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Geometrical arguments concerning
two-sided submanifolds, flat submanifolds
and pinched bicollars *

by
T. B. Rushing (Salt Lake City, Utah)

1. Expository discussion of two-sidedness and main results. A connected
n-manifold M" without boundary in the interior of an (n+1)-manifold
N is two-sided if there is a connected open neighborhood U of M in N
such that U—M has exactly two components each of which is open in N
and each of which has M as its frontier relative to U. A connected
n-manifold M™ with boundary contained in the interior of an (n +1)-mani-
fold ¥N™*' is two-sided if Int M™ is two-sided. It is easy to obtain sub-
manifolds which are not two-sided. For instance, the center 1-sphere
of a Mébius band is not two-sided in the Mobius band and s Mobius band
in E® is not two-sided. An embedding f of a connected m-manifold M™
into the interior of an (n--1)-manifold N™™ will be said to be two-sided
if (") is two-sided in N"*. Of course, it is possible to have one embedding
of a manifold M™ into a manifold ¥™™ which is two-sided and another
which is not. (For instance, there are two such embeddings of §* into
a Mobius band.) However, if the manifolds M and N possess certain
properties, one naturally suspects that every embedding of M into N is
two-sided. One classical result of this nature is the Jordan—Brouwer
separation theorem which has as a corollary that every embedding of 8™
into 8" is two-sided. Brouwer’s techniques can be generalized to show
that every embedding of a closed (i.e., compact and without boundary),
orientable %-manifold into 8§ is two-sided. Of course, the orientability
condition in the previous sentence can be removed since a non-orientable,
closed n-manifold cannot be embedded in 8™ (c.f., p. 179 of {5]).
However, it is false that every embedding of a mnonclosed #-manifold
into 8" is two-sided, since such embeddable manifolds do mot have
to be orientable. The duality techniques of algebraic ‘topology used to
establish the above results do not seem to suffice even to show that every
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embedding of a non-closed, orientable n-manifold into S"** is two-sided.
In fact, about the most general result of this nature that one can obtain
with those techniques seems to be that an orientable, closed n-manifold
in an orientable, closed (n-1)-manifold with n-dimensional Betti number
zéro is two-sided (c.f., p. 294 of [10]) (*). Many times, howéver, one is only
interested in locally flat embeddings, as we shall see later in this paper.
Our first theorem states that locally flat embeddings of simply-connected
n-manifolds into arbitrary (n-1)-manifolds are two-sided. (Of course,
simply connected manifolds are orientable (c.f., p. 116 of [5]).) The proof
is completely geometrical and involves no algebraic topology. Thus, for
the speecial case of locally flat embeddings of closed, simply-connected
manifolds, the classical result mentioned above can be proved without
using algebraic topology or the formal notion of orientability. In faet,
for such embeddings, that result is generalized by dropping the require-
ment that the ambient manifold be orientable and have (n)- Betti number
zero. It is quite important to notice that our first theorem is not true
if the simply-comnectivity hypothesis is replaced by an orientability
hypothesis. To see an example, take a Mobius band with the boundary
excluded and cross it with (0, 1). Then, the center 1-sphere crossed with
(0, 1) is a locally flat, orientable (non-simply-connected) submanifold of
the product which is not two-sided. By taking further products with (0,1),
this example generalizes to higher dimensions. Similar examples, where
the manifolds are closed, are obfained by taking the natural inclusion
of each odd dimensional projective space into the next higher even di-
mensional projective space.

Because of the innocent appearance of the first result, especially
for the case the ambient manifold is B, it is natural for one to feel
that he ean find a rigorous half-page proof in a few minutes. Perhaps
it would be wise to comment on what the author believes is the “obvious
proof” of Theorem 1 that would quickly oceur to almost any topologist.

“Well, we have this orientable n-manifold ™ sitting in B™Y, so
at every point  of M we have some local orientation. N ow, take a flattening
neighborheod of M at 2 and point your index finger in the direction of
the orientation and eall the part of the flattening neighborhood in the
direction your thumb is pointing the plus part and the part in the other
direetion the minus part of the flattening neighborhood. Now after cutting
down the flatfening neighborhoods a bit, it is-easy to see that their union
is a connected neighborhood of M which is separated by M into the part
made up of the uhion of all the plus parts of the flattening neighborhoods

{*) John Bryant and David Galewski have pointed out that more general results

than_ﬂ{is can be obtained by non-geometrical methods which involve applying a rather
sophisticated sequence argument in 2 covering space.
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and the part made up of the union of all the minng parts of the flattening
neighborhoods”.

