl = exp loglogt’ t"loglogt’ ¢ (loglogt’)®
and

" & klogt ) 1+O( 1 )}

g = exp| — ——— e

g ) t’loglogt’ P loglog?’ loglog? /|’

the constant implied by the O-notation depending only on k. 80 we can
chooge ¢, = ¢, (k) such that

for all ¢ 0,

{3.1) g@®=0 and g'(t)<0.
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and. also
{(3.2) logloge, == 2.

This makes g increasing and concave on [0, oo}, 80 by [2], § 94, we have
at once
LEMMA 1. If @y, @y, .., @, are non-negative real numbers, then

el S

Pl 'rr":l

The next lermnma is also a consequenee of concavity; it mush be noto-
rious, but X cannot provide a precise referencoe.

Lmsva 2. Lot 0 A, < oo and a0 be given. IMor any numbers
y M ! !

Gy Oy ..., &, SAISfying

A€o, <p (1Kr<y) and Zar;:,-a,

we have -
D a(a) = ug(A) + (v —u--1)g{w) + g (o)
=3
where
w = [(wr—a)/(p—7))
and

o = t—ul—(y—u—1) 4.

Proof. Suppose that some two of the a, do not equal 1 or u, say i < a,
< 0y < . Put 6 = min{a, — 4, py—a,} and ay =a, (r =1, 2), a = a,— 9
and a; = a,- 8. Using the mean value theorem and the concavity of ¢,
we find that replacing {a,} by {a;} decreases Y g(a,) and increases the
number of @, equal to A or w. So we may suppose that all but one a, equals
Aor u, say

A= Ty = . ou zc&ﬁ< o, nléz a’v-[ﬂ TN S I

Let 3@, = o and define u and o as in the statement of the lemmy. By
an eagy calculation, we get

. v=[{pr—a*)(p—-]<u
and

<o u.
Henceo

Dg(a,) = 0g(3) +g(y, ) + (v —v—1) g (1)
= ug(A)+g(o)+(r—u—1)g(u).
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Leuma 3. If t = o, then

ok
0 <1 ) —1 i IS
< logf(t)—logy(f) < loglogi "

Proof. Write ¢(l) = logi/loglog? and let { = ¢;,. By tle mean value
theorem, _
logf(t)—logg (3) = k{p(t") — ()}
= e hp'(8) (I<se<?)

_ ek 1
~ sloglogs | loglogs/’

and the lemma follows at once.
Levva 4. g(8Y+g({l) = g(s+18) if ¢,t = 0; furiher

9(8)+g(ﬁ)>9(8+t)+lsgfé:t, if 1<t<s,
where
k
T

Proof. By the mean value theorem,

gla)+gt)—gls+t) =gt)—tg'(s+60) (0 <8<1)
=g(®)—1tg'(), by B.1)

Fig (%) (1 1 )
~ #'loglogt’ loglogt' |’

and the lemma follows using (3.2).
CoroLLARY. If ay, dy, ..., 4, are non-negative numbers, then

29(%’)29(2“1‘)*

Proof. Use induction on », and the lemma.

Lemma 5, Let & and § be given positive numbers, with k> log2. Let
0< 1< s and put w = s-+1. Thew there is a posilive number ¢g = cg(k, )
depending only on It and 8, such that

((IOgt)a) < zlffggl(ogt, whenever 13 ¢q,

and

9(3)+9m>g(”)+29(102u)
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whenever

t = maz{ec;, ¥

J.H. Loxton

(logu)*~"}.

If, in addition, 8 <1 —k™" log2, then there is o positive - nufmber oy
depending only on k and 8, such that

whenever

Proof. As befors, write p(¢) = log¢/loglogt. In the prooi, tho con-
stants implied by the O-notation depend only on & and 4. Weo divide
5 steps. To begin with, wo are given & and 6 with & > log2

the proof into
and &> 0.

