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One dimensional locally setwise homogeneous continua

by
Beverly L. Brechner* (Gainesville, Fla.)

1. Introduction. In this paper we obtain a classification of the one
dimensional loeally setwise homogeneous (1-s-h) continua without “bound-
ary“. It is shown that the simple closed eurve, Sierpifski curve, univer-
sal (Menger) curve, and “copies® of the Sierpifiski curve on the eompact
2-manifolds without boundary are the only such continua.

L-s-h continua were first introduced in [2], where it is shown that
their groups of homeomorphisms are not zero dimensional. Other such
continua include the compaet manifolds, with or without boundary and
of all dimensions, and the Hilbert cube. The notions of near basis and
strongly 1-s-h (s-l-s-h) continua are used in the proofs of the theorems
of this paper. These were first defined in [3], where it is shown that every
s-1-s-h continuum has a near basis. It is not known whether every l-s-h
continuum is also s-I-s-h.

See Section 2 for definitions of the above terms.

2. Preliminaries. All spaces are separable metric. H{X) (or H) denotes
the group of all homeomorphisms of X onto itself. If UC X and heH,
h is supported on U means h(z) = x for » ¢ 0(U), the complement of U.
I D i3 a collection of sets, D* denotes the union of the members of the
collection. X° denotes the interior of X. A double arrow denotes an onto
funetion.

DEFINITION 2.1. A continuum X is called locally selwise homogeneous
(I-s-h) iff there exist a dense subset A of X and a basis $ of connected
open subsets of X such that for any BeB and a,b e d ~ B, there is
a homeomorphism % e H, & supported on B, such that h(a)=b.
{X, 4,3, H}is called a 1-s-h structure for X. Note that an I-s-h continunm
is necessarily locally connected.

DEFINTTION 2.2. A continuum is called strongly locally setwise homo-
geneous (s-1-s-h) iff there exists an I-s-h strueture {X, A, B, H} for X such

* The aunthor is grateful to the National Seience Foundation for partial support
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that for each B ¢ B and z e A ~ B, there is a neighborhood U of z with
U C B, satisfying the following property: For each open subset ¥ of B,
there is a homeomorphism % ¢ H such that

(1) R is supported on B, and

(2) HO)CT. .

DeFrviTION 2.3. Let {X,4,%, H} be a ls-h structure, and let
Be®, B=£=0O. Let §= {h(B)| h e H}. § is called a near basis for X iff
every open set U of X contains the closure of an element of &. € is said
to be generated by B.

DEFINITION 2.4. Let X be a l-s-h continuum, and let § be a near
basis for X. Let M(X)= | J{Z ¢ &. Then M(X) is called the core of X,
and X —M(X) is called the boundary of X (BdX).

We note that if X is a compact manifold with boundary, then the
core of X is the interior of the manifold, and BAX is the boundary of the
manifold in the usual sense. (See [31.)

DEFINITION 2.5. The Sierpifiski (universal plane) curve is any con-
tinuum homeomorphic to the following: A closed disk D in E? minus
the interiors of a countable dense set of pairwise disjoint cireles in D°
whose diameters have limit 0, and no one of which is a subset of the in-
terior of another. It has been characterized [8] as the only one dimensional,
locally connected, plane continuum, with no loeal eut points.

The Menger (universal) curve is obtained in the following way: Let
F,, Fy, and F; be three faces of a cube in E® such that no two of these
are opposite each other. Punch out, to the opposite side, the interior
of the square which is the middle ninth of each of these. Then punch out,
to the opposite sides, the middle ninths of the remaining eight squares
on each of the three faces. Continue the process. The resulting continuum
is the standard construction of the Menger curve. It has been character-
ized [1] as the only one dimensional locally connected continuum, with
no loeal cut points, such that no open subset is imbeddable in the plane.

DrFINITION 2.6. Let {C:}7.0 be a countable collection of pairwise
disjoint simple closed eurves in a compaect two-manifold, M, such that C;
bounds a disk Dy in M, diam D;—0, and, for j 44, ¢; & D;. We also

require that |/ D; be dense in M. Let X = M — | j D). Any continnum X
=1 i=1
obtained in this way is called a copy of the Sierpiviski curve on a compact
two-manifold.
THEOREM 2.1. Every s-l-s-h continuum has a near basis.
Proof. See Theorem 2.1 of [3].

