. @
196 H. Gonshor Im

References

[11 A. Bernstein, A new kind of compactness for topological spaces, Fund. Math
66 (1970), pp. 185-193. '
(21 L. Gillman and M. Jerison, Rings of continuous functions, 1960.

Regu par le Rédaction le 17, 11. 1970 .
Remarks on open-closed mappings

by
J. Chaber (Warszawa)

T this paper we shall investigate the invariance and the inverse
invariance of some topological properties under open-closed mappings.
Tn the first section we shall prove a generalization of theorems proved
by N. Dykes [4] and A. V. Arhangel'skil [2] which shows a conneection
between the classes of open-closed and open-perfect mappings. In the
second section we shall consider inverse images of complete spaces ()
under open-closed, open, and closed mappings. The last section is devoted
$o an investigation of invariance and inverse invariance of axioms of
separation. In particular, we generalize (and simplify) an example of
M. Henriksen and J. R. Isbell from [12] to show that an inverse image
of a normal, complete space under an open-perfect mapping need not
be completely regular.

We shall use the terminology and notation from [3]. By a mapping
we always mean a continuous function. Perfect mappings will be assumed
to be defined on Hausdorff spaces.

We shall often use the following simple -eriteria for the openness
and closedness of mappings: A mapping f: X Y is open iff the image
of each element of a base of X is open in ¥; f is closed iff f{X) = Y and
for each point ¢ in ¥ and an open set U in X which contains f(y) there
exists a neighbourhood V of y in ¥ such that f(V)C U.

1. Invariance of real-compactness and strong paracompactness. In this
section the following notion will be widely applied.

DerFNITION 1.1. A space Y will be called a ¢-space iff for each non-
isolated point ¥ ¢ ¥ and each sequence {Uu)-: of neighbourhoods of ¥
there exists a set {yntn-1 Which is not closed and is such thab yn € Uy for
every .

_ () By a complete space we always mean a space Which is comjg)lete m the sense
of Cech. A space with the topology induced by complete uniformity Wﬂl‘be ca.]l(j,d
a uniformly complete space (such spaces are also called complete in the sense of Dieudonné).
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TueoREM 1.2. Let f: X >Y be an open-closed mapping of a unﬁomﬂy
complete space X onto a c-space Y. If y is a non-isolated point of Y, then
f ) is compact.

Proof. Let y be a non-isolated point of ¥ and assume that f~'(y) is
not compact. Therefore we can pick a point # of SX\X in the clogure
of f(y) in X and, by the uniform completness of X, we can find a para-
compact space P such that X C P C fX\{z} [9]. Thus there exists alocally
finite open covering W = {U}aes of X such that the closure of U, in gX

does not contain x for any a e A. Since z < F (y)\f (4), the set of ele-
ments of Il which interseet f~*(y) is infinite. Let us choose a countable
subset {Ue,}nw1 consisting of different elements of Il all intersecting 7 ~'(y).
From the assumption that Y is a c¢-space it follows that there exists
a set ¥ = {Ynln-1, Where 9, e f(U,,) for every m, which is not closed.
Let us put M ={r,}n-., where @, is an arbitrary point of the set
F'y) ~ Uy From the loeal finitness of 1[ it follows that M is closed.
On the other hand, N = f(M) is not closed, which "contradicts the
closedness of f.

A similar theorem is proved in [2], 4.1 (the space Y being assumed
to be a %-space) and in [4], 3.3 (the space ¥ being assumed to be
a g-space (%)). As follows from the next two lemmas, Theorem 1.2 is more
general than those two statements.

- Lemwma 1.3: If the space X is the image under an open-closed mapping f
of a regqular space X, then Y is regular.

Proof. As a closed image of a T,-space, Y is a T,-space. Let y e ¥
and let C be 2 closed set in ¥ not eontaining y. Take any point z < f(y)
and disjoint open sets U,VC X such that ze U and FC)C V. The

((;1.)e'n. stets J(U) and Y\f(X\V) contain, respectively, ¥ and € and are
isjoint.