§ 2 e

(1) Suppose that ¢; <

50

and

<1 < 81/2

iy (}“) = 2g(s)

Then

log-t— = logs —logt,

S(loge)? gt < 8™

eo(ley 8,

logt
loglog — = loglogs 4 log (1-— 1"65;) = loglogs - ()(1l ::), a8 § -» 00,

1
(1.__ Ogt) _]_}_()(,__I_gﬁ_gtﬁ“u
- logs logsloglogs

and so

wherce

w(s)—w(

o s
logg(s)—logyg (-m

where ¢; = ca(]c

i
-

log's

loglogs

logi i
— 2140l
loglogs

(ii) Pubting ¢ = (logs)’ in

(1) gives

b
loglogs /|’

ag § -— 00,

ool o,
P » (igé'—év) = ()’( ), a8 8- 00,

(i) Let ¢ 22 ¢,. From Lemms 3 and (ii),

{1

ogs)

= §loglogs+-0(1)
> log(2¢; 'loglogs”)

3) > 0;. Bo
8 ey 9(8)
<
g ( (1ogs)") 2loglogs’

R YPRR Py A I
~é_,) = logf(s) 10’51((10gs)”) +0(1)

if & = oy, say,

whenever sz ¢,
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(iv) Suppose that #>> max{c;, w(logw)’ '} By Lemma 4 and (iii),

cag (F)
Ioglogt’

i
>% (aogt)") |

U 1 log? \¢
> ._
2 ((1ogu)1"’ {log i)’ (10gu) )’ by (3:1),

(3]
_glogu'

(v) Now suppose that 0 < 8 < 1—k 'log2 and }(logs)'° <t < §42,
By Lemma 3 and (i),

log{tg(—j—)g( ” } log{tf( )f( }4—0( 57, ag s oo,‘
B k{q’(s)_q’(%)}*“o(s""z)

klogt 1
= 1
" loglogs { " 0(1og10gs )}

>k(1—a)'+o(
> log2,

g(&)+gt)—gu) = -

loglogs)

providing s is large enough, say s = ¢, = o,(k, d). So
tg (—i-) = 2¢(s) whenever sz ¢,.

4. The basic inequality. Throughout this section, § denotes a cyelo-
tomic integer in a fixed eyclotomic field Q(P). We congider only the first
case of § 2, i.e. P = pP,, where p is a prime and p+2;. As in § 2, & denotes
a primitive pth root of unity. As a step towards the proof of Theorem 1,
we have

TumoREM 3. Let & > log2. There is & positive number ¢ = g;(k), de-
pending only on &, with the following property. Suppose that as in (2.3},
§ = 3ot where the oeQ(Py) are inlegers, that 10gN(;3)<p —1 and
that p = ¢5. Then .

n~1

(41) 2 ¥ (a—a) = 2(p —L)g LN (B)].

VB
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This result iz useful in relating the functions . and g, ay we shall
eventually do, because (4.1) hag the same shape as (2.4). Before proving
Theorem 3, we need some lemmas. To shorten the notation, when dealing
with the represenfations (2.3) and (2.5) for 8, we shall write

N(g) =mn,
N(w) =, Nlg—o) =ny (Oi,j<p—1),
and
SN =my, Ny—yy) =my (L4, < X)),
‘ x
LEMMA 6. [f 8 = Zy &iand X < §(p—1), then n = 3 m,,
ol

Proof. Clearly » < me,. Suppose that » < Y m;. Choose a repre-
sentation g = ¥ & of the form (2.3) with 3'm; == n, and let § = {r;:

1gi< X} Now
P
< Slas - S
ur

=1

go there iz an « such that

yi+a i j=red,

a ¥ j¢8.

