Algebraic equivalence of ordinal numbers
: by
P. R. 8. Knight (Cambridge)

In this paper we shall investigate various problems of the arithmetic
of ordinal numbers by considering certain substructures of the class On
of all ordinals, these structures being defined by closure under some or
all of the ordinal operations, In particular, we prove a theorem which
solves all ordinal Diophantine equations and inequalities in just one
(infinite) variable.

If 8C On we say

8 is closed under exp iff a,f ¢ § implies of ¢ 8.

8 is closed under subtraction if «, f ¢ 8, a < p implies (—a+p)eh.

8 is closed under division iff a,ay+6€¢8, < a implies y € S.

8 is logarithmically closed iff a, a¥d 47 e 8, 6 < a, % < o implies y € §.
Now if 8 C On, and » (=10,1,2,..}) C&, we call § a

Semigroup it § is closed under -+,

Group if § is closed under +, —

Ring if 8 is closed under -+, -,

Field it 8 is closed under +, -, —, =+,

Avrithmetic if § is closed under -+, -, exp,

Divarithmetic if 8 is closed under +, -, exp, —, =,

Logarithmetic if § is closed under -+, -, exp, —, -, log.

It TCOn we use S[T1, (G[T], ete.,) for the least Semigroup,
(Group, etc.,) containing T if T= {a}, a ¢ On, we write 8{a} for S[T].
A map between subsets of On is ealled an S -igsomorphism (&-iso-
morphism, ete.,) if it preserves order and the operations defining a Semi-
group (Group, ete.). For «,feOn, and Ke{S,G,R,F, 4,D, L}, if
there is a K -isomorphism bhetween K {a} and K {f} which takes o to £,
we say a and f§ are K -equivalent and write a =6

b

We shall determine the K -equivalence classes of ordinals for eac}.l K H
for instance for A-equivalence (the most interesting case) ﬂ.le infinife
classes fall into seven forms, each depending on one or two finite para-
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236 P. R.S. Knight
meters. Using this, we can soive any ordinal Diophantine equation in
one infinite variable — the set of solutions is a union of equivalence clasges,
and we determine which classes are in the union by substituting the
smallest or most convenient member of each class into the equation.

Conventions and notation. For any two ordinals o and g, there ig
a uniqué p-expansion of a (if f> 1), a = 7%+ 0,4 ...+ 7,, where
Yo > ¥1> ... > yn > 0 and 0 < &; < B for each 6;. In particular, the Cantor
normal form of @ is the w-expansion of «, which we shall write
a8 a= 0™+ ...+ w™a4+a, where as >0 and a > 0. Thus a (b, ete.)
is understood to be the finite part of « (B, ete.); we write @ for the infinite
part of a. Also, we write o for w=1teg ..l wlteg,;s g0 G = o-d,
and a=a+a. :

A y-number, (§-number, s-number) is any infinite ordinal = such
that for all a<m 020 (a1, a>2) we have atnm=m (a-z= 7,
@ =m). It is known that the s-riumbers are the solutions of 92°= ¢,
We enumerate the s-numbers, ordered by magnitude, as g, ¢, &, ...;
thus & = .

If § C On, we say = € § is a y-number of § or §-y-number (6-number
of § or 8-§-number, s-number of 8 or S-e-number) if ez = @ for all
ael, a<m{amw=mforall e, 0 <a<m o =x for all aeS,1<a
< 7). Since for any ordinals =, a, x> a>1; ¥ = a=ad" = 7, we have
that if 2.€8 C On, then the ¢-numbers of § are absolute in that the
S-g-numbers are just the s-numbers in S.

We define ¢(a, g, ¥, ...) to be an §-function (G-function, ete.) iff
it may be expressed in terms of only those operations with which a Semi-
group {Group, ete.,) was defined.