Even if this argument were put in precise language, it would not
work, because it does not use any properties of the ambient manifold
nor does it use the fact that M is simply connected. The two examples
at the end of the paragraph before last demonstrate the problem with
this argument.

Let X be a topological space and Y a subset of X. Then, Y is collared
in X if there is a homeomorphism % carrying ¥ x [0,1] onto a neighbor-
hood of Y such that h(y,0)=1y for all ye Y. We call h(Y X[0,1])
@ collar of ¥ in X. If there is a homeomorphism h carrying ¥x[—1,1]
onto a neighborhood of ¥ such that h{y, 0) =y for all y ¢ Y, then Y is
bicollared in X. We call h(¥X[—1,1]) & bicollar of ¥ in X. Let
fi: M*->N""" be an embedding of an #-manifold without boundary M™
into the interior of an (n+1)-manifold N Then, f is flat if (M) is
bicollared in N. Now, suppose that M™ is an %-manifold with boundary
and let H"= M" U, (Bd M"x[0,1)) where g: Bd M->—Bd Mx0 is
defined by g(#) = (x, 0). Then, an embedding f: M"—>Int(N™™) is flat
if f extends to an embedding f of M" into Int(N™") which is flat. In
Theorem 2, we will show that every locally flat embedding of a connected,
simply-connected n-manifold M™ into the interior of an arbitrary (n-1)-
manifold N"*? is flat.

Suppose that M™ is an n-submanifold of the (n--1)-manifold N+
and that Z is a closed subset of M™. If there is a homeomorphism

ht (M x[—1,1])/(z, )~ (2, 0) if 22, —1 <t<1]>N
such that h([(2, 0)]) = 2 and
Pu(Z, M, N) = h((M X [—1,1])[[(#, D) ~(2,0) if z¢Z, —1 <t 1))

18 a neighborhood of M— % in ¥, then we call Py(%, M, N) a bicollar of
M in N pinched at Z. Pinched collars are defined similarly. Theorem 3
asserts that if M™ is an n-manifold which is contained in Int(N"*") and
Z is a closed subset of M™ such that M — Z is connected, simply connected
and locally flat in N™*, then there is a bicollar of M in N pinched at Z.
One simple application of this result would-be to establish, for n—1 > 4,
the existence of the bicollar of.a certain cell pinched at an interior point
of the cell which is assumed to exist in the first paragraph of the proof
of Theorem 3 of [6]. Evidently, the author of that excellent paper based
its existence on his assertion in the last paragraph of Section 1 that a locally
flat embedding is flat in codimension one, which, of course, is false unless
the embedding is two-sided.
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2. Formal statements and proofs of results. Throughout this section,
exeept for the lemma, we assumeé that « >> 4. For the case n = 4, we
also assume that the manifold M" can support a PL structure.

TEmma. Let D* be o k-cell with bicollared boundary in a comnected
E-manifold M*. Then, for any point & e M", there is a k-cell DE with bi-
collared boundary such that o e IntDE and D* U DE lies in the interior of
a k-cell with bicollared boundary.

Proof. Consider the set X of all points # of M* for which there is
a k-cell D% with bicollared boundary such that # ¢ Int D% and D* u DF
Lies in the interior of a %-cell with bicollared boundary. Certainly,
InD*C X and so X is nonempty. It is routine to show that X is both
open and closed and so the lemma follows since M is connected.

THEOREM 1. 4 connected, simply-connected n-manifold M™ which is
comtained ocally flatly in the interior of an arbitrary (w+1) - manifold N™+*
is two-sided.

Of course, it is only necessary to establish the case that Bd M= @.
Since the proof is somewhat long, we break it down into the following
steps. (These steps give an outline of the proof.)

Step 1. For a fixed point p of M, we construct a flattening (% --1)-cell
neighborhood Dy*' of M in N at p and define the plus part, 4Dt
and the minus part, —Dj*" of DiF.

