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On the infinite subsemigroups of a compact semigroup
by
R.P. Hunter and L.W. Anderson (University Park, Penn.)*

In this paper we are concerned with the possibility of embedding
a semigroup in a compact semigroup (2).

In 1939, in his study of the representations of the Poincaré group,
Wigner [28] showed that the Lorentz group had no finite dimensional
unitary representations, i.e. as an abstract group, the Lorentz group
cannot be found as a subgroup of any compact group. The following
year, von Neumann and Wigner [25], using a technique reminiscent of
that of Wigner’s for the Lorentz group, showed that the group SL(2, @),
where ¢ denotes the rationals, also has mo finite dimensional unitary
representations. Recalling that the closure of a group in a compact semi-
group is a compact group, we obtain two examples of abstract semigroups
which cannot be embedded in any compact semigroup. Another example
of such a semigroup, equally as important from our standpoint, is the
bieyelic semigroup [3]. Here, it should be noted, all the subgroups and,
indeed, all ot the associated Schiifzenberger groups are trivial. Hence,
the question of immersing a semigroup in a compact semigroup eannot,
in general, be reduced to the corresponding problem for its subgroups.

Among the results in this paper we give a necessary and sufficient
condition for a completely simple semigroup to be embedded in a com-
pact semigroup. Also, a number of examples are given defeating a number
of tempting conjectures.

Notation. (2) For a fixed group &, following von Neumann and Wigner,
we denote by &, the set of points of G which cannot be separated from
the identity by a finite dimensional unitary representation. If &, = G,

* With the support of the National Science Foundation.

(*) Following the usual conventions, by a semigroup we will always mean an
abstract semigroup. By a compact semigroup we will always mean a topological semi-
group whose underlying space is compact Hausdorff.

(%) The reader may well note that the material here conld have been framed in
categorical settings. However, the traditional and perhaps cerebral nomenclature seemed
the more appropriate.
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2 R.P. Hunter and L. W. Anderson

the group is said to be minimally almost periodic. If @ is trivial, @ ig
called maximally almost periodic. Thus, & group is maximally periodic if,
and only if, & is a subgroup of some compact group. A group is minimally
almost periodic if, and only if, no nontrivial homomorphic image of & is
a subgroup of a compact group.

Following P. Hall, we shall say that a semigroup enjoys a certain
property & residually, if any pair of points can be separated by a homo-
morphism onto a semigroup having property . According to a result
of Numakura [20], a compact totally disconnected semigroup is the in-
verse limit of finite semigroups. Thus, a semigroup is émbeddable in
a compact zero dimensional semigroup if, and only if, it is residually finite.

Since some of the properties of intierest to us are not hereditary, it
is convenient to say that a semigroup has a property T subresidually if
any pair of points can be separated by a homomorphism into some semi-
group having property . It might be appropriate to remark that a maxi-
mally almost periodic semigroup, i.e. one which has enough finite di-
mensional unitary representations to separate points, is certainly sub-
residually compact. However, a subresidually compact semigroup may
have only degenerate homomorphisms into compact groups.

Compactifications. A number of properties can be more conveniently
treated by the use of compactifications. So, following Holm [12], we
regard the Bohr compactification of a semigroup S as a pair (8, §)
where § is a dense homomorphism of S into the compact semigroup §
with the property that the diagram

g
)
d

where y is a dense homomorphism of § into the compact semigroup 7,
completes to the diagram :
8§
™
1N\
LN
S8——T
14
where £ is a confinuous homomorphism of S onto 7.
As Holm has shown, § may be viewed as the separated completion
of § with respect to the finest uniform structure 1 which is precompact,
compatible with the operation(s) in §, and defines a topology coarser

t«ha},n the initial topology. It might be remarked that if @ is a group the
uniform structure U need only be taken compatible with the multiplica-
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tion in @ For in this case & will, at any rate, be a compact semigroup
containing a dense subgroup. It follows that & is, in fact, a compaet
(topological) group.

Now an abelian group, since it has enough characters, goes faithfully
into its Bohr compactification. For an abelian group 4 the group 4 can
be calculated as ch{(ch A )aiscrete ]

PRrOPOSITION 1. A semigroup 8 is residually finite if and only if no
two distinet points of S are sent, wnder &, inlo the same componeni of S.

Let z and y be distinct points of § such that («) does not belong to the
component of §(y). Form the decomposition of S which shrinks each
component to a point. The hyperspace §/C will be a totally disconnected
compact semigroup. By the result of Numakura [20], §jeis residually finite.