Now, a % 0 because X n; =n < Xmi, and from (4.2)
b= 0+ Yot = %ajfhzcisf.

je& s Jje8
-1

So Y, +XN(a)=n = Y%j D - (p ——X)N(a) by {4.2), and sgince

(4.2)

a4y =

jeS Fem0) ﬁn
N (a} # 0, this contradicts the date X < % ). 8o % = N'm,, as vequired,
Leuma 7. Let k& > log2 and p = Zy g, If
{4.3) X £ $(p—-Limin {1, e, /loglogn’
then ,
X X

(4.4) (p~X) Y gm)+t D gimy) = (p~1ygn).

i=1 1l

Proof. Clearly (4.4) holds if X = 1; suppose it ]’JOldH A = Y = L
Let X = ¥ 41 satisty (4.3) and eonmder

P

¥
18 g ytfw and ﬁl == nyi,y'i_

dox]

Without loss of ‘generality, we may suppose m, = My ... > My BY

On the mamimum modulus of cyeclotomic integers m

Tl

Lemma 6, N(8) = 3 my=n, N(B) =
fe=l

My, <M< n. Also note that mgy,, = m;—myp,, s0 by Lemma 4,
g(my,py1) = g(m;) —g(myp.,). On writing I'(X) for the left-hand side of
(4.4), we have ’ '
¥
= T(X)+(p—TF —1)g(mypy) -+ D {g(m; pin)—g(m)}
i=1

= (p—Lyg(m)+(p—2Y —1)g(my,,); by hypothesis,

¥
Z’mi = m, 8ay, 80 in particular,
i=1

T(Y +1)

_ Gag(my+1) 5
= (p 1){ {(n)+ loglogmy+1} 2Yg(myp,,), by Lemma 4,

> (p—1)g(n), since X = ¥ 41 satisfies (4.3).

The lemma now fo]lows by induetion.

Loyvma 8. Let § = 3 a;&. Suppose that fow each fired i (0 <i<p—1),
at least 2g{n)/g(1) of the nﬂmbws o —a; (0 < j< p~1) are non-zero. Then

p-1
X gng) =2(p—L)g(n).

1=t

Prooi. Since ¢ is increasing, we have

2‘” ”‘)”2 ranl

£,7=0

= 2pg(n) > 2(p—1)g(n).

Proof of Theorem 3. First, we may choose any representation
of the form (2.3) for 8. For, if f = Y a; & = ) a}" & are two such represen-
tations, then e;—a; = ¢;—af, whence

N(o—a) = N(of—aj) (04, j<p=1).

S0 we may suppose

(4.5) Y=

Next, & permutation of the a; in 3 a;£ does noti change N (g). For
let o be a permutation of {0,1,...,p—1} and v be its inverse. Let
Zaa{,)f and choose a representatlon B = Sof & with YN (q))
— N(p"). Comparing the two expressions for g*, we see that there is an «
guch that
aj = Oy 0 (ngl‘gp.""l)-

B =Zaj§j = Z(Gj—l-a)'fj = Zafmff.-

Now
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So
N < NN = N < Y N(a) = N (),

whence N (8*) = N(f), as required. So we may suppose that
(4.6) Ry Ry 2 e gy > Ny 75 ee = Wpq w=

Ag a final piece of notation, choose & = d{k), depending only on k,
such that

4.7 | 0< §< 11—k og2.

The proof now proceeds by induction on w. If n = 0, (L1) it fri-
vially true. So we make the following induction hypothesis: If g* ~ 3« &
cQ(P), the of<Q(P,) being integers, and N (") < %, then

p-1

3 gL (]~ )] 3 20 —1hg [N ()],

i,de=

Now, to prove (4.1) for # (> 0), we distinguish 3 cases.
4 &,
g(n) min<l, - ,.m.i,_,_.?, It any of the re-
loglogn

First eage. o g
(p—Dg(1)
presentations § = 3 (ogy—a) & (0 i< p—1) has less than $(p—1)x
7

X Dla;—a;) min{l , e,/loglogn'} non-zero terms, then (4.1) follows from

)
Lemma 7, Otherwise, all such representations have at least 2¢(n)/g(1) non-
zero terms, and (4.1) follows from Lemma 8. This proves the fivst case.
From now on, we therefors suppose that '

4g(n) . Cq :
(p—1)gly ~ {1’ Toglogn’ }

Consequently, there is a positive number ¢, = o4(k), depending only on k,
such that

(4.8) p< min{n, nflogn} whenever p = e,.