Step 2. We cover M with a collection of flattening (n-1)-cell -

neighborhoods by putting each point = of M in a certain flattening
{n+1)-cell, denoted by D7™. Then, we generate another cover of
flattening (n--1)-cells which contains the previous cover as a proper
subset by defining for each £ > 0 and each y e D2 A I 5 sub-flattening
“(n+1)-cell, “DJY, of DI which contains . Finally, we define the plus
part, +"D3%, and the minus part, —“D3, of D" relative to the Dt
and —D3™" mentioned in Step 1.

Step 3. In order to know that +"D%* and —“Dyit are well-defined,
we must show that their determination is independent of the choice of

Part a) & certain homeomorphism kg, and

Part b? & certain n-cell D* (the simple connectivity is used here)
each of which will have been construeted in completing Step 2.

Step 4. We take a countable subcover {D5H)2, of the cover (D% Mpenr
mentioned in Step 2 and “eut down” its members to obtain a new collec-
tion of flattening (n--1)-cells denoted by {2,
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Step 5. We take the U in the definition of two-sideness to he
UIntdy ™" and show that M separates it into the two eomplementa‘ry‘
T=1 .

domains |JInt(+dy) and U Int(—dz™). (This step involves use of

the seconzi 1cover constructed tili Step 2.)

Notation. Lef I'=[~1,1]and I*' = I*X I, For a point y e IF,
let N(I%, y) = {# e I"| dist (=, ¥) < &}, which is a closed k-cell, and let
L= NI 9)x I Teb  +I = 1*x[0,1], —I*'— I¥x[_1, o],
I = I A I and —IE = TR A ket

Proof of Step 1. Fix a point p of M™ and let W, be a neighbor-
hood of p in N"** for which there is a homeomorphism h: (Wp, Wy M)
(B, B"). Let Dp™ = h™(I"*") and D= D* A M. Then, Dy is
an n-cell with bicollared boundary in the conmnected %-manifold M,
as in the statement of the lemma. Let hy: (D', DIF' A~ M = DY
——(I"", I") denote A|Dp*" and denote hy(+I**Y) by +DF™ and
h;—l(_I’n+1) by ——.D;+1, .

Proof of Step 2. Now let # be an arbitrary point of M. By the
lemma, there is an 7-cell Dy with bicollared houndary such that z e Int Dz
and Dy v Dy lies in the interior of an n-cell with bicollared boundary.
It is easy to see (by an argument similar to the one in the preceding step
that we may assume that there is an (n-1)-cell D™ C N**! such that
D;¥'~nM=D; and a homeomorphism hy: D, Dy~ M = DY
——(I"*!, I"). For y « Int.D}, we will use the notation “Di — hz'( Tne)
and *Df,, = h;l(N W{I7, hx((t/))) =“Dyj ~ M. As observed above, DIu Db
is contained in the interior of an n-cell with bicollared boundary, hence,
for each y e Int.D} and &> 0, Df w “Df, i contained in the interior of
an n-cell with bicollared boundary.

‘We wish now to define +"D;! and —“DZ2. Tn order to do so let D"
be any n-cell with bicollared boundary which contains Dy o "Dg . in its -
interior. (We know that such ©™s exist by the last sentence of the
preceding paragraph.) Let hp: Up——E"™™ be a homeomorphism of
a neighborhood Ug of D" such that hg(D™) C B (D" is locally flat by
transitivity of local flatness, hence Ug and kg exist by [71.) It is easy
to show that there is some & > 0 such that ke, (I" X [0, £]) is a neighbor-
hood of hq(IntDy) in either BT or E™. (Without loss of generality,
we may assume that hgph, (I" X [0, ]) is a neighborhood of ha(Int D)
in BY™ sinee if not, we could follow kg by a reflection of E*** about E™)
Now there is a 6 >0 such that either hphz*{N.(I", haly)) X [0, 8} is
a neighborhood of hq(Int“D%,) in BV or E™™. If the former is the case
leb  4-"D5% = R (+Intn.) and —"Di = hp'(—Tnig.), but if the
latter is the case let 4+-“Dpi — by (—Inia,.) and —“Di = bz (+I3i6.)-
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Proof of Step 3. Part a). We now show independence of the
choiee of kg of Step 2. In order to do so fix an n-cell D with bicollared
boundary in M such that Djv “Dj, CIntD and suppose that kg and kg
are two homeomorphisms of neighborhoods Up and Up of D, onto E"*
such that k(D) and k(D) are contained in F* and for which there exists
some ¢ > 0 such that hghy (I" X [0, £]) and hiphy (I" X [0, &]) are neighbor-
hoods of ho(IntDY) and kap(IutD}), respectively, in B Let D’ be a bi-
collared n-cell contained in IntD concentric with D such that Dy v "D,
C Int9’. Then, obviously hq(D’) is collared in B In fact, we can easily
obtain a collar C of hg(D') in EY such that
1. }H—)I(G)C Upn U%Ds
2. Lub. {dist(s,9)| £,y <ha(D)} < dist (ho(D'), B"— hao(D)),
and i