TeeoREM 2.2. If X is o sls-h continuum, M (X) is a dense, open,
connected subset of X, and is the union of the dense orbits of X,

i:m
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Proof. See Theorem 4.2 of [3].
TEEOREM 2.3. The Sierpiiski curre, copies of it on a two-manifold,

and the simple closed curve are s-l-s-h continua (without boundary)
therefore have near bases.

Proof. See Section 5 of [3].
THEOREM 2.4. The Menger curve has a near basis.
Proof. Let I be the Menger curve in E? obtained by its standard

, and

3
construetion, with 3 C[] I;, where I; =[0,1). Let & be a continuous
i=1
function of E® onto itself such that
(1) h is 1-1 except on the squares S, T,

§= {(m,y,:) EExl <<, 0<y<13330}7
T={zy,2)eF’| 0<r<1, I<y<l,2=13,

(2) 2(8)=(0,0,0)=p, h(T)=(0,0,1) =g, and

(3) hiz,y,2) = (2, y’,2) for all points of E*.

Let M’ = h(M). Then M’ is a locally connected continuum with no
local cut points, and no open set is imbeddable in E?, since each open
subset contains a homeomorphic image of an open subset of M. Thus,
by the characterization of the Menger eurve, M’ and M are homeonlorphie;

We now show that there exists a neighborhood T of p in M’ such
that U generates a near basis for M". Let {P}7%_, be a sequence of points
of [0,1] such that lim p;=1, lim p; =0, p; < pis1, and p; is the mid-

1—=—00
point of a deleted interval of the Cantor set on [0, 1. Let F; = {{z,y,2)
€ M} 2:=ps}. Then R(Fy) separates h(M) into two disjoint sets. Let
Gi={(z,y,2) e h(M)] p;—1 < 2 < pi}. Then there exists a homeomorphism
g: M'—>> M’ such that ¢(G:;) = G4, all i. Further g* is also a homeo-

morphism of M’ onfo itself taking ¢; onto Girr. Now let U = Int{ iif Gi v
i=1

v {p})in M'. Then U is a neighborhood of p in M. Furthermore U gener-
ates & basis & for ', for if V is any neighborhood of p, there exists an
integer » such that g»(U) CV. Thus, by the homogeneity of M’, U gener-
ates a basis, $ = {k(U)| & e H}. Further, it follows from a statement in
the proof of Theorem 16 of [1], that {3[’, I’, $, H} is an l-s-h structure
for A". Then $ is also a near basis for M’, and the theorem follows.

3. Main theorem. In this section we obtain the main theorem of the
paper. We first prove some lemmas,
Leynra 3.1, Let X be a l-s-h continuum. If X contains an open subset

which is homeomorphic to the interior of an arc, then X is an arc or simple
closed curve.
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Proof. Let O be an open subset of X such that O isan arc and 0 is
the interior of 0. Let U be a maximal chain of open subsets of X which
are interiors of ares and which contain O. Let U be the union of the
elements of U. Then U is an open subset of X which is homeomorphic
to the interior of an arc. Thus U —U has at most two points, and U is
either an arc or simple closed curve. _

We show that U = X. Suppose there exists a point # ¢ X —U. Let
pe U n C, where C is a minimal arc in X from z to U. Since each point
of U is a point of order two in X, ¢ contains no point of U. Now let
W e B be a neighborhood of p such that p separates W. Then there are
points a,be A such that ae Wn U and beW— U, and a homeo-
morphlsm 1 supported on W such that h(a)=b. Let pq be the largest
are containing « and contained in W ~ U, with endpoint p. Then dq is
an are. Therefore 1(dg) is also an are. Sinee % is & homeomorphism of X
onto itself, 2((Int(dg)) is open in X. But then [k (ag) v U]is an arc whose
interior is an open subset of X and properly contains U. Therefore U was
not maximal. This is & contradiction. Thus X —U = @ and U = X.