S-equivalence and G-equivalence, If ¢ is infinite, the set of all ordinals

am+n (m,new) is a Semigroup, and is plainly the semigroup S{a}.
Since

® (am+n)+(aM+N) = a(m+M)+N  (if M 0)
there is an §-isomorphism taking am-+n to pm-n (B also infinite), and
80 a= f for all infinite « and 8. Since 8{a} is already a group, we have
S{a} = G{a} and s0 also « = B for all infinite « and f. Each finite ordinal
defines a separate §-equivalence (and - G-equivalence) class.

. E-equivalence and F-equivalence. If « is infinite, the set of polynomials
n q a“An-jLa”“lﬁn_l—E—...—}-Ao: {(An, dn 1, ...y Ag)(a), say, is alveady
a ring, and is therefore R{a}. If ¢ — @ is a lmit number, then

(2) (dus oe; 4)(@) (Buy ey Bo)(@) = (Bim, ..., By, AnByy An iy ..y Ag)(@)

except that if By= 0 the terms An-1y ... 4, are replaced by zeros.
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It follows that for infinite o and p the map taking (4, ..., 4,)(@) to
(Any ..oy Ag)(B) is an E-isomorphism, so that if a« and  have the same
finite part, they are R-equivalent. Conversely, the equation 2a = a+a
(a the finite part of a) shows that the R-equivalence class of a determines
its finite part, and so infinite ordinals are R-equivalent iff their finite
parts are equal.

Now if @ +#0, it follows from o= (a41)(@a+a—1)+« that any
field containing e contains ¢—1, by division. In particular, F{a} = F{G}.
But (2) shows that R{a} is already a field, and so infinite ordinals are
F-equivalent iff they are R-equivalent. It is again true that each finite a
defines a separate equivalence clags.

While on the subject of fields we give a further result of interest,
that any field F is generated (as a ring) by the set of F-§-numbers, i.e.,
any a €F can be written as 6;;05 ... S1n-+0a1 - G2+ oo+ Opy ... Opg, Where
the &;; are all F-6-numbers. For, let a be the smallest element of F not
so expressible. Then « is not itself an F-§-number, so ya > a for some
yeF, y<a In e=ydtm, n<y, we have 6 < a, for otherwise ya = q,
and so y, 4, and x are all expressible as sums of products of F-6-numbers.
TUsing the fact that any F-4-number is a limit number (since fields are
closed under predecessors) we may write yd—z in this form.

There iy a converse, that if § C On is such that every ae 8 is an
S-6-number, then R[S] is & field, and 8§ is the set of R[8]-6-numbers.

The corresponding results for groups are valid but rather trivial;
any group @ is generated (as a semigroup) by the set of G-y-numbers;
it § C On is such that every a e § is an S-y-number then S[8] is a group,
and S is the set of S[S8]-y-numbers.

L-equivalence. Let aeOn, and let a= 2°4 274 ...+ 2" be the binary
expansion of «. By replacing each term 2 by 2% and collecting terms,
we get a form o= 27’ 4-2%¢' + ... 42" (b, ¢y ..., P € w) sy, in which
the indices are limit numbers (or zero). By repeating this process on the
indices, we can express a as an avithmetic function of s-numbers; we
define the Binary e-number expansion, or Bee, of a as follows:

(i) if « is an s-number, then a is the Bee of a,
(ii) if not, then the Bee of « is the formal expression

B Bee of 7
2Bee ofﬁ‘b/+_‘.+2 ee 1_pl‘

This inductive process must always terminate, since by the 'Well—
order of On we can never have an infinite decreasing sequence (?f ordinals.
The ¢-numbers that appear in the Bee of a are called the Beesic numbers
of a.

Xow given the Bees of a and § we show how to detexl'mlne the Bees
of a+f, a-B, of using only the ordering among the Beesics of o and B.
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Notation
a=2%(0)+ 2% (1) +...,

a(if ... k) = 27 a(if ... 50) + 2" (i . K1) 4.

where a(if ... Im) is a limit number for all (¢ ... Im).