Leyma 1.4, (a) If a regular space ¥ s q-space, then it is also
a c¢-space.

(b) If Y is a k-space, then it is also a c-space. -

Proof. (f%) Let y be a non-isolated point of Y. From the definition
of a g-space it follows that there exists 2 sequence {V,},~, of neighbour-
hoods of y such that each set {¥ntn=1, where y, € V,, and

: t ¥ Yn 7= Ym fOT 7 3£ M
bas an afzcumula,tmn point. Let {Un}nl; be a sequence of neighbourhood;
of y. Using the fact that ¥ is re

, one can easily define a sequence

(*) A space X is called a q-space iff for each poi
) 4 point z e X there exists a sequence
of its neighbourhoods {V,}%° such that each set Wyli» Where g ¢V, and X # 9
for » # m, has an aecumulation point [14]. e reon 7 i
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{Gn}n=1 of open sets and a sequence {yu}n-: of elements of ¥ which satisfy
the following conditions:

(1) G=Un¥: and G Upain T D Gai D Goiroy,

(2) Yn € G\Gni1.

From (1) and (2) it follows that ys ¢ Vy and yn # ym for n £ m; there-
fore {yn}n-1 has an accumulation point which, as follows from (2), does
not belong t0 {Ya}nei. Then the set {y}r—; is not closed and, as yu € Uy
for every #, it follows that ¥ is a ¢-space.

(b) Let ¥ be an accumulation point of ¥. There exists a compact
set B C Y such that y is an aceumulation point of F. As a compact space;
F is a regular g-space. Hence, by virtue of (a), the point g satisfies the
condition from Definition 1.1 in the subspace F and a fortiori in the
space Y. ‘

We shall now give two examples to show that implications (a) and (b)
of Lemma 1.4 are independent and that their converses are false.

The space obtained from the Euclidean plane by mateching a line
to a point i a normal k-space which is not a g-space. The following
example of a normal ¢-space which is not a k-space is due to R. En-
gelking.

ExavmpPLE 1.5. Let X be the space of all ordinals not greater than w,
that are not cofinal with w,. The space X is normal {[5], Problem 3.C).
From the construction it follows that X is countably compaet, and
hence X is a g-space. The set X\{w,} is not closed, but its intersection
with every compact subset of X is closed because the compact subsets
of X are of power not greater than x,. Thus X is not a k-space.

- Using our Theorem 1.2, one can easily generalize Theorem 4.4 from [2]
and Corollary 4.4 from [4] (see also [16] and [13], 6.6). Namely, we have

TeEroREM 1.6. If f: XY is an open-closed mapping of a strongly
paracompact (real-compact) space X (°) onto a c-space Y, then the space
Y is strongly paracompact (réal-compact).

At last let us observe that, by virtue of Lemma 1.4, the class of
¢-spaces contains all spaces satistying the first axiom of countability,
countably compact regular spaces and p-spaces in the sense of Arhan-
gel'skii (4). In particular, locally compact spaces and complete spaces
are c-spaces ([1], 2.3).

(®) Real-compact spaces and paracompact spaces are uniformly complete, see [5],
p. 336 and Problem 8.0.

(*) A completely regular space X is called a p-space iff in some (or, equ.ivalenﬂy,
in each) of its compactifications rX there exists a sequence {H”}:’;l of coverings of X
open in rX and such that for each z in X we bave ﬁ St(x, ?.In) C X [1]. Cleaxly, every
p-Space is a g-space [14], and it can be verified that it is also a k-space ([1], 2.7).
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2. Spaces complete in the sense of Cech. All spaces considered in thig
section are assumed to be completely regular. In the next section we
shall show that this assumption is necessary.

To begin with, we shall prove a lemma.