On the other hand, if J(x) belongs to the component of d(y) then
clearly @ cannot be separated from y by a homomorphism onto a finite
semigroup, since such a homomorphism would have to factor through 8 by 4.

Let @ be a group. Define the subgroup Gy, as the set of all elements
which cannot be separated from the identity by a homomorphism onto
some finite semigroup. Now the groups &, and Gy, are both normal. It
follows readily that G/@, is maximally almost periodic and that G/Gy, is
residually finite. In general, of course, &, C G. The inequality may be
proper as, for example, the group G = Z(p™). Here Gy, = G while G, = {1}.

We do have the following observation however;

PRrOPOSITION 2. Let G be a finitely generated group. Then

Gy = Gro -

For let # be an element of Gy, and suppose that 2 is not in G, so
that G/¥, can be embedded in a compact group where N is a normal
subgroup missing z. By the Peter—Weyl theorem, the group G/N; is seen
to be residually a matrix group. Since Malcev [17] has shown that a finitely
generated matrix group is residually finite, the result follows.

In [16], Maak extends almost periodic compactifications to semi-
groups by proving that an almost periodic function on a semigroup can
be approximated appropriately by unitary representations. Thus the
Maak compactification of a semigroup § clearly will not often coincide
with the Bohr compactification since the former is always a group.
Let Sy be the quotient semigroup obtained from § by identifying points
which cannot be separated by a homomorphism into some unitary group.
Then Sy, compactification of Sy, is the Maak compactification of § and
the diagram

SZLI

8—@
1*
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where @ is & compact group, completes to the diagram

Following Thierrin [23] we shall call a semigroup 8 a homogroup
it it has an ideal K which is a subgroup. It is to be noted that K is neces-
sarily a minimal ideal. A eompact semigroup will become a homogroup if,
for example, its idempotents commute. If 8 is a homogroup and e the
identity of its minimal ideal K then & ->xe is a retracting homomorphism
of S onto K.

PROPOSITION 3. Let S have the property that if f: 8T is o homo-
morphism into a compact semigroup T then the closure of f(8) is a homo-
group. (This is the case, for example, if 8 is abelian, normal, or is dtself
a homogrowp.) Then the Maak compactification of 8 is the minimal ideal
of the Bohr compactification.

Proof. Let K(8) be the minimal ideal of §. Now K (S) is of the
form 894 where ¢ is the identity of K(S). If & §-—@ is a dense repre-
sentation of § into the compact group G, there is a diagram

8
t,T\é

8

¥

_.sG

But this diagram extends to
8—->88¢
N
b
Ny
This shows that 834 is the Maak compactification.

Te recall that a semigroup § has a group & as maximal group image
if any homomorphism of § onto a group T factors through & [6]:

G
™N
LN

S——=T

Of course, a semigroup need not have a maximal group image but
a reasonably wide class of semigroups such as completely simple semi-
groups do have such images.
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On the infinite subsemigroups of a compact semigroup b

It is natural to expect that for certain semigroups the Maak com-
pactification, being a group, can be given as the Bohr compactification
of the maximal group image. Now if a semigroup § were to have the
above property then any homomorphic copy f(S) in a compact group
would have to be a subgroup. To see this, note that f = ayf in the diagram
where T is a compact group, and G the maximal group image.

N
—_—T

PRrOPOSITION 4. Let S be semigroup with the property thai any homo-
morphic copy of S embeddable in a compact group is a group- Then if 8 has
a maximal growp tmage G, we have

G =R

Aj above, we let Sy be the gquotient semigroup obtained from § by

identifying points which cannot be separated by a homomorphism into

some unitary group. We now Dbave two diagrams, the unlabeled maps
being natural.

Gé—h : S’ﬂf G—S%SM
11 ]

| l
G—>8y G—8u
\S/

The usual diagram arguments show that 62 leaves the image of §
pointwise fixed in Sy so that 6 is the inverse of the topological iso-
morphism A k

As is well known, any abelian group can be embedded in a compact
group. As we shall see, the abelian law is the only law which can be
satisfied by certain maximally almost periodic groups.

For a discussion of laws in groups we refer the reader to [19]. An
analogous discussion can appropriately be carried out for semigroups.
The nilpotent laws L, can be given in a semigroup setbing, Ly being the
abelian law, I, being xyzyz = yzewy and so on (see [19]).

PROPOSITION 5. Let the group G satisfy some non-irivial law and
let &2 G—C be a dense representation of G into the compact group C. Then Cy,
the component of the identity of C, is abelian and

£(Go) C 0y -
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Proof. If I is a law satisfied by @ then I is satistied by £(G) and,
by continuity, also by €. Now if C, were not abelian it would contain
a free group on two generators [5]. Hence, ; must be abelian. Finally
if meGy and £(x) ¢ ¢, then the quotient group C/C; would be a zero
dimensional compact group and there would be a homomorphism of &
onto a finite separating # from the identity.