We first note that a < § iff for some ¢ we have a(j) = 8(j) and
a(j)=b(j) for all j <4, and either a(i) < (i) or a(i)= (i) and a(i)
< b{i).

The Bee of a4 p is found from

a+ = 2°%(0) + ...+ 2°Va (i) + 27V (0) +...

(where 7 is maximal subject to (i) > £(0) and the corresponding terms
are collected if a(i) = £(0)).

The Bee of a- is found by addition from those of af and a (since
aff = af +ab), using 1) the Bee of f is that of  with term of zero index
dropped, and 2) the Bee of af is 2°7*(0)4-2°O+ Wy (1)1 .. Pinally,
the Bee of of is obtained by multiplication from those of of and a (since
of = @), the Bee of of heing 2908,

From these statements we may infer the following:

(i) Each logarithmetic is generated by a unique set of e-numbers.
In particular, L {a} = L{{Beesic numbers of a}].

(ii) Two logarithmetics are L-isomorphic iff their generating sets
of e-numbers have the same order-type.

(iii) In particular each logarithmetic is L-isomorphic to the loga-
rithmetic generated by {e;: f < a} for some «. Since this is generated as
an arithmetic by its e-numbers, we have

{iv) Each arithmetic -generated by e-numbers is already a loga-
rithmetie, and in particular

(v) a=f iff there is an order preserving 1-1 map between the
Beesic numbers of a and those of B which takes the Bee of o onto that of B.

The following disconnected results also follow from (i)—(v):

(Vri)» If f(aq, Gpy ooy Ty o) = g{0g, 7, ooy 7y, ...) is an ordinal Dio-
phant.me equation (or inequality) in which f and g are logarithmetic
?unctlons‘ of the =; (unknowns), and the a; are parameters, then there
is an _A—lvsomorphism @ such that 1) g(as) < e, for each a;, and 2) for
any solution of the equation Ty %y .-y @ €D be extended so as to make
@(m1) < &, for each x;.

The same is true of any finite system of ordinal Diophantine equa-

tim?s and inequalities; we may say that all the number theory of the
ordinals has ‘happened’ before e
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(vil) We may add a new infinite limit ordinal co, co < w, to On
without disturbing the arithmetic properties of On. To see this we need
only note that On is L-isomorphic to a class of ordinals not containing o
(by the map defined by eo—>e14q).

In particular it is interesting (and wuseful!) to consider the oo-ex-
pansions of (real) ordinals. The rules for manipulating these are somewhat
simpler than those for the w-expansions; the indices of the co-expansion
of any ordinal o are real limit ordinals, and the coefficients are finite.

Arithmetic equivalence. Considering the cases of semigroups and
groups, rings and tields, it would seem natural to expect that ordinals
are A-equivalent iff they are L-equivalent; however this is by no means
the case. We shall find the following concept of Abbreviated Arithmetic
(or A.A.) useful.

If F, @, H are classes of ordinals, and Q is a particular ordinal, we
say that Q is an F, G-base for H if, in the Q-expansion of any a e H we
have each index in @ and each coefficient in F. Now define X C On to
be an A.A. iff (i) X is closed under predecessors, and (i) X hs}s a maxima%
element 2, which is an X, X-Dbase for ¥ +X, X-X, and X~ (where X"
means, of course, {¢f: a, feX})..

TaEoREM. If X s an A.A., then

(i) 0 e X, and a < X\{Q} implies a+1eX.

(i) If 2 is a limit number, it is an X, A[X]-base for ALX].

(iii) If @ is a limit number, any isomorphism between X and another
AA. extends to an A-isomorphism between the arithmetics they generate.

(iv) If Q is a limit number and X\{Q} a field, then A[X] is also
a field.

Proof. (i) The Q-expansion of 2+ is £'-2, s0 leX, so 0eX.
The Q-expansion for a-+1 is a1, sinee a+1 <2 -

(i) Let y € A[X]. We wish to show that the i‘ndices and eo‘eﬁml‘entjs
of the Q-expansion of y are in A[X], X respectively. If y EX.’ this is
trivial; otherwise y will be a+ B, a*p, or of, where the Q-expansions of a
and 8 are as stated.