Becond case. n; < nlogn)’ ™ (0<j<p—1). Set ¢ = [§{logn)* *}.
and congider a fixed 4 .(0 < ¢ < p~1). Let a4, ..., &, be the non-zero nums-
bers among the ny; (0 <7< p—~1). Then

P=l1lga<p=n"" (1<rgy
and

v

D

Pa=

>,

5

" bhecause § = 12 (ai"_' e;) €. From this, n < Y a, < vmaxa, < it so
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s

(4.9} v 1.
Now by (4.8), there is a nﬁmber ¢y = ¢, (k) 2= ¢; such that

(4.10) p<nt™t and {22 whenever p=¢,.

,uv—-%]_ . v—t ] .
a—1i "[’ n/t~1]””"‘

hecause, by (4.9) and (4.10),

So, it = 6qy

—i —1 —
¥ <P < nft-—1

0 < 1.
Saf—1 S =1 S w1

Hence by Lemmsa 2,

S gtng) = Ya(a)

J=0 re=1
= =g+ (E-1)gt ™) +gnt —v 1) .
C 2 (E-1)gmtY+g(nt™Y) by Lemma 4, Corollary,
= {g (i) '
= 2¢(n), by Lemma 5,

providing » > ¢, and }{logn)'~° <t »'% The last of these conditions
is satisfied if p = ¢, by (4.10). Then, we also have » = p, by (4.8). So

p=1 .
2 ¢(ny) = 2¢(n) - whenever p = max{e,, ¢,}.
=0 .

From this

p-1
D' gng) > 2pg(n) = 2(p—1)g(n) Whenever p > max{c,, c;}.

£d=0

Third case. n,> n(loga)’~!. Pub
pol
B = Z%‘E] = f— o
=1

From (4.5) and the two representations of 8, , we see that N (8)) =n —ny=m,
gay. Thus the induetion hypothesis applies to f, giving

p=1 : Pl ’
(#11) D 9(ng)+2 Y glng) = 2(p ~1)g(m).

1, fml T =1



80 J.H. Loxten

7 Just as in the proof of Lemma 7, wo have q(nw) = g{ng) —g(ny). Using

this and (4 11),

P— el

(4.12) Z g) > 2(p—1)g{m )+2£{g(%)_g(nﬂ}
p--1

2(p—1) {g(m) -+ g(ny)} —4 Zg('.'?,j)

Fo=l
2 2(p-— 1){ (#n )hk-q(m,) z,q(mi-)}, by Lemma 1,

First subcago. @y < 4n. By data, logn = p--1. Alse ¢ i Increasing,
go from (4.12),

-1
)
i;:g(mj) 2(p—-1) {Q'(’m*) + g () —2g (10 - %)}
= 2(p—1)g(n), by Lemma 5, providing > 6.

i - ()
But by (4.10), ny > iogn)=? > Tog > p whenever p = 0, (3 ¢). So

Mgy =2(p—~1)gln)  whenever p > max{ey, 6}

1, f=1

Second subcase. ny > n. If X satisfies the hypotheses of Lemma 7,
then (4.1} is immediate. So we can suppose that .