COROLLARY. Let the group G- satisfy some non-trivial law and suppose,
moreover, that G has no normal subgroup of finite index. Then any compaci
group containing a dense homomorphic image of @, must be connected and
abelian. Moreover, if & is the derived group of G then

P .
G¢ =@a.
Proof. It is clear that §(G) is abelian so that
Kerd D G'.

Now if # were a point of Kerd and »¢ G’ then z could be sent to
a point different from the identity in the compact group ch{ch(G/G')q}.
But this would yield a homomorphism into a compact group which could
not be factored through é.

Apparently, if G satisfies some law and has no finite homomorphic
image then any homomorphism of & into a compact group can be factored
through G/G'. Moreover, since G/G is abelian and itself has no finite
homomorphic image, it must be a divisible group. Hence the Bohr com-
pactification of & will be the Bohr compactification of the direct sum of
rationals and groups Z(p™). That is to say,

Prorosirion 6. If the group G satisfies some non-trivial law and has
no finite homomorphic images then GI@ is the direct sum of rational groups
and groups Z(p”). Moreover, the Bohr compactification of G is that the
group GI@'.

In particular, if G is a non-abelian nilpotent divisible group then
G is not maximally almost periodic. Of course, a nilpotent group cannot
be minimally almost periodic. For example, the last term but one of the
upper central series yields an abelian factor group.

As an application of these results let us consider the case of a nilpotent
semigroup: That is to say, a semigroup satisfying the same nilpotent
law as given by Neumann [19]. Now if 7 is a compact nilpotent semi-
group it follows readily that T is a homogroup. In effect, let K be the
minimal ideal of T. Now it follows readily from the structure theory
of K that for x,y ¢ K the sets Tz and yTy either coincide or have no
common part. (They are in fact the J¢-classes of z and y respectively).
A glance at the nature of the nilpotent laws in question completes the
argument. Thus, if 7' is a nilpotent semigroup, its Bohr compactification,

icm
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T, is a homogroup whose minimal ideal K(T) is & nilpotent group which
is, in twrn, the Maak compactification of T by Proposition 2. Xf, moreover,
T has no finite image then K (7') is a compact connected nilpotent group
and is therefore abelian and divisible. Thus the Maak compactification
of a divisible nilpotent semigroup is the compaciification of a group which
is at worst the cartesian product of rationals and groups Z(p™).

Simple semigroups. We recall, at this time, the equivalences of Green:

As is now customary, for a semigroup S let S* denote S if S has an identity
and § with identity adjoined if 8§ has no identity

a=b(g), Sa = 8,

a=Db(R), af* = bs*,

a=0b(3), Sas =88,
f=£nR, D=LoR (=RoL).

The notion of stability has been infroduced in [14] as an algebraic
analogue of compactness. It will be particularly useful in our contexs.
A semigroup S is called stable if for any a,beS one has

{1) Sa C Sab ~8a = Sab ,
(2) afl C baS —aS = bal .

Among the most natural semigroups to be considered in terms of
residual properties are perhaps the simple semigroups. As we shall see,
this question gives rise to two distinct problems in the case of stability.
The completely simple case will be considered separately. The second
case, dealing with D-triviality seems to be more formidable.

A semigroup is called completely simple if it is simple (has no proper
jdeal) and contains a primitive idempotent (the idempotent e is primitive
is eSe has no idempotent save e). This class of semigroups is rather well
known (see [6]).

PropoSITION 7. Let 8 be a simple subsemigroup of a stable semigroup T.
If 8 contains an idempotent, it is completely simple. If 8 contains no idem-
potent, the D-classes of S are degenerate.

Proof. If § contains an idempotent which is not primitive, then 8
contains a copy of the bicyclic semigroup. But this is impossible since
the bicyclic semigroup admits no stable embeddings. Now suppose 8
contains no idempotents and a non-degenerate D-class. Since § is simple,
it is entirely contained in some F-class of 7. From the fact thab T is
stable we know that this ¥-class is necessarily a D-class, D, of T and D is
regular. Now § contains a non-trivial ©-class, hence S must contain
a non-trivial £- or R-class. Assuming the latter we have that there is
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an element @ ¢ § such that a < a8 = a&?, ie., a = abb’ for some b, b’ ¢ 8.
For te T, let R; and L; denote the £- and R-classes in 7' which contain ¢.
Since T is stable and @, b and ab belong to D we have abeLp n R, [3].
Thus by Green’s theorem [10] we have (Law)b’ = (In)b’ = L, and so
bb' € Lg. Now if @ ¢ Ly, then & = ta for some ¢ € T 50 4bb’ = tabb’ = ta = .
Thus we have (bb')bb’ = bb’ which is impossible since § containg no
idempotent.