1) 7 = (2°a(0)+ ..+ 2V a(4) + (*70(0)+ ..+ F7B(B)) sy, witg
a(i), B(j) e A[X] for all a(i),f(j), and ali),b(j)eX for a
a (1), b(4), ‘ 5 i 0
= 0°%,(0) 4 ... + 2P (4) + LO(0) ...+ 27b(B) where a(i) = B0).
If a(i) > B(0), this is of the required form; if not, then
y = 00 (0)+ ...+ 2% (a(i)+ b (0)) + ...+ L Tb(B). We have then
.two cases to consider, namely either a(i)4-b(0) e X (when t];e
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expansion is as required i = r
exp quired), or a(i)+b(0) = z-+Q for some neX,
= 20a(0)+ ...+ 2 Vg (i —1) 4 QPO L PO, 4 ..., Of Tequired form
untless a(t —_1) = f(0)-+1, in which case we repeat this process with
a(t—1)+1 instead of a(3)--b(0).
2) 7= (2% (0)+ ...+ 2" “a(4)) - (FOB(0) + ... + 27 (B))
= 20T (0) ...+ QOHEY(B) [+ 0V (1) 4. it B is & suce
sor] — in either case of the required form. oo
: 3) y= (Q“(O)a(O) ot o, ( A)) (2POp(0)+...+-aB(B)b(B))
=00 if a(0) £ 0, B(B) % 0;
Or — Qa(u)v(ﬂﬁ(u)b(ﬂ)+...+ﬁ§))'aﬂnite part of HB) 5 a(0) 0, B(B) =0
) 7= = [ re-
quired form since b(B) e X, and using 2) ’ ot xe
Or = af A)(gﬁ(ﬂ)a(o)+...+nﬁ(31b<3)) it a(0)

=0, which is a product of
o i a0 erms
a(4)® B() __ (a(A)n)g @y _ (Qu(u)p(o)_‘_m_I_Qn(P)p(P))g—lJrﬁ(i)b(i)

where 51(0) >0, s0 by previous cases thi may be WI1LTe:
S
H - n in the

(iif) We observe that the rules for findin i
b 1 g £-expansions of ele
of A[X] use only properties invarient under an isomorphism. ments
{iv) We show by similar calculations that i -
. at if the Q-expansions
and p have the given property then so do those of — B+a (p]f B<a) (;fng
¥y 6, where a= fy+6 (5 < f). We omit the details.
The point of this theorem is that the
: e structure of an arithmetic i
gib;? ;i;termmed b(y; & suitable (sometimes quite drastie) ‘abbreviaéfo;;’
. Y¥e now consider ho i i
e 1oy W we can simplest specify the structure of $his
THEOREM. Consider an A.A. X such is
‘ - - ALA, that Q is a -6~
XN\{Q} is a field. Let the X-5-numbers be 6 é G X mber nd
magnitude. Then R

o (1) For any a,f<y, 6 and 2% may be writlen in
-6,4.1.)-63(2, <es Outmy for some zeX, n(l),..,m(n) < .

{ii) These exmpressions for 2%, sl
the structure of X. '
Pgoof. (i) 6 ¢ X¥, 50 8% = "W (2)

s s .
f;::;sig; 12hea§ﬂy seen .tq be an X-y-number (if z < 6, m 8% >.5%
. 1; b f) ;—Oexg})la,nsm(ng )of %), and $0 cannot be a non-trivi;.l SID:I’
' <) 7= Y, then a(3) = 0 and a(2) (a sum of produck - .
bers) is a product "of X-6-numbers, If a(2)=10 6£: :1(3)S (i)f " 6-11;1&—
of X-6-numbers. 2% is considered sinailarly. T " o produet

ey Oy =0, in order of
the form
Jor all a, p < y, completely determine

+a(3), with (1), a(2), a(3) ¢ X.