X > }(p—1)min{l, ¢;/loglogn’} == $lognmin{l, ¢;/loglogn}.
Now, m > X —1, so there ig a number 6 = ¢5(k) fuch that
{(4.13) m ik, 1)  whenever % :

Next, p—1 = logn = logm, 3o by (4.12} and Lemmsa 4,

p—1

oo (M) "
gg(%ﬁ) > 2(p—1) {g )+ o 20 ( - )}
: 2(p—Lign) if = ey by (4.13) and Lemma 5.
Bo by (4.8)
p-1 o .
Z gy) 2= 2(p — 1)9( ) whenever p = max {g, ¢4}
£ =0

Fmally, combm.mg the three cases,

Z g ni,) (p—L)g{n) whenever p > max e, o,,, Cry ea}
1,7=~0

S0 the theorem follows by 1nduct10n with ¢; = max{6a, 64, 0qy Cs}-
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5. Small values of p. The next lemma enables us to deal with the
case when P is the product of distinet small primes. Denote the sequence
of odd primes by {p,} and put p, = 1.

LeMMa 9. Suppose that P = pp, ... p, and let p be a cyclotomic integer
in Q(P). Then

M) =27 N(B).

Proof. The statement is true for » = 0, because then P = 1 and f is
a rational integer, so || = N () and A (f) = N (B = N{B). Suppose that
the statement is true when » = p—1 (w2 1), Let P =pPs... P, and
BeQ(P). Set p = p,, and let & be a primitive pth root of umty Then
we can write

n- p—1 )
): = Yly—a)f (0<i<p-1),
== i=0
where a;¢ Q(P/p) are integers. So
p>1
(5.3) NP < ) Nigg—a) (0<i<p-1).
: i=0
Now
n
2(p 1) (B) = D) A(og—ay), by (2.4),
1,j=0
p—1
' 9-FtIN (g, —a;), by hypothesis,
1 =0 £
=27 pN(B), by (5.1),
BO

M) 2N (D).
Hence the statement is true for v = g and so for all », by induction.

6. Proof of Theorem 1. In order to prove Theorem 1 for a given
k> log2, it suffices to show that there is a positive number ¢g = eg{k)
such that, for all cyelotomic integers B,

6.1) M (B) = 6,0 [N ()]
For suppose (6.1) holds. Let
¢ = min{e,e™¥, F(1)7 . F(le) ™
g0 that e =e(BY> 0. If N(f} =&, then by Lemma 3,
CERGIE ot HFIN (8)] > f L (A)]-

£ — Acta Arithmetica XXIT
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I 0 < N () < ¢, the same conclusion follows from (2.2) and the definition
of ¢. So by (2.1), o
B = A () 2 of [N (B)]

for all B, and this is the statement of Theorem 1.

It now remains to prove (6.1). To do this, we suppose that (6.1)
is false for every ¢, > 0 and show that for snitable ¢, this leads to a contra-
diction. Ohoose ¢, initially with
(6.2) 0< g5 1.

Let P be the smallest positive integer such that Q (P} contains an exception
to (8.1). Then P > 2, since_i‘f BeQ(1) = Q(2), then f ig o rational integer,
N(g) = Ipl, and |

| A () = N(8) = cog [N (F)], by (6.2),

Let p be the largest prime factor of P and suppose thab p¥|P and let
P = pP,. Let & be & primitive p¥th root of unity. Now chooge 8 = } g
to be an exception to (6.1), the a;eQ(P,;) being integers. As before, we
abbreviate : .

N —n N =n and Ng—)=ny; (0<i,j<p-1).

Further, we choose the «; such that 3'n; == n. As a final piece of nota-
tion, choose a positive number ¢;y = eyp(k) such that

{6.3) () < o

BINC =
lozzlogi whenever ¢t G}o,

7(t) being the number of primes less than ¢ We now have to congider
various cages.