CoROLLARY. Let 8 be a left simple semigroup having no proper homo-
morphic images. Then either S is a group or 8 has no idempotent and no
non-constant homomorphism into a stable semigroup. In particular, S is
degenerate.

Proof. If § has an idempotent then 8 is the direct product of a group
and a left zero semigroup. The latter is therefore trivial. If § has no idem-
potent then there remains only to show that § cannot be embedded in
a stable semigroup. By Proposition 2 if § had such an embedding D would
be trivial. The existence of semigroups which are left simple and have
no proper homomeorphic images has been well established (see for
example [6]).

The Baer—Levi semigroups which are right cancellative and right
simple also furnish examples. Specifically let S be the set of all one-to-one
mapping ¢ of X into itself such that X\a(X) is infinite and X is count-
able. (See [24].) Later on we shall construct a D-trivial simple semigroup

which is a subsemigroup of a compact group. At this point however let
us note the following.

An unstable subsemigroup of a zero dimensional compact group. As Green [10]
has remarked, the semigroup S generated by a,b,c¢, d, %,y subject to
awb = y and cyd =  is such that = y(¥) but & =& y(D). There is a natural
image of § in the group generated by the same generators and relations.
The latter, however, is free since we may eliminate successively as follows:

{a,bye,d,z,y: avb=vy, eyd =2y, <a,b,e,d,s cazbd = x) ,

<a,b,¢,dyo e=wd 7w Yy, <a,b,d, o).

The image of § is thus in a free group and is, therefore, residually finite.

The bicyclic semigroup furnishes us with a D-simple semigroup,
having degenerate subgroups, and which is not residually finite or even
residually stable. However, even in the case of a completely simple semi-
group with finite structural group one need not have residual finiteness.

We now fix our attention on completely simple semigroups. We
recall again & number of pertinent facts: A completely simple semigroup 8
can be characterized as a four tuple (X,Y, G,p). Here X and Y are
respectively left and right trivial semigroups, ¢ is a group and p is

icm
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a function from X x ¥ to G. The multiplication is given by (=, v, 9)(Z, 7, §)
= (z,7,90(%, )7). The sets X and ¥ are, in point of fact, the quotient
semigroups S/£ and 8/R. The structural group @ is taken as H, for any
idempotent e. These are all mutually isomorphic. It is well known, and
not difficult to see, that a homomorphic image of a completely simple
semigroup is again completely simple and a compact semigroup which
contains a dense completely simple subsemigroup is again completely
simple. The above characterization of a completely simple semigroup
carries over, in the appropriate manner, to the compact case (Wallace [27]).
The group H, in this case is compact, the quotient semigroups §/C and
§/® are compact and the sandwich function as it were, p: §/€x §/R —H,
is continuous. One further item of importance is that the canonical
mappings 8 —8/£ and 8 —8/R are open. (This can be noted by an ar.\alysis
of the decomposition.) In fact, if D is a D-class of a compact semigroup
then the canonical maps D —D/f and D DR are open [2].

Let us consider the nature of the Bohr compactification of & com-
pletely simple semigroup. First of all, we assert that if (X', X', G, p") is
the representation according to Rees of S as a four-tuple, then we must
have X'= B(X) and Y’ = p(X). (Here, p(T) is the Stone—(‘)eeh' com-
pactification of T.) To see this note that SJf is a left trivial semigroup
so that any continuous mapping f of 8/C to any compact space T can
be viewed ag a continuous homomorphism by endowing T yv}th .the left
trivial multiplication. By the nature of the Bohr compactification, the
following diagram commutes.

§— 8L
2

— l
§—=8/t—T

Thus AS{/\E is, by uniqueness, B(X) = B(8/L). Likewise B(Y) = B(8/R)

= S//E{ Furthermore G’ is a compact group having a dense CO;Il‘ti]'JllOuS
homomorphic image of G. Now &' is, of course, a homomorphic image
of G and it may be proper. _ '
Tet us consider the following question: Given a dense representatmz;
G @', when can the sandwich function p be “extendedf’ to B(X) % ﬂ(I’):
This, of course, includes the question of when the subresidnal compactng:s
of @ extends to that of S. Otherwise said, when can oneé complete the
diagram below? ’
(BX)x B(Y) @
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where i, and i, are canonical maps. To this end, we establish the following
proposition which will give us a criterion for the subresidual compactness
of certain completely simple semigroups.