icm
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(ii) The order-type of the X-6-numbers defines. the structure of
X\{Q} as & field. Since X\{Q} is a field, e+, a-f e X for a, f ¢ X\{Q},
and hence their Q-expansions are trivial. We need to find suitable ex-
pansions for of, o, for arbitrary a,feX

3 _
o = (Boqy* Batzz) +-+ agm)’ * @ = (Bary)? - &
— §%8a0%802)... . fsE1%BE... éaﬂ(ml)"ﬂ(mi)«: -

Since each 0G0 is of the form Q%-8.y ... dxm, We may (if necessary
if # = 0, repeating the process) determine (1), y(2) in terms of X-6-pum-
bers so that o = 0"y (2).

@ = (Ba)” = 2" batr) - amy fOT kmoOWR 7, Ot -

Hence given two A.A.S satisfying the conditions of the theorem,
and an order preserving 1-1 map between their 6-numbers homomorphie
with respect to the relations 62 = Q8.4 Sug - Oaemyy @ Dbeing written
in terms of the é-numbers, and the similar relations for 2%, we may
extend it to an isomorphism between the A.A.'s, and hence to an A-iso-
morphism between the arithmetics they generate. '

‘We shall also need the following result;

LEwmA, Any ordinal may be ewpressed uniguely in the form &f-+=,
where ¢ is an e-number, B< s n< ¢, and a <&, where ¢ is the least
e-number greater than e. i -

Proof. The e-function is continuous, i.e., Lim(sy) = ¢ for § a limit

a<f

number, so for any ordinal § there is @ greatest z-number less than é.
Call this e-number &; then in the e-expansion of 6, 6 = & ... say, we
will have a < & as requirved.

Tet us now return to the problem of A-equivalence; we shall divide
the ordinals into subclasses depending on properties of their forms £+ 7
(as given in the lemma above), and demonstrate that no two ordinals
of different subclasses can he A-equivalent. Then we shall show that
two ordinals of the same class are A-equivalent. First we consider the
case of limit ordinals.

We may divide these ordinals infto two non-A-equivalent classes
according as a2° > 2% or a2°=2% if 2% > 2° call o of finite type; other-
wise of infinite type.

Case 1): o of finite type. Let a= ed+n, with £ an &-number,
0<é<s m<e, 0<y<s where & I8 the least e-number greater
than e. Then

2> 9w 27 > 270 o oy o1 > 88

wy=1 O<o.
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8o o= e-m—+m, << e But also

9P (P e g = s(n—1) b, w<a< e,

<2 ¢ e g = e

Hence we assert that the following classes of ordinals are not 4- equivalent:
{en: n fixed, finite; ¢ any -number}— call such ordinals of type e-n

{en+m@: n fixed, finite; & any e-number, # any limit ordinal o <

4
< e}~—call such ordinals of type &*-m.

Case 2). a of infinite type. Let « = &6+ ag above, and eall ¢ of

type & fy=1, 0<4, é6n=n.

type [* it y=1, 0 <6, 6'm>am.

type n if 2 <y < w.

type 0 if y> 0, ey -n=m.

type 0* if y > 0, e-y-n>x. .

The table below shows whether or not an arbitrary element of éach
type satisfies certain equations; these may be verified by substitution.

Type of o
14 * 7 o* 6
o = 2% Satistied N8, N8 NS, NS
o' = 2" |Not Satisfied N.§. N.8. N.§. 8.
2% g% = o° S. S. NS8.
o2 = 2™ NS, 8. 8.

" Thus we have that no two limit or
A-equivalent. We shall now show that
type are A-equivdlent.

dinals of different types are
two limit ordinals of the same

Type e-n. The L-isomorphism between L{e} and L
an 4-isomorphism between Afe,n} and A{ggm}.

