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On the axiom of choice for families of finite sets

by
K. WiSniewski (Warszawa)

The investigation of the axiom of choice for families of finite sets
was initiated by Mostowski [4]. Further mathematical investigations of
this topic are due to Szmielew [6] and Sierpiniski [5], and metamathe-
matical ones—to Zuckerman [8] and Gauntt [1]. In the present paper
we prove that some forms of the axiom of choice for families of finite
sets are independent of others forms. This paper is & continuation of [7].
The writer thanks Professor Mostowski for his kind help in the prepa-
ration of this paper and Professor Ryll-Nardzewski for his valuable
suggestions and criticism.

In this paper we consider the set theory ZF', which differs from ZF
by containing the constant @ for the empty seb, and the axiom stating
the existence of an infinite set of individuals. The axiom of extensionality
in ZF' is restricted only to sets ().

We consider the following propositions:

[n]: For every family of n-element sets there evisis a choice function;

[n]o: For every lnearly ordered family of n-element sets there exisls
a choice function;

[n]°: For every denumerable family of n-element sels there exists
a choice function.

Let & be a group and 9 —a family of proper subgroups of &. Consider
the set 8i= {(zH,1): HeUA & xe @} (i e ). The group Iy of permu-
tations 5 of the set §; which are defined by the formula

o_ (@ )
v (('yw)H,z) Hed

(1) The restriction to ZF’ set theory is inessential. We may use the Fraenkel-
Mostowski method for the other set theories, e.g. the set theory of the Godel-Bernays
type with classes and individuals or set theories in which unfounded sets are allowed
(ct. [2]). The results of the present paper are valid for the “ordinary” set theory ie. the
set theory with no individuals and with the axiom of regularity. This can be shown by
the Cohen method modified by Marek [3].
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is a representation of @. The sets T = {(H, i): 2 ¢ G} are the orbits
of the group @. The length of T2 is [G: H] for H . I is a faithfal
representation of @ there exists a subgroup H ¢ containing no non-
trivial normal subgroup of G.

Let 8§ =89 = J 8;. Let I™ be a weak product of groups I. We

i€w

assign to every element = of the group I' a permutation of the set 8
defined by the formula n(a) = z'(a) for a ¢ 8. In the sequel we consider
the group I as the group of permutations of the set S which are defined
above.

Now we shall define for ordinal mimbers £> 0 the sets &% and
extend the permutation = ¢ I'™ to those sets. Suppose that for » < & we
have defined the set 8 and that m(z) is defined for z e U 8%, For

<&
zeP() S("))—US(”’ we put ¢(z) = {p(y): ¥y ex}. We define the set S©
n<f 7<é
as the subset of the set P(|J8®) w |Js® consisting of those elements z
n<é n<¥

for which there exists a ¢ e w such that for arbitrary = ¢ I'” the equalities
A= .. =9 =1 imply =(z)= . Let M= M(G,%) be the class
consisting of those elements # for which there exists an ordinal number &
such that x e 8. The class I is a model of ZF.

TeEOREM 1. Let P be an additive semigroup of positive integers generated
by a set Z of prime numbers. Then there exists a model M of ZF' in which
every proposition [n] for n ¢ P is true and every proposition [n]" for n e P
is false.

Proof. Let ¢ = Il Cr (Cr being the cyclic group of order 7); let A be

re
the set of all proper subgroups of the group G and M = M(Q,%). If
8

neP then n =S,_,‘ Piki, where p;e Z and %; are positive integers. Let
=1

H,, ..., H, he subgroups of ¢ such that [G: H;]= pi. Then in the model M
there exists no choice function for the set

(Gt j o),

Wwhere k; denotes the k;th number of von Neumann, Thus [n]" is false in M.

Suppose that n ¢ P. Let < 89 e a family of disjoint #-element
sets. Then there exists an integer ¢ such that 7(x) =z provided x e I™
and 7%= .. =29 = 1. Let 4— el a®= .= 5@ 1. If w,vex
then u~v = (Ex)m(u) = ». From every equivalence class of the rela-
tion ~ we choose exactly one element e.

Let 04= {ned: 7(eq) = e4}. If for @very z e e4 there existed a permu-
tation = € 64 such that 7(2) # 2, then the group 04 would have a repre-
sentation which is a group of permutations of the set €4 with no fixed
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point, and thus of degree n, which is impossible. Thus there exists an
element fa € e4 such that z(f4) = f4 for every permutation z ¢ 84 The set

w= U{{”(fA): 1 e A}: A is an equivalence class of relation w}
is a selector for the set z and belongs to I (2).