Leya 2.1, If f: XY is a closed mapping of a space X onto a com.-
plete space Y which has a closed counteble covering {0} such that o]
sets f(Cs) are complete, then X s complete. ‘

Proof. Let F: fX->fY be the extension of f over pX. Each get
"0 is closed in X and isva, Gs-set in f7Y(C,) (in this proof closures
will always be taken in the Cech-Stone compactifications) and therefore
X= LIJ FHOY is & Gy-set in Z = L{ F7Y(Ci). The inverse image F~Y(7)

1= = .

of the complete space ¥ under the mapping F is a G5-set in AX. Then
to prove our lemma it suffices to show that F~%(¥)C Z. We shall prove
that for {=1,2,.. we have

FO)CF Y0

Let us assume that for some ¢ there exists a point z eFTHONSHOW.
Let U be a neighbourhood of # in fX such that U FNC) =@, The
point F(x) belongs to (;C Y and, on the other hand, we have

Fa)eYnPUnX)=YnF(TnX)=fTnXC Y\O:,
and the lemma is proved.

From the f‘a,ct .tha,t an inverse image of a complete space under
% perfect mapping is complete ([12], 2.2, 2.7), one can easily deduce,

using Theorem 1.2 and Lemma 2.1, the following theorem.

Zl[‘}IEOREM 2.2. Let f: XY be an open-closed mapping of umformly
complete space X cmto.a. complete space Y such that the inverses of points
are complete. If the derived set ¥° of Y is a Gs-set in Y, then X is complete.

We shall show that none of the asg ions i
— umptions in Theorem 2.2 can be

5 Exawrrr 2.3. Let us Put Y=WxI and ¥ = Y X WN\[(V x I)X
P {m}}], where W denotes the space of all ordinals not greater than
o, V= W\{fm},_ and I is the closed interval [0, 1]. It is easy to check
that the projection f: X ¥ ig open and closed (cf. the pi'oof in [11] of
the.fact that the projection parallel to a countably compact axis onto
a first countable space is closed). The invers

compact, Y is & compact space and ¥* —
because it is not a @,-

the faet that X is not uniformly complete,

icm
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BExAMPLE 2.4. Let oD be the Aleksandrov compactification of an
uncountable discrete space D and wN the Aleksandrov compactification
of the countable discrete space N; let X = oN X oD\[{wM\XN)xD]. The
projectidn f+ X »¥Y = oD is both open and closed, the inverses of points
under f are locally compact and Y is a compact space. The space X is
a Lindelof space and therefore it is uniformly complete, but X is not
complete because it is not a G;-seb in its compactification wXN X mD.
This i due to the fact that the derived set 7% is not a Gs-setin Y.

A similar example was defined by Filippov in [7] for a different
purpose. :

We shall now show that the assumption of openness of f in Theo-
rem 2.2 cannot be omitited. This is a consequence of the following theorem
(to obtain the corresponding counter-example we take Y =1I).

THEOREM 2.5. In order that every inverse image of @ space Y under
o closed mapping with complele inverses of points be complete it is necessary
and sufficient that Y be a complete space which can be expressed as a count-
able wnion of diserete closed subspaces. Moreover, if Y is a paracompact
(Lindeldf) space, we can vesirict ourselves to paracompact (Lindeldfy inverse
images of Y. B

Proof. From Lemma 2.1 it follows that our condition is sufficient;
we shall show that it is also necessary.

Tet #Y be an arbitrary compactification of the space ¥ and let wl
be the Aleksandrov compactification of the set of integers with discrete
topology.

We ghall define a topology in the seb

Z = oN xrY\[(oN\{1}) x (rT\1)],

taking as neighbourhoods of all points of the form (n, ¥) e Z\[{1}xrY)CZ
the sets

(O\@H X {v},

where U is a neighbourhood of # in oN. For all points of the form (1, y)
e{l}xrY CZ we shall take as neighbourhoods the sets