Type ¢*. This is the most difficult case, because A {a} (a of type *)
is not a field and so we are not able 4o make use of our structure theorem.
Let e=e+m, ¢ an e-number and z< & Let R, = R[{a, 2°"(n < ),
2% (n < w), 20 < ©)}]; the order of these elements is

(ep} restricts to

2< a2 <2 o9 Lot 2 =1a

<< 27 0P <2 oo™ o
Since for any two of these elements, y,
nt7=7ve a0d ¥y =9, or 4 |
of a), we may write any element

and y, say, with y, < Y2, We have
which one determined independently
of R, uniquely as a descending sum of

icm
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descending products of the defining numbers; since the sum and product
of amy two such is determined independently of a, R, and Rp will be
R-isomorphic, for any « and # of type &*.

o0
22
o2

Now let Go = E.w {Q}, where Q=2 ; to show @, is an A.A. we
need to demonstrate suitable Q-expansions for 48, for y ¢ R, and Bel,.
We may suppose f = B is infinite, and hence that y is one of the defining

numbers (using the relation in On, [poly in y;, 7, ...J" = [Max{y,, y,, ...)]‘3);
We give the following table for ° in certain cases, noting first that 0%

7. 2 . 529 520
@) _ gettTeettn _ glThebn | peta oo and similarly @ = 9%
=9 =2 I
and Q7 = 2%
B
a 20 2P gt o
22 20*  odfa
2 2° 2 Q Q Q
0,
a2 202 o o
a 2 2 Q £
y 9o gt gt eet ot
qun 22““«1 02“(”'”) 0 ngﬂ Qg‘zﬂa
rq ~ =
gia | oatt? uttd o pem el

Now consider f= f,'Pa- ..., & product (descending) of the dﬁzﬁmng
numbers. Then »* =44 (y, one of the defining n?mperiz = T
B, < 2°* we majy use the above table to determine yi'; if 71" < £, %‘ep;at

= . . .
the process; if 5 > @, then ° = 8 is & power of er;lﬂl m;lfax m_ s
which is an Q- expansion of the required form. If g; > 2 then 2°-f; = fi,

P B0 0™ 0F also as Tequired.

SO o N ? ) . *

yl]i‘ingllly let B be a sum of products of the deﬁnmg m'lmbgrs, then ]f 1118
a product of elements of R, and powers of Q mth.mdlces n R, v]; ce B,
since Q2 is an R,-8-number, may be written 0 -y, with y;, 7, in R.. Hen
G, is an A.A. )

Furthermore, since all the processes involved above are mdependgn;
of the actual value of a, the R-isomorphism bt?tween R, and Rj; , : :x'l oy
of type e*, is isomorphic with respect to their StI"lthuI‘B ]?s .b;m.veen
a theorem above it may be extended to an A-isomorphism
4{o} (=A[G.]) and A{f} (=A[G]). ' e

Type e*n (9 > 1). Any ordinal of type e*n may be written a:ha 1 'yl S*zj
where y is of ‘type e*. Let f=9"-n be another su‘ch; 1:]:16511~ (;) -
morphism between 4 {y} and 4 {y'} restricts to an A-isomorphism be
A{a} and 4{p}.
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T)rpe {. For a of type { let G.= F{a} v {Q}, where 2 = 2% o i
a maximal element of @5, and the only d-numbers of @, are o a’n'd 0
We have the following table for (st, independently of the value 6f hal

| o
]a.Q

5, 2| 2* @
al @ Q¥

So G, is an A.A., and the map a—p, 2°~2°, where f is also of type ¢
extfénds to an isomorphism between G, and G5, and then again to ag;
A-isomorphism between A {a} and 4{f}.