3. Lub. {dist(z,y)| #<hph3'(C),y <hp(D)} < dist (hp(D'), B"— hip(D).

It is not hard to conclude that hHh5'(C) is a collar of hip(D’) in B,
First, we can find some point in khphp'(C) ~ BY™ since by definition
of ke for small {>0, there are points (z,?) e I™x[0,1] such that
hohy (2, 1) C € ~ EY* and by definition of hy, hp h;l((a;, 1)) C B
from which it follows that hpk,'((z, 1)) « BY™ ~ hphp'(0). Now, if all of
hphs'(C—E*) were not contained in B , we could easily obtain the
contradiction that hphs'(C—E™ is not connected.

We have assumed that hg and hg have the property that there exists
some £ > 0 such that hph, (I" X [0, £]) and hphy (1" X [0, &]) are neighbor-
hoods of ho(Int.Dp) and hp(Int Dp), respectively, in E%™. By choosing e
perhaps smaller, we can add the conditions thab

ok (I" X [0,2]) C €

Suppose that there is a 6 >0 such that hphz'(N,(I", hul(y)) % [0, 5))
is_;aa neiglilzorhood of ho(Int“D;,.) in BY™. Then, we defined +“D2% to be
bz {4+ Iy, .). By choosing the above 6 perhaps smaller, we can as-
sume that ’

hohe (N.(I", haly)) [0, 6] C 0.

Thus, since Aphp'(C) is a collar of hy(D') in B, it follows that
ké)k,‘[N,(I,,hx(y))x[o,é}) I8 a neighborhood of hiy(IntDE%) in B2,
and so if hyp were used to define 47D, the same seb as determined
by k9 would result.

In the case that there exists a & > 0 such that hyhs W1, () %
% [0,4]) is a neighborhood of ho(Int*D},) in ™™, an argument similar
to the above would show that the determination of +°Dpt and —°Di%
would be the same whether we use hq, or h3 as the defining h(;meomo o

and  hphy (I"X [0, €]) C hphpY(0)

rphism.
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Part b). We are now ready to show that the determination of +7 D
T+ o T : n

and —“Dy; is independent of the choice of D", In order to do so, suppose
that we have two n-cells D" and D in M™ with bicollared boundaries
each of which contains Dy w D, in its interior, First, we wish to establish
the following claim: the independence of the determination of +°Dp
and —Dy will follow if we can show that there is a homeomorphism h
of the pair (N, M") onto itself such that h(D%) CD®™ and RINN**, p) o
U NN y) =1 for some >0, where N N"'y) represents the
&-neighborhood of y in N™M, .

Let hp be a hoineomorphism of U.g) , constructed in Step 2, onto
Bt such that ho(D") C E" and for which there is an s> 0 such that
hohy"(I"% [0, €]) is a neighborhood of ho(IntDZ) in E%™. Let us
assume that there is a 8 > 0 such that hghy I(N,(I“, ha(y)) X [0, 5]) is a
neighborhood of kp(Int®Dj,) in EY™. (The proof of the case where
hohg (N{I" ha(y)) X [0, 6]} is a neighborhood of hg(Int®Dy,)in B is
similar to this case.) Now consider the homeomorphism kg, = gk of Uy,
= 1"(Up) onto B"*. Since h(DE) C D", we have that hg (D) C B™. It fol-
lows easily from the fact that kN (N™, p) = 1, that there exists a ¢” > 0
such that ho,hy (I"X [0, e]) is a neighborhood of g, (Int DY) in B,
Also, since 2| N, (N", y) = 1, it follows that there is a & > 0 such that
ho s (NI, ha(y)) X [0, 6)) is a neighborhood of ho(Int"Dj,) in B
and the claim is established.