Levma 3.2. Let X be a 1-s-h continuum, p a local cut (*) point of X.
Then p is of order (?) two in X.

Proof. Let {X, 4, %, H} be a l-3-h structure for X, and let B¢
such that p e B and p is a cut point of B. We first show that p is not
isolated. Let B—{p}= M o N where M and N are mutually separate.
We may further assume that M ~BdB # @ # N ~BdB. Then
there are points ae A ~ M and be A~ N such that the components
of these points, respectively, meet BdB, and there exists a homeo-
morphism & supported on B such that h(a)=b. Let ¢ be a point of
M ~BdB ~ (component of ¢ in M). Then M contains an are § from ¢
to a. Now h(8) contains p. Thus § must contain a cut point of B different
from p. Clearly, for each >0, we may choose B so that diamB < e.
Thus p is not isolated; that is, there exists a sequence of cut points of B
converging to p from M. By a similar argument, there exists a sequence
of cut points of B converging to p from N.

Now let z and ¥ be cut points of B in M and N, respectively, chosen
ag in the above paragraph. Let D be the closure of the component of p
in B—{, y}. Then D° iy a connected open set containing p with a two
point houndary in X. Since D can be made as small as we please, p is
of order two in X.

(1) p is a local cut point of X means that there exists a neighborhood ¥ of p such
that V— {p} has at least two components.

() p is of order two in X means that there exist arbitrarily small neighborhoods
of p with two-point boundaries in X.

icm
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Levwa 3.3. Let X be a l-s-h continuum. Then X contains no local cut
points, unless it is an arc or simple closed curve.

Proof. (3) If X is not an arc or simple closed curve, by Lemma 3.1,
we may assume that X contains no free are— that is, an open set wh:ch
is homeomorphic to the interior of an arc. We suppose, by way of contra-
diction, that X contains a local cut pomt p. By Lemma 3.2, p is of order
two in X. Thus, as in Lemma 3.2, there exists s connected open set D
containing p such that Bd.D eonsmts of exactly two points, say @ and b,
each alocal cut point of order two. Since D is a connected open set, D is I-s-h.

We will show that D is not a dendron and contains no sm]ple cloged
curves, & contradiction. Therefore, X contains no local cut points, and
the theorem follows.

Since X cannot contain a free are, D is not an are. Thus, if D is
a dendron, it must contain (a dense set of) branch points. But then D is
not l-s-h. Therefore D cannot be a dendron, and must contain s simple
closed curve. But if D contains & simple closed curve, it must contain
a non-trivial cyclic element E (p. 312 of [5]). Let 4’ be any arc from a
to b in D, and let ¢ be the first point of A’, in the order from a to b, that
lies in . It follows (Theorems 4,11 on pp. 308, 316 of [5]) that ¢ is a cut
point of D, and therefore ¢ is a local cut point of X. But ¢ is of order
greater than 2. This is a contradiction, and thus D cannot contain
a simple closed curve. Henee, D is not a dendron, and D contains no
simple closed curve.

The theorem follows.

Levma 3.4. Let X be a locally comnected contimuum in E® (or §°)

obtained by removing the interiors of countably many pairwise disjoint disks,
Dy. Then lim diam(D,) = 0.

n—>00

Proof. Suppose, by way of contradietion, thatb hmdlam (Dn)=e> 0.

By Theorem 59 of p. 24 of [7], we may assume, mthout loss of generality,
that {Dp}ne converges sequentially to a limiting set €. It is easy to see
that O is a one dimensional continuum and diam(C) > 0. Let 0 < § < £/3,
and let “W: U,, U,, ..., Ur be a minimal, finite, one dimensional, 6-cover
of ¢ by connected open sets in X, and let U: ¥y, ¥y, ..., Vi be open sets
in E? (or 8%) such that B* ~ V; = U;. We may assume that U is also a one
dimensional cover. (By a one dimensional cover, we mean a cover whose
nerve 1s one dimensional.) Let N be an mteger such that for » = N,

D, C UVz, and D, meets each V.
(*) I am indebted to G. T. Whyburn for a letter in which he sent me a much simpler

proof of Lemma 4.4 of [2]. His proof made use of cyclic element theory, and his ideas
are used in the proof of Lemma 3.3 here.
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‘We show that some V; disconneets both Dy and BdDy. Let Cy be
the boundary simple closed curve of Dy. Since VU is a one dimensiona]
cover containing at least three elements, there exists j, 1 <j <%, such
that V; separates U*. But U is also a one dimensional minimal cover
of both Dy and COy. Thus ¥y separates both Dy and Oy.