Type 2*. Leli(;zbe of type {*, 50 a= &b+ % where 6 > w and 6.z > =,
gﬁt Go= F[{e,2% 8, 8,, &, ..}] © {Q}, where Q =102, 5, is defined bs:
2% = -4, and 044, is defined by 8f=2-6;12. Then 6, = &% 9°
and it may be seen that 2° < 6; < 6, < ..., and that the ; are all ¢ -¢5-11umz
bers with the following exponential table: )

} Index
I a 2¢ 6, 2

2 2° 0 0% @°
Base © Q oF o8 o0
2° | Q-6 0 0¥ o
8 | 0-6;5 O 0¥ 0°

Ga is therefore an A.A.,

22 e and if § is also of type {* the map a—B,

extends to an isomorphism betwee

o . ‘ n G, and Gz, and then

1;2 ;;tn 4nls?n10%°phlsm beth‘zen A[G,] and A[Gy). In this we ]’mve a—f
will restrict to an 4-isomorphism between A{a} and A{B}. ’

F[{angf(:;Let o= e d+tm with 1< g< w, < &9, 6 < e Let Qs be
N “;)n’” w), ‘Eun <o)}]v {9} where Q= 22“; the @,-6-numbers

are a, 2 (n < w), a* (n < ), and £, and their ’

o exponential table is- as
‘ I Index
e 2 P(a>1) 1) 0
2 z 2 o o o 0
Base . | e & o o
2,, (n > l) | 2a +1 0 Q,zun La dn
(n=1) | e o ¥ o o0

icm
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Hence Go is an A.A. and as this table is independent of the value
of o we may, as before, extend the obvious map a—p, ete., (where § is
also of type 7), to an A-isomorphism between A {e} and 4{B}.

Type 0. Let o be of type 0, and let Go= F{a} v {Q} where O = 2%
then @ is a maximal element of G., and the G- -numbers are a and Q2
with the following exponential table:

| Index
a 2

210 0°
Q2 0°

Base ’
a

Qo as before G, is an A.A. and, for g also of type 6, we may find an
A-isomorphism between A {a} and A{g}.

Type 6*. This case is similar to that of {*—in both cases there are
functions of a that are close but not equal, and again we:must construet
an arithmetic larger than A{a}. Let a= eé+=m, with d<e m<e?
< y< ¢ (where & is the least g-number greater than &) and g-y-= > =.
Tet Go = F[{a, 8, 8,, ...}] v {2} where 2 = 2°, 6, is defined by o = Q-4
and 04, is defined by 6= Q-d;31. Then &= 27 > 4 50 @< by
< 85< 85 < v < Q. Tt may be shown that a, 0, and the §; are the Gu-0-
numbers with the following exponential table:

Index
a 6 £
2| 22 o o°
Base o | Q- 9% Q
i | Qbia Q¥ O°

So we may obtain, for § also of this type, an _A-isomorphism between
A[G,) and A[Gy], and this will restrict to one between A{a} and A {8}

We may now consider successor ordinals. Clearly «= f=a=">
(where a=d-t+a, f= f-+b), for we have 2a= a-ta and 28=pf+D.
Conversely, @ = B and a=b=a < B, for the isomorphism between A {a}
.and A {f} will map a— and will thus restrict to an isomorphism befween
A{a} and A{g}. It remains 40 show that there are no two a and B with a
and B of different types yet o= 8; we do this by finding, for each pair
of possible types for @ and §, an equation satistied by one of a-+a and f-+a
but not the other. ]

As hefore we say that « is of finite or infinite type a:c?ordm‘g a8
a2® > 9% or 2° = 2° respectively. Then o is of finite type iff @ is of finite
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type. For o of infinite type we have the following table of equationg
satisfied or not satisfied by a=ata:

Type of a*
Z & i 6 o
2% = o° 8. 8 8 N8 N8
“2*=2" | NS N8 8 8 S.
o2 = 2% S, NS
2" > o S. N8

If @ is of type «, call a=a+n of type -+ n.
For o of finite type, we have, if « #a,

2—1 2 2, —m2— @2 —m2 —_
a™TR% <0 < ™% e G £ 2R - g™ G of type &-m

2% < 20 < (™90 o T 9P < TR G of type & -m .