Now we will establish the above claim. First, run an arc a, from y
out the radial structure on ”.D;,s and on out the radial structure of a collar
C, of BA”Dj,, on the outside of *Dj., to a point ¥’ in Int D™ ~ Int Di.
Similarly, run an arc g, from p out the radial structure on Dy and on out
the radial structure of a collar €, of Bd.Djy, on the outside of Dy, to
2 point p’ in Int D™ ~ Int D¥. Now p’ and 4’ can be connected by a locally
flat arc ap in IntD"—(Dy v “Dy,) and p’ and y' can be connected by
a locally flat are ap, in Int Di—(Dy v “D5.). By taming ay v ap vay v
v (ap, » Int D™ in a PL structure on Int D" and then applying general
position, we may assume that ap n ap, = p’ v ¥, that ap N (ap v ap, v
v ay) = p’, and that ay ~ (ep v ap, v ap) =y'. (To do the taming one
could use [4], for instance.) Since M is simply-connected, M ' = M—
—(°Di,u O, w D% Op) is simply-connected and so the simple closed
eurve ap w ap, bounds a singular disk D, in M’. We would like for
ap v agp, to bound a real, locally flat disk in M'. If M could support
a triangulation, this would follow by general position for n > 5. However,
for the case M is a topological manifold, we can obtain the desired disk 4*
by applying taming and general position on small patches of Ds and M™
(ef. [2])..Now in the case n =4, we can apply general position to get
a singular digk D; having point singularities. Choose a small real disk D"
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in TntDj. Then, BAD” and Bd D= ap v ap, are homotopic and since
for n = 4 we are assuming M can support a PL structure, we can carry
Bd D" onto BdD; with a space homeomorphism by standard unknotting
theorems (c.f., Theorem 24 of [11]). Hence, again ap v ap, bounds a locally
flat real disk, d* )

Let o be a locally flat arc in @ ~ Int D" with endpoints p’ and 3’
such that Intef) C Intd® and let ap, be a locally flat arc in d* ~ Int D%
with endpoints p’ and »’ such that Intefp, C Intd> Since d* is locally flat
in M", it follows from [7] that there is a meighborhood U in M™ such
that (U, @)~ (¥", I'). Thus, there is-a locally flat n-cell @" in U such
that (4", &) is a trivial cell pair. By using Lemma 3.6 of [8], we may
assume that d" ~ (*Dj, v oy v Dy U ap) =y’ wp’. Notice that (d", ap)
and {d", ap,) are also trivial cell pairs, hence, by unknotting locally flat

cell pairs, there is 3 homeomorphism %, of 4" onto itself such that
’ 1|Bdd" =1 and Rk(ah,)= dbp. (To unknot cell pairs see [3]. The case
% =4 follows from standard taming theorems and PL wunknotting
theorems.) Now, by transitivity of local flatness, d” is locally flat in N™*,
hence, by applying the lemma in the appendix of [7] and Lemma 3.6
of [8], we ean obtain a locally flat (n-11)-cell @"™ in ¥N™ such that
@~ M= d". Tt is easy to extend h, to a homeomorphism h, of d™"
such that h/Bdd™*' = 1. Let ks represent the extension of h, over N"*!
by way of the identity. Then, k, is a homeomorphism of (N***, M) onto
itself such that Ryey v ad, v ap)=aywdpvay and kN, (V™ y) o
NN py =1 for some ¢>0, (However, h; is not the homeo-
rmorphism k which we seek for it is not necessarily true that hy(D¥) C D™)