THEOREM 2. Let G be a finite group, Q(G)—the additive semigroup
of positive integers generated by indices of pr?pe;: subgroups of the group @,
and R(G)—the addilive semigroup of positive integers gene}:aterl by orders
of non-trivial (i.e. # 1) elemenis of the group @. Then there exists a .m:odel M
of ZF' in which propositions [n]° for n ¢ Q(G) are true and propositions [n]
for n¢ R(G) and [n]® for n < Q(G) are false. ) .

Levma 1. Let @y, ..., Gy De finite groups and K, ..., Kr—seis of
positive integers such that index of each proper subgroup of the. group Gy is
divisible at least by one of the numbers of the set K. Then the index of each

*

proper subgroup of the group [16¢ is divisible at least by one of the numbers
i=1
r
of the set {_) K ().
i=1

The proof of lemma is inductive (with respect to #) and the following
simple faet is used:

If @; and G, are finite groups and H —a subgroup of & x@,, then

[G,%Gy: H) =[Gy G{]-[Gy: G3]-[G1: Hy]
=[Gy G1]-[Gs: G31-[Ga: Ha],

where

FH={reb: (By)(z,y)eH}, Gi={yeCy: (Ex)(z,y)ecH},

Hy={zec6: (#,1)cH}, Hy={yel:: (1,y) cH}.

Proof of theorem 2. Let M = M (G, U), where U iz the set of
all proper subgroups of the group G. o

Let n ¢ Q(G) and z 8 be a family of n—elepl‘ent.sets Whl(‘.h is
linearly ordered by <3 e M. Thus there exists a pDSIt};;e integer ¢ such
that z(z) = z and =(<) = < provided 2% = ..=2"=1 and weI™.
Tet A={mel™: 7%= ..=a%=1}. T wes then z(u)=u for me .
Suppose that there exists a = e 4 such that z{u) # u. L-et 6 Y.)e the cychc
group generated by s The finiteness of G implies that 6 is hmte._T}.ma t.he
set v = {p(u): @0} is finite and has at least 2 elements. Th}s implies
that ¥ <m(u) < ...< uw or % & a(u)S ... & u; therefore < is not an

ordering relation.

{?) The proof given above is a slight modification of the proof in Mostowski’s
paper [4]. ) ~
() This lemma and its proof have been given by Prof. Mostowski. -
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Let % be an arbitrary element of the family @. For every z ¢y ¢ is
the least positive integer such that 7z eI and a® = ... = 5@ — 1 imply
w(2) = 2. Pub g(u) = max{g: »zeul}. If q(u) < ¢ then for every zew ang
zwed we have m(z) =z If q(u) > ¢ then for every z ewu and ped we
bave ¢(2) = gua(e); Where ghuey =" for < q(u) and BN _ 1.
Let &= {n e 4: (i)nle®+0 = 1}. Tf for every z e u there existed a permu-
tation = e 4 such that w(2) # 2, then the group & would have g represen-
tation of degres n. Since £ is isomorphic with the product of ¢ copies
of @ and n ¢ Q(G), we obtain a contradiction. Thus, for every < there
exists an e, eu such that m(es) = e, for = e 4. The set {(u, )

P ued} iy
a choice funetion for the family belonging to M; therefore [n]°

is true in M.

s

Now let ne B(G), Le., n= Y riki, where ; are the orders of nop-
i=1

trivial elements of the group and %; are Dositive integers. Without loss of
generality we may assume that r; are prime numbers, Let H « A contain
no non-trivial normal subgroup of the group @. Consider the set

8 8 N
o= UL @xt: Ame POO(TE=D)y,

where P)(4) denotes the family of all g-element subsets of the set A.
It is clear that a belongs to the model. We must show that in M there
exists no ehoice function. Suppose that such a funetion exists. Liet w be
a choice function for a. Then there exists
that if wel™ and o®= .. = 2% = 1 {hen n(w)=w. Let ¢q> gq(w)
be a number divisible by s. Further, let ¢; be a permutation of order 7
of the group I'ypy.; (1 <1< 5). We have =i T§" £ 1. Tet by, ..., b,

be the sets of elements of fixed cycles of permutations Y1y .oy p1. Evidently,

8
b= iL;Jl(bg X k1) € a. We define the element @ of the group

for i< g, a0 =g, for 1«1
(b, %) ew. Then

putting ¢ =1

< s and for 4> g¢4s, say ‘¢ = 1. Let

@((bv m)) cg(w) = (‘p(b)y ‘P(m)) W= (b) (p(:l?)) cw.