First case. N = 2. By (2.8),

M) = DM (a)
26y 3 g(ny)y, since cach o Q(Py) and Py < P,
= 6,9(n), by Lemma 4, Corollary,

and this contradicts the definition of 8.
Second case. N =1 and p = max{c;, L-+logn}. By (2.4),

1
H(B) = WZ-W(%"%)

- Oy .
2 -1y 29(%), gince each a,—aeQ(P,),

= 6y9(n), by Theorem 3,
a contradietion.
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Third case. N =1 and ma.x{]o;g‘cl,c“010}<p-1§10gn. By
Lemma 9, ‘

log# () = logn — = (p —1)log2

' > logn —n(logn)log2, since p--1<<logn,
Elogn
loglogn

= logn —

= logf(n)
= logg{n), by Lemma 3, since n = ¢.

by (6.8), since logn = ¢4y,

Ho
M (B) 2= eag(n) DY (6.2),
a contradiction.
Fourth case. & =1 and p < max{logey, 65, ¢y} +1 = 6. Again by
Lemma 9,
o—n{o11) g,

A ()

2
> c,¢(n) providing ¢, < 2770,

So we have a contradiction in all cases if we choose ¢, with 0 << ¢
< 970}, By the remarks at the beginning of this section, this proves
Theorem 1.

7. Proof of Theorem 2. To prove Theorem 2, we make the following
construction. As before, let {p,} be the sequence of odd primes, let &, be
a primitive p,th root of unity and define

®) 1 if ¢ iz a non-zero quadratic residue modp,,
8) ="
- Art®) 0 otherwise.
Put
Pp—1
o, = 2 )& and B, =ma.. .
g={

For each u > », let £, be & sum of ¥(p, —1) distinet primitive p,th roots
of unity and write 8,, = f._.{,. We shall show that the f,, have the
properties required in Theorem 2.

Let 0 be a given positive number and, for the moment, consider
a fixed » > 1. Exaetly 4(p,—1) of the y,(s) are non-zera, 8o by Lemma 6
and induction on ¥, ~

(7.1) N = N(g) = [[#p.—2) =n,, say.

pea)

By (2.6)

g P
By = 30,1 - ) )
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a strictly inereasing function of u. Now, if a and g are equivalent cyclo-
tomic integers, we clearly have .#(a) = (#). So this shows that the
8., (=) ave inequivalent. Next, let a, be o conjugate of a.. From the
Gauss sum, we have

o {3 =1Ekpt i p, = L{modd),
T p—1mipty i p = —1(modd)
S0 .
(G < R 1)
and
-1
(7.2) Bl = A TGE < [+ 02 e, -1,
7l

sinee N(Z,) = $(p,—1)
Tn what follows, 6y, ..., 6, denote functions of » alone which tend to 1
ag ¥ -» ca. From the prime nwmber theorem,

:pw 01
7. RV LD § [ I
(7-8) ’ logpy{ - logp,}

By (7.1) and well-known estimates,

logn, = Z logp, —»log2 - Zlog (L—p
=1

pa]

=pv—1}10g‘2+0((10§;’;‘5‘5), ag ¥ -+ 09,
8,log 2
= p, 1_________ 7 7.3 .
2 { logp, }’ by (:5)
From this, loglogn, ~logp,, %o
0ylog 2
7.4 p, =logn, {14 A o0
(1.4) P 03”'{ + 105310;:41,”}
and : ‘
1
1.5 logp, = loglogn, 41—+ 0 | sz |,
(1.5) g%, : gogw{ K ((10g10gm)"‘)}

By (7.1) and (7.2),

Al %
l'og——f——g Zlog

' Te=1

(2 1)

r=1

- _mgz +0 (2 'p%““)_ +0(logp,)
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p,log2 b,
= e oty IO .
Toap. { - log;p,}’ by (7.3} and (7.B),

log2logn, (%)
m— - 1 . R
loglogn, { loglogn,,}’ by (7.4) and (7.5),
" where 0(v)—>1-i—log2 ag v-— oo, So
g
, log2logn. :
o lBal . loglogn, .k
og . < Toglozn, ‘—I oge, whenever » is large enough,

iLe. | B iz < ¢f(n,, log2) whenever » is large enough (u > »). This proves
Theorem 2.
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