‘We have that the boundary of hy(DE) is bicollared in M™ and so let D"
represent a locally flat n-cell in M™ which is the union of hy(D%) and
a closed collar of Bdhy(DE) on the ountside of hy(D%). By stretching out
the collar, we can get a homeomorphism ks of D" onto itself which iz the
identitynan BdD" and on a small neighborhood of of) and is such that
Riy{hy(D5)) C D™. Again, since D™ is locally flat in N"" we can apply the
lemma i? the appendix of [7] and Lemma 3.6 of [8] to obtain an (n-1)-
cell 5™ in ¥™* such that D" ~ 3 — D Now, by taking a suspension
extension of k,, we can obtain a homeomorphism hy of D" onto itself
sueh that hBAD™' =1 and hslNe(N“H,p) o NN y) =1 for some
&> 0. Let hy represent the extension of &, to ¥ by way of the identity.
Then, & = hehy is clearly the homeomorphism that we seek, and this
concludes the proof that +*Di*! ang —“Dy are well-defined.

Proof of Step 4. Let {Dg+]}st denote the first cover of M men-

tioned in. Step 2. Sinee M iz separable, we can get a countable sub-
cover which we denote by {D3™12,. Then, there is associated- with
each a¢ a homeomorphism h,: (D%, DE A M = Diy s (1 m

3 ? -
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Let (@1, D3 ', Dy, hay) correspond to (p, Dy*, Dy, k) constructed in Step 1

and in terms of which +"Dj¥ and —*D3* were defined in Step 2. Then,

corresponding to each D™, we have a +Dy = "Dl and a —pu
=

= —"p¥E. Tt would be nice if we could take U1 Int D3 as the connected
i=

open set U in the definition of two-sideness and argue that M separates U

into the two complementary domains | J Int(-+D%™) and [j Tnt(—DEH).

i==1 i=1'

This will not work though, since it is easy to see that the later two sets

do not have to be disjoint. However, this is the raw idea of the remainder

of the proof, but it will be necessary to cut the DZ‘H’S down to make

it work. _

Let do ' = DG, +dpt = 403, —dif = —DEF' and By =
Now, we have the homeomorphism k,,: (D", D%,) ——[I*™, ). Without
loss of generality, we may suppose that D3 = bz (+I"") and —D%
= h(—I"*"). It is not difficult to show that there exists an e > 0 such
that Bz (I"X (0, &) » —de" =0 and k("X [—&, 0) A +d5™" = 0.
Let dgy " = hg (I"X [— &3, 85]). Let hh,: I [— &y, 5] >—>I"*" be defined
by teking & X [—e,, ] linearly onto @ x[—1,1] for each # «I" and let
ﬁzz = hénha:z' i ot " ”

Inductively, we have the homeomorphism h,,: (Dz; , Dg,) —>—> 1(1" , I’:)
and without loss of generality we may suppose that D = g (4+I™")

and —Di™ = hp (—I™™). Tt is not difficult to show that there exists
k—1 .

an & >0 such that Az (I"X (0, &) (| l—d‘;';“)ze and kg (I"x
1= ~

k-1 — .
X[, 0)) ~ (U +d5") = 0. Let dg ' = hoy(I"X [—&s, &]) and define
i=1 —
i Similar to ghe definition of k., above. '
Proof of Step 5. We take the U in the definition of two-sideness

to be GIntde’ . Certainly, U is connected since M is connected. It is
i=1

also clear by construction that the two open sets ;L;JlInt(—{- ) and

Glnt(-—d’;f Yy are disjoint. Fence, the proof will be complete after we

i=1

show that the two sets igllnt(—{—dg,‘fl) and iQInt(—d’;,“) are connected.
We will only show that iCJlInt(+d2f '} is connected for the proof

thzmt'D Int(—dn™) is connected would be similar. Let z be an arbitrary

pointz_olf U) Int(+ @), Then, it will suffice to show that there is an

i=1

© . 1
are in |JInt(+d%") which connects z to some point of Int(+dp™)
i=1 ’