Hence we get o — uf(.b)=q:(m), which is impossible, because z # @(x).

Therefore the proposition [n]is false in the model M. At last, if n ¢ Q(@)
8

then n = g izks, where 47 is the index of the proper subgroup of the

group G and % is a positive integer. Let H,,

X . oy Hs e U satisfy equalities
[@: Hj]= isfor1 < § < s. Then in the model ois o

there is no choice funetion for
8
{H(T‘,—j@jx@): lew}.

Thus the proposition [n]* is false in M, qed.

a positive integer g(w) such .
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LeMmMA 2. If p and g are prime numbers such that p, = (pr—1)f(p—1)
is a prime number, then there ewists a group G such that the indices of ils
proper subgroups are divisible by p, or pv

Proof. Let p and ¢ be prime numbers snch that p, is 2 prime number.
Let 4 be an elementary Abelian group of order p?. Then the order of
its automorphism group is divisible by p,. In virtue of the Cauchy theorem
there exists an automorphism o of the group 4 of the order p,. Consider
the set of pairs (e, #), where z ¢ A. This set becomes a group if we define
multiplication by the formula

(a8, 2) (o, y) = (e*T, af(@)y) -

Denote this group by G(p, ¢). The order of G(p,q) is p,p% The set of
elements of the form (1,y) is-a subgroup of the group G(p,q) and its
index is equal to p,; the set of elements of the form (e®, 1) its a subgroup
of index p2. Let H be a subgroup of the group G(p, g) such that is index
is divisible neither by p; nor pe. Thus the order of H is of the form p,p?,
where 0 < a < g. By the Cauchy theorem there exist elements u,ve H
of the orders p, and p, respectively. It is easy to see that u = (¢%, ) and
v= (1, y), where z,y are elements of the group A and p, 1s.

Let p; +s. We consider the automorphism o® of the group A as
a permutation of the set 4—{1}. It is easy to see that of its & permu-
tation with no fixed points, whence it is the product of p—1 cycles of the
length p,. If w e A—{1}, & 1 and p, + kI, then the elements w* and w!
belong to different cycles of permutation of. If this were not the case
(without loss of generality we may assume that [ = 1), then the e.lemel_lts
w, wk, w¥, ... would form a cycle of the length <<p—1 of @ non-identity
pérmutatiou or, which is impossible because the order a" is equal to p;.
Therefore, for arbitrary w e A—{1} the elements w, w?, ..., wP? beloni
to different cycles of permutation of. The elements of the form ufolu—
are all elements of the group G(p,gq) of the form (1,w). Thus there
exist integers %k, and I, such that (1, z %) = uFerhu—%. Hence we get
(a5, 1) = wkotlploy~%s, Thus all elements of the group G(p,q) are of the
form (ukotlply—ko)rukply—*, whence G = H.

THEOREM 3. Let p and g be prime numbers such that py = (p? —1)/(1)—1_)
is @ prime number. Then there exists a model M for ZF' in which th‘e .proposz-
tions [n]%, where n is of the form kp,+-1p% are true, th.e.proposztzom [»],
where n is of the form kp-+1lg, are false and the propositions [n]3 for n of
the form kp,+1p? are false.

Proof. It is sufficient to put G = G(p, ¢) in Theorem 2.

TEEOREM 4. If for every prime. number p there ewist infinitely mm]zé‘y’
prime numbers of the form (p2—1)[(p—1), then there exists a model of Z
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in which every sentence [nP° is true and every sentence [n] for n>1 is
false (4).