Lemua. Let X, Y be complete regular Ty, C compact Ty, f: X X ¥ —C
continuous. Then f has a continuous extension to X XBY iff V, an
entourage on C, implies there are open sets Us, ..., Uy 1 X and open sets
Vis ey Vi in X such that {U; XV} covers X XY and if ¢ and y are in
UsxV;i (i=1,...,n) then (f(z),f(y)) 7.

Proof. If f has a continuous extension, say ?, to X % BY then f is
uniformly continuous and the condition follows. To prove the condition
is also sufficient, recall the theorem of Frolik [9]:

fi IXY I (=[0,1]) has a continuous extengion to BX XSY
iff &> 0 implies there is U, XVy, Uy XVy, ..., UnXVy a cover of X XY
(Us open in X, ¥ open in ¥) such that @, y ¢ U; xV; implies |f(z) —f(y)]
< & Now let g: 0 —I be any continuous function. We will show that g o f
satisfies the condition of Frolik, hence has an extension g o f, to fX x fY.
Let & >0, then since g is uniformly continuous, there is an entourage V
in C such that (2,y) eV implies |g(z)—g(y)| <e. Now for V we have
a cover {U; xVi} of X x ¥ with open sets such that @,y « Us XV, implies

(F(&), @) € V thus |gof(@)—g o fy)] <e Now let e: ¢ >I®®D be the
evaluation map and define

i BXXBY e(C) by f(@)(g)=g-F(x).

Clearly j: is continuous since ¢ o f is continuous and for z ¢ X XY,
F(2)(g) = g = f(2) = g < f(2) = f(2)(g) hence flxxyr=6oF.

We shall say that the matrix function p of a completely simple
semigroup 8 = (X, Y, &, p) satisfies the condition of Frolik if 6P satisfies
the conditions of the previous lemma, with § one to one.

) ProPOSITION 8. A completely simple semigroup (X,Y, @, p) is sub-
residually compact if and only if it satisfies the condition of Frolik.
Now frorn the above it follows, as in the examples, that there exist
comple’gely simple semigroups having finite structural groups which are
not residually finite, and indeed not subresidually compact.

‘ The following gives at least onme condition which suffices to imply
residual finiteness for such semigroups.

PrOPOSITION 9. Let S be o completely 0-simple semigroup. If the

structural group eSe, €® = e, is residually finite and if SJL (or 8IR) is finite
then S is residually finite.

Proof. Suppose 2,y ¢ § and z and y do not belong to the same
maxm}al subgroup of S. Then # is not R-equivalent to y or z is not
£-equivalent to y. Suppose the former case obtains. The natural mapping
of 8 onto S/R is a homomorphism and S/R is a left trivial semigroupb.

|
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Now consider the two point set {0, 1} endowed with left trivial mulbipli-
cation. Map S/R onto {0,1} by Rs—1, B;—0, By # R.. This is clearly
2 homomorphism distinguishing B, and Ry. Now the composition maps §
pomomorphically onto {0, 1} distinguishing # and y. Now suppose # and y
are contained in the same maximal subgroup @ of §. First, recall that & is
isomorphie to eS¢ and § is isomorphic to G°X I XA where multiplication
iy given by (g,¢,4) (¢ ,A)y= (gp(i', Mg, 1, l/) where p:. I XA -G %S
o function and I is /R, A is §/C. Since @ is residually finite, there is
2 homomorphism J/T: G-F where I is a finite group and II{(z) # II(y).
Now let g: I xA—~F° be given by g = II°p then F*x I x4 i a com,plﬁtel:v
simple semigroup where multiplication is given by ( Iai, A)( f , 0, 2)
= (fa(i', Vf'5 1, ) and the function II%: G xIx A~>F°>i_I><A defined by
g, i, ) = (I1%g), i, 2) is a homomorphism such that 1"1“(39) +# III".(’g').’W_e
now define a congruence, ~, upon FOxIxA by (f,i,)~(f,4, 1) if
f=71'i="1", and ¢(3, A)=q(i, N)foralliel By a result~ of Te.m.mm [Z?f]
~ is a congruence. One easily sees that (Fox I xA)]~ is a finite semi-
group distinguishing @ and y.

ProposrrioN 10. Let 8 be a regular  semigroup such that eqch ﬂ?-class
has only finitely many J&- classes. If each mawimal subgroup of 8 is residually
finite then S is residually finite.