Let K be a component of V; ~ Dy which separates Dy. Then K also
separates On. Thus K~ Oy= A v B, where 4 and B are mutually
separate. Therefore K DYy separates A from B, and it follows that U;
is not connected, since U; (K ~ DY) =@. This is a contradiction.

Remark. We note that the above lemma is implicitly assumed in
the proofs of Lemma 1 and Theorem 4 of [8]. '

Levwa 3.5, Let X be a one dimensional, locally connected, metric
continuum with no local cut points, such that some open subset U of X is
imbeddable in E*. Then there is an open set W such that W C U and W is
homeomorphic to a Sierpiniski curve.

Proof. Let #: U—+F* and g: B*>>8"—{p}, where p is the north
pole of 8%, be homeomorphisms. Let ¥ be open and connected in U such
that ¥ C U and ¥ is a Peano Continuum. Then gh(¥) C 8°— {p}. Let D" be
the ecomplementary domain of gh(¥V) in §* that contains p. Let D = {D"| D"
is a complementary domain of gh(7) in 8 and D" ~ D’ - @}. Let D
= D' v D* Clearly, D is compact and connected. '

We show that D doesn’t separate §% Suppose D separates §%. Then
§—~D= A v B, where 4 and B are mutually separate. We may assume
that gh(P)C 4, and it follows that B ~ gh(V) = @. Therefore B is a sub-
set of the union of the complementary domains of gh(V). Now D u B’ is
connected. Therefore, for any component B’ of B, D w B’ is connected,
and thus B’ must be a subset of D. Thus B = @ and this is a contradiction.
Therefore D doesw’t separate S

We note further that D == §%. For let W, be open in V and W, be
open in W, such that W,C W,. Since X contains no local cut points,
W, is not a dendron, and therefore ¥, contains a simple closed curve, C.
Now gh(C) is a simple closed curve in gh(V)C §?, and therefore bounds
a disk 7' in §* which misses p. This disk is two dimensional and therefore
not & subset of gh(¥V). Thus there exists 8 complementary domain O of
gh(V) such that OC 7. Now, sinee ¥ is a locally connected, metric con-
tinuum, so is gh(¥). Further, since ¥V is connected and contains no (local)
eut points, no point of ¥ is & cut point of 7. Thus ¢i(7) is a locally con-
nected, plane continuum with no eut points. Then by Theorem 9, p. 212
of [6], each complementary domain of gh(F) is a simaple closed curve.
Thus BdO is & simple closed curve and BdO C gh(7).

To show that D = 8% we will show that D ~Bd0 — @. We first,

note that D'~ Bd0 = 0. For if not, there exists a point ¢ ¢ D’ ~ BdO.
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Then t is accessible from each of the complementary domains D’ and 0,
and therefore, by Theorem 6, p. 308 of [10], ¢ is a local eut point of gh (7).
But t e gh(V) also, and V contains no local cut points. This is a contra-
diction. We finally show that D~ Bd0=@. Suppose geD ~ BdD.
Then g is not an element of any complementary bounding simple closed
curve in D, by the above argument. Thus ¢ is a limit point of & sequence
of complementary bounding simple closed eurves in D. By Lemma 3.4,
this sequence of simple closed curves has diameters with limit 0. Thus
some subsequence converges to g, and by the construetion of D, ¢ must
be on BdD’'. But again, by the ahove argument, this eannot happen.
Thus it follows that D ~ Bd0 =@, and D = &2

Thus D is a continuum which doesn’t separate §°. By Theorem 15,
. 363 of [7], there exists a continuous funetion f: §*-—>>8* such that f
is 1-1 off D and f(D) = p. Now fgh() is a continuum in §* (containing p).
It follows from the previous paragraphs that fgh(V) contains many
complementary domains with simple closed curve boundaries. Further,
no two of these complementary domain boundaries can intersect, for

- if y is such a point of intersection then y s p and y is accessible from

both domains, and therefore is a local cut point of fgh(V) by Theorem 6
of [10]. It follows that (fgh) *(y) is a local cut point of X and this is
a contradiction.