[oN X (V ~ T\H] v ({1} xV),

where V is a neighbourhood of y in r¥. Let us take X = .N ® Y with t.h.e
topology of a subspace of Z. It is easy %o check that Z s & cogmpactﬁ—
cation of X. Moreover, if the space Y is a paracompact {Lmdelof{spa,.ee,
then the space X is also a paracompact (Lindeldf) space. The prOJectm;l
f: X »7¥ is closed and the inverses of points under f are locally compa,eé
If the space X is complete, then the space AX is o-compact, al.:i
hence its discrete subspace o N\N x T is the union of a countable .faa?x ¥
(P, of closed subsets of the subspace oN x T of Z. The projection
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f': oN XYY of the subspace N xY of Z onto Y is closed. As the
restrietion f'|F;: F;—Y is closed and one-to-one, all f'(F;) are closed and
diserete subsets of ¥. Hence {f'(IF;)}7=1 is a countable family consisting
of discrete subspaces which cover ¥, and each f'(F:) is closed in Y.

The assumption of openness of f in Theorem 2.2, however, can be
replaced by the assumption that X is metrizable. Namely, we have the
following theorem:

THEOREM 2.6. Let f+ X =Y be a closed mapping of a metrizable space X
onto a complete space Y.

(a) If the inverses of poinis are complete, then X is complete.

(b) If there exists a metric gx on X such that f~*(y) is complete in this
metric for all y e Y and oy is a complete metric on Y (3), then o = px+
+py o (fXf) is a complete metric on X.

The part (a) of this theorem was also announced in [17].

Proof. (a) Let X be a complete metric space containing X as a dense
subset ([5], 4.3.10). It is sufficlent to prove that X is a Gs-set in X
{[5], 4.3.9 and 4.3.11). Let us put X; = |J Intf (y) = @ Intf Y(y) and

yex¥ Yyel

X, = L,l‘;dFrf_ Y(y). The space X, is complete as the sum of complete
ye -

spaces and hence is & Gs-set of X. The space X, is complete as the inverse
image of the complete space Y* under the perfect mapping f|X, and
hence is also a Gs-set in X. Since X is the union of X, and X,, it follows
that it is & Gs-set in X, and therefore X is a complete space.

) (b) It is easy to check that metrics ¢ and gx are equivalent, and by
virtue of the Cantor theorem ([5], 4.3.4) one can easily prove that the
metric space (X, p) is complete.

In the case where the mapping f is open Theorem 2.2 does not hold
even if one assumes that both X and Y are metric.

ExampLE 2.7. Let X be the space obtained from the square by

removing from its lower base any set homeomorphie to the set of irrational
numbers,. and let f be the projection of X onto its upper base Y. The
space Y is compact, the space X is not complete, the mapping f is open
and has locally compact inverses of points.

In Example 2.7 the inverses of points are metrizable and complete,

but there exists no metric on X such that all inverses of points are com-
plete in this metrie.

(*) From the assumptions of theorem it follg
Frf~(y) is compact for every ye T
([3], Problem 4.U. and 4.3.11).

ws that ¥ is a ¢-space. Therefore
[14] and hence ¥ is metrizable in a complete manner
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TaEoREM 2.8. Let f: X Y be an open mapping of a metric space (X, g)
onto a space Y metrizable in_a complete manner. If the inverses of points
are all complete with respect to o, then X is metrizable in a complele manner.

The proof of Theorem 2.8 and Example 2.7 are due to R. Engelking.

Proof. Let us denote by (i , 0) a space mefrizable in a complete
manner, containing isometrically (X, ) as a dense subset, and such that
there exists an extension F: X ¥ of f: XY ([5], 4.3.10, Problem +.J,
and 4.3.9). We shall prove that the set

G =z e X: Fla, F(F (2))) < 1/n}

is open. for every n. Let » be an arbitrary point of @, and take > 0
such that :

?(m7f—1(1’1(m))) <1jp—e.

The open set U =f(B(m, 1jn—e) n X) is & neighbourhood of F(x) in ¥.
Tt is easy to check that the neighbourhood V= B(x, &) nFH(T) o.f x
in ¥ is contained in G. Hence @, is open. Since the inverses of points
under f are complete in the metric g, it follows that

X=ﬂG7b:
n=1

and that X is metrizable in a complete manner. .