Proof. Let 4 and B be arbitrary finite sets of positive integers
and minB > 1. We shall show that there exists a model M for ZF' o
U {m]*: ned}o {T[n]: neB}) Let py,..,pr be prime numbers such
that every element of the set B is divisible by at least one of these numbers.
From the assumption it follows that there exist prime numbers g, ..., g
such that (p%—1)/(pi—1) are prime numbers: greater than the numbers
of the set A. By lemma 2 there exist groups G, .., Gi such that the
index of every proper subgroup of the group @; is divisible by at least

E

one of the numbers of the set C; = {p¥, (p¥—1){(p:—1)}. Let G = ﬂlGi.
s

Using lemma. 1, we infer that the index of every proper finite subgroup
3

of the group @ is divisible by at least one of the numbers of the set | J C;.
=1

In virtue of theorem 2 there exists a model in which the propositions [n]°
for 7 € A are true and the propositions [n] for » ¢ B are false. Using the
compactness theorem we obtain the assertion of theorem 4.

{4) The famous conjecture on the existence of infinitely many Mersenne primes
(i.e. the numbers 2" —1) is a particular case of the conjecture stated in the assumption
of the theorem.

References

[11 J. R. Gauntt, Some restricted versions of awiom of choice (Abstract 68T-176),
Notices Amer. Math. Soc. 15 (1968), p. 351.

[2] A. Lévy, The Fraenkel-Mostowski method for independence proofs in set theory.
The theory of models, Proceedings of the 1963 International Symposium at Berkeley,
pp. 221-228.

31 W. Marek, Permuiation models for ZF-set theory without individuals, Warsaw
Tniversity, Warsaw 1968 (doctoral dissertation).

[4] A.Mostowski, Aziom of choice for finite sets, Fund. Math, 33 (1945), pp. 137-168.

[6] W. Sierpinski, Laxiom du choix pour les ensembles finis, Matematiche (Catania)
10 (1955), pp. 92-99.

[6] W. Szmielew, On choice from finite sets, Fund. Math. 34 (1947), pp. 75-80.

[71 K. Wisniewski, Weakened forms of the axiom of choice for finite sets, Bull. Acad.
Polon. Sci., Sér. Sci. Math., Astr. et Phys. 16 (1968), pp. 615-620.

[8] M. M. Zuckerman, Finite versions of the amiom of choice, Yeshiva University,
New York 1967 {doctoral dissertation).

Recu par la Rédaction le 27. 1. 1970

Some properties of convex metric spaces
by .
B. Krakus (Stockholm)

1. Introduction. A point » of a metric space (X, p) is said to be
a frontier point (see [6]) if there exists a point y ¢ X' such that for every

‘point z € X\{z} we have

ey, z)+elz,2) > oy, .

The aim. of this paper is to give a topological characterization of
a frontier point of a compact strongly convex (1) finite-dimensional metric
space (X, o) without ramifications () (denoted by (X, o)« SCWR).
Holsztynhski and Kuperberg have proved (see [4]) that every frontier
point of a space (X, g) e SCWR is a labile point in X (3). It follows from [3]
that the set of the frontier points of a space (X, g) ¢ SCWR is a boundary
set (see [8] tao). In the present noteé it is shown that this set is compact.
I give some remarks concerning the set of the stable points (3) of the
SCWR -spaces.

2. Property of a ball. Let (X, ¢) e SCWR. Then there exists exactly
one function i: X xX X I—+X where I = (0,1) such that

Q(my Aw, Y, t)) = to(z,¥) Q(yrl(w7y7 t)) = (l'_t)@(mi y).

It is not difficult to see that the function 1 defined above is continu-
ous. Let us write |2, y| = A((x, y) x I). This means that z e jz,y| if and
only i

and

oz, 2)+olz,y)= a(w,y);

() A metric space (X, g) is said to be strongly convex (see [1]) if for every two
points %, y « X there exists exactly one point z ¢ X such that ¢(x, 2) = o(y, 2) = }e(z,¥)-

() A metric space (X, p) is said to be without ramifications if for all points
z,Y,%,8 « X the conditions o (@, y)+ 0y, 2) = e(%,2), e(=. ¥)+ ey, 8) = elz. 8), el@. 2)
= g(x, s) imply 2= s (see [6]).

(*) A point p of topological space X is said to be a labile point in X if for any
neighbourhood U of p there exists a homotopy h: X xI—+X such that the following
conditions hold: (i) h(x, 0) = = for every » ¢ X, (ii) h(z, t) = = for every x e X\U, t ¢ I,
(iii) h(z, t) e U for every w e U, £ eI, (iv) h(w, 1) # p for every z ¢ X (see [2]). A point
of topological space X is said to be a stable point in X if is not a labile point.
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