Proof. Since S is regular, we know from Theorem 3:21 of [6] tha%t
the direct sum of all of the Schiltzenberger rep?esentatmns and' t1'1e1r
duals yields a faithful representation of 8. Thus., if » and ¥ %re d1§t1ncti
elements of & there is a D-class, D, such that either the Schiltzenberger
vepresentation s-—Mp(s) or its dual, s—+Mb(s), separates fromuy.frWe
may assume then, without loss, that Mp(z) = M D(?f)' We reca omi
section 3.5 of [6] that the representation, s —>Mp(s), i8 py matflcels me*e?3
I'(H)® — the Schiitzenberger group of any J@-c.la:.ss of D with g zel_g (; %ﬂ; W{:
adjoined. Since, by hypothesis, D has only fl_mtely Je-classes, it follows,
from the construction of these representations, .tha.t the maﬁncﬁes_ in
question are » by n, Le. finite. Moreover, sinefe S 1§ regular, I'(H) ll)s 1}530—
morphic to some maximal subgroup H, GODF&?ned in the ﬂ)-ciass (.)mtz
hypothesis then, I'(H) =2 He is residually finite. C!_‘hus, afy ‘V:!tl)epﬁnite
of I'(H) can be separated by some homomorphism 0(1}1 ;)he,sofinduces
group G Now if f is a homomorphism from T@H ) onto o 0nto mduces
2 homomorphism from any semigroup of maﬁmees OYer T((l . ) o) s
group of matrices over @. (The group & wth_ @ Zero o ‘]Oln Of. o ,7;
f induces a homomorphism from Mp(8), which is & sgmlgloup o 3
matrices over I'(H)’, to a semigroup of m by m matrices over G _

In particular, the element Mp(x) zmd. JI.ID(y) of Mp(R) cal;e?;i :ffig
rated by some homomorphism into @ flplte semigroup —a g
of n by m matrices over a finite group with zero.
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As shown earlier, the question of a simple semigroup S which is

subresidually compact has two parts. Tf § has an idempotent then it is
already completely simple and so Proposition 9 applies. If, on the other
hand, 8 has no idempotent, it may or may not be subresidually compact.
A simple semigroup which is cancellative, without idempotent, and
9D-trivial which is not subresidually compact is given in Example 6.
That a simple semigroup which is D-trivial and without idempotent can
be a subsemigroup of a compact semigroup is given by the following:

PROPOSITION 11. Any compact connected non-abelian group contains
a subsemigroup which is simple and without idempotent. (It is necessarily
D-trivial.)

We shall make use of a construction due originally to Croisot. Let 8
be a free semigroup generated by sy, 83, S5, ..., and let X be the free semi-
group generated by ay and by where 4 and j run over the positive integers.
Let 8’ be the free product of .§ and X subject to the relations s; = a;;8;b45.
Now let F be the group generated by these same generators and relations.
It follows readily that F' is a free group on the gemerators ag, b, ;.
Moreover, 8 is embedded in F under asy;->asy, bij—by and s;—> a;18 b;;.

We now define 8, inductively by

8,=8,
8= 8,
Sn— Sa’z—l

Finally, we set T = [ 1) 8u. As Croisot has noted, T' is cancellative,

countable, simple, D-trivial, and without idempotent. From the nature
'of the construetion, each 8, is embedded in the appropriate free group F,
in the same way that § was embedded in 7. Just as §,C 8,C 8, C ... 50
is B, C F,CF, ... It follows that T' is embedded in a free group on a (count-
ably) infinite set of generators. Baleerzyk and Mycielski[5]have shown that
any compact connected non-abelian group contains a copy of a free
group on 2 generators. (

From the proof of Proposition 11 one can conclude that every
CPmpact connected non-abelian group econtains a copy of a particnla‘r
simple semigroup without idempotent, namely T. o

‘ Example 2 provides an idempotent semigroup which is not sub-
remdua-.lly compact. It is easy to see than an idempotent abelian semi-
group is embeddable in a cartesian product of two element semigroups

La]leme;gt [15] has considered the class of regular semigroups suhjem;
to the eondltwps that each D-class be a completely simple subsemigroup
and that for idempotents e, 7, g, the conditions f<e g<e and fﬁ)lg
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imply f= g. Howie [13], has noted that the second condition imposed
on the class of idempotent semigroups yields a variety. Now the law
Howie uses is in fact equivalent to the law

An idempotent semigroup belonging to this variety is called naturally
ordered. In this context one should see Yamada [29], who earlier con-
sidered this class of idempotent semigroups.