Tiet us finish this section with a few remarks and problems. F]Ibf
of all, let us observe that by a modification of Bxamples 2.3, 2.4 and 2.7
the following can be obtained:

THEOREM 2.9. A necessary condition for a complete space Y th‘at each
of its inverse images wnder an open-closed mapping with compleie m.'oeftses
of points be complete is that every cosed subset of ¥ be a Gy-set. A similar
condition for open mappings is that every subset of Y be a Gs-sel.

The condition for open mappings is not suﬁieiegt. There exists an
open finite-to-one mapping from a countable non-metrizable space X onto
a compact space ¥ (take a point in BN\, a sequence T, Tp, - cox;
verging to @, and map the space X = N U {&, @, .} onlto:LO
= {0,1,1/2, ..} by assigning 0 to 2, and 1/n to n and o, ([6], Examp 631' ]);)1
The space X is paracompact and, by virtue of a theorem of Arhangdi; 1
[3], it cannot be even a p-space. We do not know.x_vhet}.ler t‘h‘e con 1ion
for open-closed mappings is gufficient. This condltmr.l is satisfied when
Y is metrizable. We do not know whether every inverse 1n.1age of a complete
metrizable space under an open-closed mappmg which has complete
(complete and metrizable) inverses of points is complete.
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Theorems 2.5 and 2.9 can be generalized to G(m)-spaces (%), Ty
particular, we infer that a necessary and sufficient condition that each
of the inverse images of a space Y under an open-closed (open or closed)
mapping with locally compact inverses of points be locally compact i
that ¥ Dbe a discrete space.

It is known that an open image of a complete space is complete if
it is paracompact [15], and it need not be complete in general (every
locally complete space is an open image of a complete space, and there exist
([5], Problem 5.P) locally complete non-complete spaces). Examples are
also known which show that a closed image of a complete space need
not be complete. From a theorem of N. Dykes ([4], 3.3) and from the
fact that a perfect image of a complete space is complete ([12], 2.2 and
2.7) it follows that a closed image of a complete and uniformly complete
space is complete if it is a g-space. We do not know whether an open-
closed image of a complete space is complete.

3. Axioms of separation. We shall first investigate the invariance of
separation axioms. 4

Exavpre 3.1 ([6], Example 3). Let us consider the set of integers Z
with a topology in which the only open sets are intervals of the form
{—o0,1). Let us define the equivalence relation T on Z, taking kT it
and only if k—I=%0(mod2). This relation gemerates an open-closed
mapping which does not preserve the T, axiom. )

It is easy to check that a closed (open) image of a T, -space.is (need
not be) a T, -space. However, as has been observed by Mr. K. Alster,
an open-closed image of a T,-space need not be a T,- space.

ExauPLE 3.2. Let us denote by Q the set of rationals and by R the
set of real numbers and let T be the equivalence relation in B given by
the formula tTs if and only if —s < Q. Let us put

T=@x{-1)vRv(@x{l}), Y={-1}URTu{l}.

All points ¢e RCX are open in X. A base at the point (p, —1)eX
consists of all the sets of the form

W= {b», —1}v [(p—e, PN,

where ¢ is a positive number and § is 2 countable subset of R. Similarly,
a base at the point (g, 1) € X consists of all the sets of the form

W= {(g, H}w [(g, Q'i‘s)\s] ’

(*) Let m be a cardinal numher. A co
iff in some (or, equivalently, in each)
power 1 of open sets such that X is th
loeally comps

mpletely regular space X is called a G (m)-space

compactification of X there exists a family of
e intersection of that family [8]. In this notation
<t spaces are (F(0)-spaces and complete spaces are G (No) -spaces.
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where ¢ is 2 positive number and § is a countable subset of R, The space X
with this topology is a T),-space. We shall define funetion f ag follows:

—1 . for zeQx{-1},
fl®) =" [a]r = for . reR, )
1 for zeQx{1}:

The function f generates in ¥ the quotient topology. Applying the fact
that every open subset of ¥ which contains —1 or 1 has a countable
complement, it is easy to check that f is open-closed and that.Y is not
a T,-space. : s i

‘We have proved above that T, is an invariant of

open-closed u}appi]igS
(Lemma 1.3); we have also ) .

