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The sequence M;, M,, ... satisfies the hypothesis of Theorem 1, thus
M is indecomposable. For each 4, M; is decomposable, hence M containg
a decomposable continuum. Let H denote the collection to which % belongs
only if, for some i, k is an element of H;. Every element of H has a di-
ameter at least 1 and not greater than 4. Since H* containg M,, which
has a diameter greater than 4, H* has a diameter greater than 4. Thusif ais
a convergent sequence, each term of which is an element of H, the
limiting set. of « is a nondegenerate proper subset of H*. If &£ > 0, there
is an 4 such that 1/i < &, and there is a 6 > 0 such that § < 1(dy , dy) for
each two elements d, and d, of D;, § < l(e,, ;) for each two elements e,
and e, of B, and § < 1(, d) for each element ¢ of B; and each element d
of D; that does not contain an end of the element of H; lying in e but
not in D¥; § is a positive number such that if 2" and A" are two elements
of H and U}, h") < d, then either u(h', k") <e or u(h”, ') < e. Thus
the collection H satisfies the hypothesis of Theorem 2. Since M ig ﬁ*_,
it follows that M is filled up by an upper semi-continuous collection of
mutually exclusive nondegénerate continua.
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One-dimensional n-leaved continua
by
Gail H. Atneosen (Bellingham, Wash.)

It is well-known ([3], p. 60) that all one-dimensional continua are
embeddable in Buclidean 3-dimensional space. A continuum is a compact
connected separable metric space. Continua which are embeddable in
Fuclidean 2-dimensional space are called planar continua; one-dimensional
planar continua have been extensively studied, see for example [8]. In
+this noté we study certain one-dimensional continua that generalize the
notion of planar continua. All planar continua are embeddable in a geo-
metric 2-simplex. An #-book, B(n) for neZ (Z denoting the positive
integers), is the union of » geometric 2-simplexes such thatb each pair of
2-gimplexes meets precisely on a single geometric 1-simplex B on the
face of each. The 2-gimplexes are called the leaves of B(n) and B is its
back. Planar one-dimensional continua are said to be 1-leaved. A one-
dimensional continuum X is said to be n-leaved (n = 3) if X embeds in
B(n) but does not embed in B(k) for 0 <k < n. Of course, there are
one-dimensional continua that are not n-leaved for any n € Z, for example
the universal curve [1]. '

Ttilizing Sierpiriski’s universal plane curve [6], we construct a uni-
versal n-leaved continuum. It is shown that all one-dimensional sub-
continua of a surface (a compact comnected 2-manifold) are n-leaved
where 0 < % < 3. Borsuk ([2], p. 79) has given an example of a locally
plane and locally connected one-dimensional continnum which is not
embeddable in any surface. This continuum is shown to be 3-leaved.

First, we construct a universal n-leaved continmum (n = 2). Let
D, D,, ... be a sequence of closed disks in B(n) such that D, for all i« Z,
does not intersect a 1-simplex in the face of any of the 2-simplexes in

B(n), D D, is dense in B(n), and the diameters of the disks D; converge
=

to zero. Let §(n)= B(n)— GIntlh (Int = interior in the sense of mani-
izl ]

folds). It follows from results of Whyburn [7 1 that 8(n) intersected. with

a leaf of B(n) is homeomorphic to Sierpingki’s universal plane curve and

that if another sequence of disks Hy, By, ... satisfy the same conditions
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as the disks D,, D,, ... then §(n) is homeomorphic to B(n)—J IntB,.
1=1

We next prove that S(n) is a universal n-leaved continuum (n  2).

Tet J denote the ome-dimensional continuum which is the union
of all edges of a tetrahedron and of a segment joining two points lying
in the interiors of two opposite edges of it. Then J is one of Kuratowski’s
primitive skew curves and is not embeddable in the plane [4]. This fact
is needed in -the proof of the following theorem.

THEEOREM 1. S(n) is a one-dimensional n-leaved continwum (n # 2).

- All n-leaved one-dimensional continua are embeddable in 8(n).

Proof. By construction S(n) embeds in B(n). Assume that there
exists an embedding k of S(n) into B(k) for n >3 and 0 <% <=n and
reach a contradiction. Let B’ denote the back of B(n) and B denote the
back of B(k). If ze B'C 8(n) then z is contained in arbitrarily small
subsets of 8(n) homeomorphic to J. Thus A (B’) C B. Since k is a uniform
homeomorphism, it follows that there is a neighborhood N of z in S(n)
and three leaves By, By, B, of B(n) such that A(N ~ (B;v B, U By)) is
contained in precisely two leaves of B (k). But N ~ (B, v B, v B,) contains.
a subset homeomorphic to J which is not embeddable in E?. Thus such
a homeomorphism % does not exist and §(n) is n-leaved.

Fig. 1

lf. X is a one-dimensional n-leaved continuum then it follows from
reasoning analogous to that of the Sierpifiski universal plame curve
that X embeds in S(n).
Lemma. All surfaces with non-empty boundary embed in a 3-book.
. Proof. It is well'known that all compact connected 2-manifolds
with non-empty boundary are homeomorphic to (i) a disk with 7 > 0
single loops and % > 0 double loops or (ii) a disk with # > 0 single loops
and ¢>> 0 twisted loops ([5], p. 43). Thus to prove that all compact
connected 2-manifolds embed in a 3-book, it suffices to consider only
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disks with various types of loops. Figure 1 indicates that such “digks”
can be embedded in a 3-book.

The next theorem follows immediately from the above lemma.

THEOREM 2. One-dimensional subcontinua of a surface are n-leaved,
0 < n<3.

K. Borsuk has given an éxample of a locally plane and locally con-
nected -one-dimensional continuum Y which is not embeddable in any
surface ([2], p. 79). We use the notation of Borsuk. Figure 2 part (a)

(b

Fig. 2
shows an embedding of X,u X,u X;—c.d, in B(3). In general, if
CpXi—onradnys has Deen embedded in B(3), then Xuu—Curaduis i8
=1
embedded in B(3) as in Figure 2 part (b). Thus continuing in this manner

" it is clear that X embeds in B(3) and also that ¥ embeds in B(3). Hence

there exist locally plane and locally connected one-dimensional eontinua
that are 3-leaved but do not embed in any surface.

References

{11 R.D. Anderson, 4 characterization of the universal curve and & proof of its homo-
geneity, Ann. of Math. 67 (1958), Pp. 313-324. ;

{2] K. Borsuk, On embedding curves in surfaces, Fund. Math'. 59 (1966), pp. 73-89.

[3] W. Hurewicz and H. Wallman, Dimension Theory, Prmoeton‘1948.

[4] K. Kuratowski, Sur Te probléme des courbes gauches en topologie, Fund. Math..
15 (1930), pp. 271-283.

(5] W.Massey, Algebraic Topology: An Introduction, Harcourt, Brace, and World
1967. ) .

6] W.Sierpinski, Sur une courbe caniorienne, Comptes Rendus Acad. Sci. Paris 162
(1916), pp. 620-632. o

[71 G. T. Whyburn, Topological characterization of the Sierpinski curve, Fund. Math.
45 (1958), pp. 320-324. )

[8] — Amalytic Topology, Amer. Math. Soe. Collog. Pub., vol. 28, New Y.ork 1942.

Regu par la Rédaction le 10. 8. 1970



Artur