PROPOSITION 12. A naturally ordered idempotent semigroup is re-
sidually finite.

Since §/D is a semi-lattice, and since a semi-lattice is well known
to be residually finite we may assume that the points to be separated
by a finite congruence, say # and ¥, lie in the same D-class. (In this
situation D = §.) We then have homomorphisms

8—2s 8D —ts T L T

where ¢ is the natural homomorphism. Let the homomorphism f be
defined by the retracting endomorphism of 8/D which is multiplication
by a(z). Thus p(g) = a(x)g= a{y)g. Now the set

a(@) (8/DN\{e(z)}
is an ideal Q of §/D. Hence we may form the Rees quotient by S by the ideal

a7 B7HQ) -

Denote this Rees quotient by S’ and let s s’ the natural homomorphism.
Note that Dy is sent faithfully into 8. Now if s; is any non-zero element
of 8§’ we must have

s¢ Dy DysoC Dy s

and Ds; may be identified with Ds,. Now if Dy is an arbitrary non-zero
D-clags of 8 we map Dy into Dy by sending p € Dy to that unique
element £ in D, such that ¢ < p. This mapping yields an endomorphism
since p—t, gy implies <P, ¥< ¢ which gives ay < pg 80 pg-—>xy.
Thus § is residually a rectangular band with zero (= a completely simple
idempotent semigroup with zero). Hence S is residually finite.

Tndeed S is residual with respect to semigroups of orders 2 and 3,
where the former is with zero and identity the latter left or right trivial
with zero. i

Tet us note now that some condition is necessary for a completely
simple semigroup to be residually finite even though one keeps a finite
structural group.
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ExavpPLeE 1. There exists a completely simple semigroup whose
structural group is finite but which is not itself residually finite. Let G be
a non-trivial finite group and let I = A be the set of positive integers.
Define the function

pr IxA-@G

subject to p(1l, A) = p(i, 1) = e = the identity of &, p(n,n) = e, p(m, n)
Feform=1, n*1, m#=n

For example, if ¢ = Z, = {x, ¢} the matrix function could be viewed
as the matrix

e xr e xw..

e T Xx T e

Now if f: (G,I,4,p)>(G,I*, A*, p*) is a homomorphism onto
and G* is not trivial, we must have G = G* since @ is simple. However,
in this case we would also have I = I* and 4 = A* since no two rows
coincide and no two columns coincide.

In point of fact, a semigroup such as the above with say I = 4 = the

positive mt.egers, P a8 before and G = Z,, is not even subresidually compact.
Indeed, ¢ is constant on each #-class.

. ExsaywprE 2. Sain [21], has constructed the following semigroup
Whl(_zh is id.empotent and i3 not residually finite. We shall n‘(-)te that this
semigroup is not even subresidually compact. The semigroup is as follows:
Within the full transformation semigroup on the positive integers
let 4 be composed of those mappings which are constant: i) =1 ;11 %7
Let B be the set of all mappings & such that b(1)=1, b()’l) =2 and b(n;
€{1,2} for all n=23,4,.. Let C= 4w B be the desired semigroup

We need first, the following )

. lLEOI\m;A. in CTO ”I;e c: co;n};actfs;r:nigrmm and let A; and B; where
=1,2,3, .. mpact subsets o such that A { ;

Sfor all 1. If Jor each i the product A,B; contains X, y X Cfi -;17:;1 _Z%dcﬁ:t;'af;;

where A is the common part of the A; and B is the'cow;mon part of thle B;.

icm
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As a corollary to the above, we note that the semigroup of Sain is
not a subsemigroup of a compact semigroup. In effect, using the same
notation as before, let X consist of the elements a, and a,. Let an, con-
verge to say a and let b, converge to say f. Now it follows readily that

aﬂi{bnu bni+1, } oX.

From this we obtain an immediate contradiction, namely ¢f D X.
This is immediate from the lemma for example 2.

BxAMpLE 3. There exists an abelian semigroup which is not sub-
residually compaet. The semigroup 4 will be generated by the elements
&, Y, Gy, Ggy wor D1y by, .. SUDJeCH B0 the following relations: a;b; = » whenever
i<j and y when i>j.

Now suppose 4 is a subsemigroup of a compact semigroup. Let ay,
be a sequence of ay’s and by, e a sequence of by’s converging to say «
and p respectively. Moreover suppose things have been arranged so that

ny<mg for all 7.

Tt follows that «f must be both # and y yielding a contradiction.

One thing to observe here is thab although 2? = oy = y? we do not
have z == y. That is to say, 4 is not separative.