THEOREM 3.3. If a space ¥ is the image under an open-closed mapping f
of @ completely regular space X, then T is completely regular.

Proof. The space Y is a T, -space as a closed image of the T -space X.
Let y ¢ Y and let C be a closed subset of ¥ not containing y. Take any
point & e f~(y). Since X is completely regular, there exists a continuous
function h: X I such that h(z) = 1 and R(f7(C)) C {0}. Tt is now easy
to show that the function %°: ¥ I defined by the formula

W(y) = sup{h(a): @ ef ()}
is continuous ([10], 3.4) and separates the point y from the set (.

The Examples are known showing that neither regularity nor com-
plete regularity is preserved by open closed mappings (see e.g. [6],
Examples 4 and 5).

For the sake of completeness let us recall that normality is preserved
by closed mappings ([5], Exercise 1.5.E).

We shall now investigate the inverse invariance of axioms of sepa-
ration under open-perfect mappings. It is known that regularity is an
inverse invariant of perfect mappings [12, 4.2]. Before considering eom-
plete regularity and normality we shall reeall an example, given in [127,
4.2, of a perfect mapping f from a regular but not completely regular
space X onto a completely regular space ¥, We shall deseribe this example
here in a simplified form.

ExampiE 3.4. Let us consider the Cartesian square 4 = Wx W of
the set W of all ordinals not greater than o, with the order topology,
and let us put B = A\{(w,, w,)}. The set of pairs of the form (a, w,) € 4
will be called the lofi edge of 4 and will.be denoted by F-. The set of
pairs of the form (w;, a) ¢ A will be called the right edge of A and will
be denoted by B . Let us notice that for each continuous funetion h: B >R
there exists an oy < w, such that k

1) b((a, o)) = b((wy, @) ~ for a>aq.
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This follows from the fact that none of the sets £ ~ B and B, ~ B egn
Dbe separated from the diagonal D = {(a, a): a < w,} C B ([3], Problem 3.0)
and from the fact that each continuous function defined on V = W\{wl}
is constant beyond an initial interval ([5], p. 131).

Let us define K", for each positive integer n, as the space obtained

n
by identification in the sum k@ Ak, where each A is homeomorphic to 4
=1 bl

of the right edge of A* with the left edge of AF (each point of the form
(ws, ) € A* is identified with the point (a,w;) e A™, k=1, .., n-1)
n
and let g,: ]{:G—)iAk —XK" be the quotient mapping generated by this id( utifi-
cation. Let us put
n
I'= ‘Pﬁ( Bk) i
k=1

where B” is the copy of B in A*. For each 0 < k< we define an open
subset Uz C L", putting

Intg,(B*™) for k=0,
Ui ={ Intg,(B* v B**") for k=1,..,n—1,
Intg,(BY for k=mn.

Let us obzerve that

B

(2) LI'= ) U%, n=1,2
%=0
In the set

g s

X=X,uI,

. © n . .
where X, = ”Q;)lL and Tis the closed interval[—1, 1], weintroduce a topology

in the following way: the set X,, considered as the sum of all L™, is open

in X; for an arbitrary point ¢ eI as a bage 4 i i
! se at the point ¢ in X we tak
the family {H["}m -1, Where P " 'a ’

H'= U UUg(M)VGZ,

n2mseGy

;md {G;}H is a base of neighbourhoods of ¢ in T , and the function # assigns
) exI iry real number « the greatest integer not greater than .
foﬂowé 1;];353;;011(:21:55 mtha.t X fuis & T';-space. From the condition (1) it
: TOUs ction on X is
hence X is not completely regular. comstant on T and

Let f be the quotient mapping identifying the set IC X

which will be denoted in the sequel by w fo & point
2

X=X 0I+X, 0w =7.

icm
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only to show that any neighbourhood H of the point w in ¥ contains
almost all sets L. Let us consider the set f(H). From the ecompactness
of I it follows that there exists an integer m such that

ICIv U\ Uk Cf(H).
n=msel
Let us take an arbitrary s > m. For each 0<k<n we have
Tjn e I and

Uk = Ukam Cf (H) .