The smallest infinite ordinal of each arithmetic type is given in the
figure below; ¢ is taken to be any ¢-number, ¢’ the least e-number greater
than &, & to be the least e-number greater than o, v and n finite with
720, n>0, and # a limit number.

Type Form

Least
element
gentr e Rt w Nt
g*-ntr ent+at+r (o <w<e) agn-totr
C4r e 0-t+mt+y gw-+r
(w<6<s,n<£,6~7z=ﬂ)
{*-tr e dtmir g O+ w7
(o<o<e,m<e,d-w>m)
n-r R w*r
m>1,1<d<e, m< &)
047 w7 w? 47
(m<7<8/;1<6<£;7‘<8?183’75= )
¥
0% +r 0+ mly oo+ o7

(w<'y<8’,1<6<£,7L’<87,57}n>n)

It is of interest to observe the
limit ordinals « lying between succe
[8] to denote an infinite sucecession
sequence of types is

m_lccession of arithmetic types of the
S8ive e-numbers, ¢ < ¢’ say; we write
of sequences of the form §. Then the

82,63, ..., [n], [Bv [6*]]

icm

©

Algebraic equivalence of ordinal numbers

Lo
g
=~

in the case &= o, and

&, [e*], €2, [*2], €3, ["3], ..., [C’ [C*]]7 [n], [6) [6*]]
in every other case.

We may now give complete solutions for any system of arithmetic
equations and inequalities in one infinite variable which contain no in-
finite constants. For example, the inequality 2°-d*-(a®+2") > o*-2%; by
divect substitution of the least element of each type we have that the
solutions are those, and only those, ordinals of types e-n+t7r (n <3),
dndr (n<4), 047, and 0*+r (for all finite 7).

It is interesting to note that every soluble equation or i_nequalit}:
of this type has a solution less than e w-+w-2, and that this is a best
possible result.

Divarithmetic equivalence. Finally, let us comsider D-equivalence.
Clearly any two ordinals not A-equivalent will be not D-quivalenjr.
On the other hand, the proofs of A-equivalence for infinite arithmetic
types hold for D-equivalence, since.the A.A’s used in the proofs were
all fields, and hence in each case either A{a}= A[G.]= D[G.]= Dida}
or D{a} C D[G.] = A[G].

For ordinals of finite arithmetic type, those of type en+m are
clearly also D-equivalent. Let o Dbe of arithmetic type s*n-+-7, i.‘e..
4= entmtr, with o <z <eg na limit number, ¢ an e-number. ].Dwv
arithmetics are closed under predecessors, so 811—1—555D.{a}.. Consider
@ ='9%+y; 6eD{a}, but 6 is either ¢ or e+1, and in either case
ceDia}. So mtreD{a}, and Diz+7} C Dia}; since w47 <& every
element of D{m--r} is less than . Hence two ordinals S’Pﬁ' L anfi
gn-tn'+7 are D-equivalent iff w7 and @’ +7 are D-equivalent. We
obtain, by induction,

THmoREM. Two ordinals « and f are D-equivalent iff when expressed
(unigquely) in the form

o = &M+ Mgt e EX N 4T,

B = s{ml—\—e»'_ﬂmg+...—i—a,’ﬂnﬁ—n'—l—r' .
with 2, @' limit, & > ... > e e-numbers, 0 < m < for each ni, % O}J;“’m‘-
finite Arvithmetic type or 0, €} > ... > & e-numbers, 0 < m; < o for el;w <m ;‘ )
%' of infinite arithmetic type or 0, then we have k = Py me= mi'for all zt\ s
r=1, and m=n' =0 or n and w' of the same mfmne gnthmetw yyf)sj

I am indebted to Dr J. H. Conway for many mte‘restmg and help
conversations on the topics included in this paper. I wish to_ aeknowledie
a grant from the S. A. Council for Scientific and Industrial Research.
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