‘We have now shown that fg(¥) is a continuum in §* which contains
complementary domains, no two of whose closures meet. Further the
diameters of these complementary domains have limit 0, by Lemma 3.4.
Thus by Theorem 15, page 363 of [7], there exists a continuous function
p: §°—~>8" such that @(p) = p and each of whose non-degenerate inverse
sets is the closure of exactly one complementary domain of fgh(V). Let
F= {ze8% ¢~(2) is non-degenerate}. Then F is countable and, since
fgh(¥) is one-dimensional, F is also dense in S Since F is countable,
there exists a sequence of simple closed curves {KJ;=: in 8°—F which
bound open cells whose intersection is p. Then {p ' (K:)}7 is a sequence
of simple closed curves closing down on ¢~Y(p)=p in §°, and each of
these misses the union of the closures of the complementary domains
of fgh(V). :

Let W' be the component of ¢~I(K,) in 82 which doesn’t contain p,
and let W="7%"" g f* (W’). Then W is openin X, WCV C U, and W is
a one dimensional locally connected, plane continuum with no loecal cut
points, and therefore, by [8], a Sierpifski curve.

TeeoREM 3.1. The only one dimensional l-s-h continua without
boundary are the simple closed curve, Sierpifiski curve, Menger curve, and
copies of the Sierpirviski curve on the compact two-manifolds without
boundary.
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Proof. Let X be a one dimensional I-s-h continuum without boundary.
If X contains local cut points, by Lemma 3.3, it is a simple closed curve,
If X contains no local cut points, there are two cases. '

Case 1. No open subset of X is imbeddable in E* Then X is a one
dimensional locally connected continuum with no loeal cut points such
that no open subset is imbeddable in E?, and by [1], is homeomorphie
to a Menger curve. ) :

Case 2. Some open subset U is imbeddable in E. We first show
that X is locally imbeddable in E*. By Lemma 3.5, there exists an open
set V such that ¥ C U and 7 is a Sierpinski eurve. Let & be a near basis
for X and let B ¢ § such that B CV. Sinece X has no boundary, for each
2 e X, there éxists a homeomorphism f;: X—>>X such that he(z) < B Cv.
Thus %z'(V) is a neighborhood of ¢ whose closure is Y(7) and is there-
fore a Sierpiniski curve. It follows that every point of X has a neighbor-

hood whose closure is a Sierpifiski curve. Hence X is locally imbeddable

We note that a Sierpiriski curve has exactly two orbits under its -

homeomorphism group. Thus the “complementary bounding® simple
closed curves determined by a particular imbedding into the plane are
independent of the imbedding, and are therefore uniquely determined
by any such imbedding. Since X is compact, there exists a finite col-
lection, Vi, Vs, ..., Vi, where ¥, is an open subset of X » Vi is a Sierpingki

curve, and iUI‘V = X, Thus there exists a well defined, unique, maximal,

countable (because the collection is countable in each Vi) collection of
“complementary bounding® simple closed curves, and as seen in the
proof of Lemma 3.5, no two have a common point. We denote this col-
lection by {07, and note that, by Lemma 3.4, diam C;—0.
Our final aim is to “fill in“ each of the Cys with a disk bounded
by it, in such a way that lim(diamDy) = 0 and thus insure that the
100

resulting.eontinuum will be a two-manifold without boundary. Then
X is obtained from that two-manifold by removing the interiors of a count-
able dense set of pairwise disjoint simple closed curves, none contained

in the interior of another, and whose diameters have limit 0. The theorem
follows.