Therefore, by virtue of (2), we have L" C f'(H).

The space X is regular as the inverse image of the regular space ¥
under the perfect mapping f. :

In [12] the set X\X; was defined in a different way, which made
the notation and the proof of complete regularity of ¥ more complicated.

We shall now describe an example of an open-perfect mapping g
from the space X defined in the previous example onto a normal space Z.
In this example we shall use the notation introduced in Example 3.4.

FxAMPLE 3.5. The mapping g is the composition of the mapping f
defined above and of the quotient mapping f’ defined on ¥ which is
generated by the identification of all pairs (a, By and (y, 6) such that

min(, §) = min(y, 4)

"and both (o, p) and (y, 6) belong to the same set I" for a certain

n=1,2,..
Tt is easy to see that Z=f'(¥)=@ 7" U {w}, where, for each #,
n=1

V" = ¢(L") is homeomorphic to the space V of all ordinals smaller than w,,
all V" are open in Z, and the neighbourhoods of the point w contain almost
all V™.

The restriction gn = g|L": L"*—g(L") of the mapping g i the restric-
tion of the mapping F: K" —W to the set L" =T (V). Hence g, is perfect,
because Jy is perfect as a mapping defined on the compact space K.

Since each gy is perfect and each neighbourhood of the set g w)=1
in X contains almost all sets L", it follows that g is perfect.

To prove that g is open it suffices to notice that all g, are open and
the image of every set open in X which intersects I is open in Z.

The space Z is normal because it can be embedded in & space of
ordinals.

Finally, let us observe that the space Z is complete. It is easy to
check that it could not be locally compact.
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I am gratefull to doc. R. Engelking' for suggesting the problemsg
and for some valuable remarks. :

Added in proof. A generalization of Theorem 2.8 is contained in H. H. Wicke
and J.M. Worrell, Jr., Open continuous mappings of spaces having bases of countable
order, Duke Math. Journ. 34 (1967), pp. 255-272. One can prove that the theorem
remains valid if ¥ is complete.
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Tate resolutions for commutative graded algebras
over a local ring

by
Tadeusz Jézefiak (Bydgoszcz)

Introduction. Let R be a commutative Noetherian ring with a unib
element.

Tate has construeted in [11] for cyeclic R-modules free resolutions
with additional algebra structure and used them for the study of the
functor Tor®. Only recently (see [4], [8], [10]) it has turned out that for
a local ring B and residue class field % the Tate resolution has an im-
portant property: it is minimal. A minimal resolution F determines
completely the algebra TorF(k,%): we have Tor®(k, k)~F®Fk. These
two properties: the algebra structure and minimality facilitate the in-
vestigation of the structure of the homology of the ring R.

The main purpose of the present paper is to build the theory of Tate
resolutions for graded commutative algebras over a local ring R (called
R-algebras in this paper, cf. (1.1)).

From the existence of the Tate resolution of an R-algebra 4 we
obtain the following formula for the Poincaré series of A:

_ TR R i e 2 e _
(L — ™1 — )L —)™ ...

F(4)

The organization of the paper is-as follows:

In § 1 we recall the definition of an R-algebra and some basic
properties of the category of graded modules over such an R-algebra.

§ 2 contains the definition and properties of a normal sequence in
an R-algebra. The main result of this section is a characterization of
those R-algebras whose unique maximal homogeneous ideal is generated
by a normal sequence. !

In §3 we define bigraded I'-algebras and differential I'-algebras.
Furthermore we present the basic construetion of the differential .I'-al-
gebra A(M; > obtained from the differential I'-algebra A by the ad-
junetion of the R-module M by means of the map ¢: M —=Z(A).

Fundamenta Mathematicae, T. LXXIV | 15


Artur