ExamprE 4. Let L be a left trivial semigroup (that is to say, #y = &
all z, y). Clearly the Stone-Cech compactification coincides with L. Note
that any mapping from I to a compact space X can be viewed as a homo-
morphism by endowing X with the left trivial multiplication. The same
remarks hold for L xZL so that

BLxE) = LxE.

Suppose that the set for L is, say, the set of integers. It is well known
that B(L) % B(L) and B(L xL) do not coincide. Thus Bohr compactification
does not commute with cartesian products even in the finite case. The
same remarks can be made by using a zero trivial semigroup (i.e. all
products equal to some fixed element). This example will then be abelian.

BxamrLe 5. The semigroup S of 2 x 2 matrices
vy
o]
where ¢ and y are positive integers. The semigroup § is not algebrai(.zally
embeddable in a compaet group. To see this one has only to note that in S,

[ R S A
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o3l

01

could not be separated from the identity with a unitary representation.
Tt should be noted however that & is residually finite nil. To see

this one has only to examine the Rees quotients of cerfain ideals.
BExXAMPLE 6. There exists a simple, D-trivial cancellative semigroup

From [25], it follows that

without idempotent which is not subresidually compact. Let S be the.

semigroup of matrices

3]

01
where # and y are positive and rational. To see that S is not a subsemi-
group of a -compact semigroup suppose on the com that it were.
Since § is simple it follows that S is completely 3. The natural
mapping § +8/¢ defines a homomorphism onto a rigl vial semigroup.

Tt follows readily that the homomorphism must be «nt on the ma-
trices of the form

o 3

01

and from this that i must be corstant on all of §. In the same way the
map S8 —>S/R is trivial so that § is contained in a single %-class and is
thus a group. From the previous example it is immediate that this is
impossible.

Exampre 7. The bicyclic semigroup C(p, g). We recall that C(p, ¢)
is defined as the monoid on two generators p and g subject to the relation
pg = identity. (For a detailed description of this semigroup, see [5].)
Now (p,¢) has Z = infegers as maximal group image. Moreover any
proper homomorphic image of C(p, ¢) is a cyclic group. Finally C(p, ¢)
can not be embedded in a compact semigroup. Now let 7' he a compach
semigroup and y a dense representation of C(p, ¢) into 7. From what
has been said above, it follows that there is a commutative diagram

A
AN
AN
AN
.
\L
C(p, 9)——T

iom°
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where Z denotes the integers. This diagram extends to

|
ZT\:xx
Cw,q) — T

PN ~
and by the uniqueness of the compactification we see that C(p, )= Z.

ExAMPLE 8. There exists a 2-soluble (meta abelian) group which
is not maximally almost periodic. As noted in [26] the group of mappings
z—ax-+b of the line where a >0, a, b rational is the semi-direct product
of the multiplicative non-zero rationals and the additive rationals. This
group has no finite images and, as predicted by Proposition 5, its Bohr
compactification is that of the additive rationals. Because of a result
of Hall [11], a 2-soluble non-maximally almost periodie group can not be
finitely generated.

ExAMPLE 9. As Fluch 18] has observed, there is a finitely presented
group which is minimal most periodie. This is the example of Higman
on four generators and tions. Each quotient group of this group is
infinite.

Exavprm 10. There exists a three-step soluble group (i.e. &' = {1})
which is finitely generated and not maximally almost periodie. As before,
it suffices to show that G is not residually finite. This is precisely the
group that is constructed in [11].

Ag is shown in [11] any two-step finitely generated soluble group is
residually finite.

ExXAMPLE 11. There exists a two-nilpotent group which is not maxi-
mally almost periodic. Tndeed from above, any non-abelian, divisible
nilpotent group will suffice. Of course, such a group can not be finitely
generated.

Exampie 12. If § is an ordered idempotent semigroup then 8 is
zero dimensional. Thus, & curious application of the Bohr compactification
iy the existence of dimension raising homomorphisms. (See [1].) To see
that S is zero dimensional note first that the order of § is carried over
to 8. Now it follows that the only possible component of § would be
an are. Hence if [, 4] were some non-degenerate component of S we
must necessarily have 8(s) e (&, &) for some s ¢ 8, and indeed for infinitely
many elements of S since § is dense in 8. However § is obviously residually
finite so that Proposition 1 yields thdiction.
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Tawson [15] has constructed a one dimensional compact connected

semi lattice with identity which has no homomorphisms onto an interval
and consequently is not the continuous image of 2 zero dimensional compact
semi lattice. It follows then that the discrete version of that semi lattice
cannot have a Bohr compactification which is zero dimensional.
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