To this end, let 1“:'11 I;, where I; = [~1/2i, 1/2i], be the Hilbert
=

cube with metric d(x,y) =[ g; @i, y4)]". Since X is one dimensibna:l,

compa,fzt, and metrie, by Theorem V.2 of [;L], there ‘exists a homeo-
morphism ¢: X 1% We think of I® ag Lx I, X I;% {{0,0,0, ..)}; that
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is, the product of the first three coordinate spaces of I”, imbedded as

a hyperplane of I”. Let p, be a point in I Ix Iy x (0, 1/24]
x{(0,0,0,..)}, where [0,1/2]C I,, and such that d(p,, C,) < 1/2. Let
4 o

D, be the join of p, to ¢, in _HII,;X{(O,O, 0,..0}CJI;. In general,
i= i=1
n+2

let p» be a point in Q Iix (0,1/2""°]1x {(0, 0, 0, ...)}, where (0, 1/2**"]
C Ints, and such that d(pn, Cn) < 1/2". Let D, be the join of p, to C, in

n+3

[1 Iix {0, 0,0, .)}.
Let M=e(X)w UD:;. M is clearly compaet, connected, and
i=1

metric. We show that M is a two-manifold. Let ze¢ M. If xe @DS,
i=1

then # has an open two-cell neighborhood. If x € ¢(X), then there exists
an open set V containing » such that ¥V is a Sierpinski eurve in o(X);
that is, 7 is the image of such a set in X. We note the proof of Lemma 3.3
shows that 7 may be chosen so that BdV is a simple closed curve not

meeting GC;. Thus ¥ is a Sierpidski curve neighborhood of . Let D
i=1

= {D;]| BdD;CV}. Then there exists a “natural® homeomorphism from
7V © 9* onto a two-cell. Thus z has an open two-cell neighborhood, and
M is a two-manifold. Therefore, X is a copy of the Sierpifiski curve on
a compact two-manifold without boundary.

The theorem follows.

Remark. The author does not know examples of one dimensional
Is-h continua with non-empty boundary, except for an are.
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Some results on fixed points — IV

by
R. Kannan (Lafayette, Ind.)

The notions of normal structure and diminishing orbital diameters
have been used by Belluee and Kirk ([1], [2], [3]) to study the existence
of fixed points of nonexpansive mappings. In this paper we fix our at-
tention on mappings of another type defined as follows: Let (E, p) be
a metrie space and let 7' be a mapping of ¥ into itself sueh that

o(Tz, Ty) < 3{o(z, Tx)+oly, Ty)}

Mappings T’ of the above type will be referred to as having prop-
erty A over F in this paper. Such mappings have *been discussed in [5],
[61, [7] and [8], dealing with fixed point and other allied problems. The
author would like to mention in this connection that the referee of the
present paper has suggested the name “semi-nonexpanding mappings“
for mappings of this type.

Here we obtain some fixed point theorems for mappings havmg
property A by using certain additional hypotheses. Then we compare
the notions of diminishing orbital diameters [1], normal structure ([3],
[4]) and property B (defined below). If a ¢ B then the sequence of iterates
of a by T will be written as {T"a} or {an}, T'a = a.

Before going into the theorems, we recollect some known definitions.

DermITioN 1 ([1]). A mapping T of a metric space (E, ¢) into itself
is called nonezpansive if

o(T2, Ty) < o(w,y) for each z,y ek .
DEFINITION 2 ([1]). For & subset A of & metrie space (H, o) let d(4)
= supo(#,y), ¢, y € A, denote the diameter of A and let T be a mapping

of B mto itself. Let {T"x} denote the sequence of iterates of z¢E and
let O(T'w) = {T"&, T 5, .}, 7= 0,1, .., T'0 = &. I r() = Im5(0(I"z))

< 8(0(z)) at a point e A where 6(0(m)) >0, then we say that T has
a diminishing orbital diameter at ». If T has a diminishing orbital diameter
for every ¢ B, then we say that T has a diminishing orbital diamelers
over H,

z,yekl.
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