Fundamenta Mathematicae, T. LXXIV 6
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sinee Int(+d3™) is connected. Certainly, there exists some positive
integer k such that z e Int(+dz; ). Let d denote d;,*" ~ M = D7, and a7,
denote dy " ~ M = D%,. Then, there is some n-cell D" in M with hi-
collared boundary such that dj v dy, C Int D". By transitivity of local
flatness D" is locally flat in ¥"** and so by [7] there is & homeomorphism hq
of some neighborhood Ugp of D™ in N onto B such that he(D") = I
We may also assume that kg is such that there exists-an e > 0.such that
ko Fy'(I" % [0, €]) is a neighborhood of hp(dp) in EL™. Now, for each.
point y e Int D", there is some dz, in M such that y «d%,. Hence, there
is some ®d3, C Int D" such that y e “d7,. Let V=MHL1€5DInt (+™dy3"), where

1R — @ and %N =+ @ Then, VC () Tnt(+dn").
iZ1

Hence, it will suffice to show that there is an arc in V which connects ¢
to a point of Int{+dpt"). . : ,
It follows from the construction of the --™dyi“s that hq(V) is
a neighborhood of Inthg(D") = I" in F%*. Thus, it easy to run an arc «
from hgi(z) down the product structure of ho(Int(-dj")) until it is very
close to IntI" in Ei™* and then through the neighborhood hqp(V) until
it reaches a point of hp(Int(+dy™)). Then, h3'(a) is the arc that we sought
and the proof is complete. o '

TEEOREM 2. Every locally flat embedding f of a connected, simply-
connected n-manifold M into the interior of an arbitrary (n-+1)-mani-
fold ¥*** is flat.

Proof. If the boundary of M is empty,~then Theorem 2 follows
immediately from Theorem 1 and Theorem 3 of [1]. Suppose Bd M = @.

We will first establish the fact that there is a homeomorphism ¢ of &
onto itself such that q(f(M)) is a locally flat subset of f(Int M). By local
flatness, choose a countable collection {DF™ ot (n+1)-cells in N such
that there is a homeomorphism hs: (D}, DP* A f(1 )) - (I, I%) and
such that f(Bd M) is contained in the union of the interiors of members
of {D7*'}. Let {DT™} be a collection of (n—1}-cells whose interiors cover
f(Bd M) such that Di™* C Int D} ~ f(Bd M). Let &, be a homeomorphism
of (I"*', I*) onto itself such that :

BIBAI™ =1, KINCIT and ki 1) CIntI%.

Define kj: Dy*™! ~> D! by & = hl_lklh

1 and define ¢, to be the extension
of & to all of N by the identity. '

Now to obtain g,, repeat the above construction where (¢,f, ¢,(DF),
a(Di™), higi) plays the role of (f, DY, D by
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Given ¢y, ..., &, -obtain grx+1 by going through the construction
where (gx - ¢:f, @ - (DT, @i oo (DT, hegi* ... 7Y plays the role
of (f, ¥, DV k).

Then, ¢ = ... §:¢,f is the homeomorphism desired.

Since ¢(f(M)) is locally flat in f(Int o), it follows that f(M)—
—g(f(Int M)) is a manifold and as such has a collared boundary by [1].
Thus, there is a homeomorphism 1: (Bd M x [0, 1))—-»(f(ll{)——q(f(1ntM)))
such that A(z,0) = ¢f(z) for xeBd M. By the first sentence of
this proof, f(Int M) is bicollared in N; hence, gf(M) u ([0, 1)) is bicol-
lared in N. Finally, q_l(gf(M) v {0, 1))) =f(M) v g A (0, 1)) is bicollared
in ¥. But, if M= M™ v ,(Bd M"x [0, 1)) where g: Bd M- Bd M x 0
is defined by g(2)=(2,0), then f: M"-> Int(N"*") extends to
T B ——Int(N"*") Dbe letting flz,t) = ¢ *Alz, 7). Since we have just
seen F(H) = F(M) w g_ll([O, 1)) to be bicollared, the conclusion follows.

Remark. A special case of the above proof yields that a locally flat
(n—1)-sphere in 8" is bicollared. Hence, it is not necessary to use the
Jordan-Brower Separation Theorem to obtain this result as is usually done.

TEEOREM 3. If M™ is an n-manifold which is contained in the interior
of an (n-+1)-manifold N*** and Z is & closed subset of M™ such that M — 7
is connected, simply-connected and locally flat in N1, then there is a bicollar
of M in N pinched at Z.

Proof. Theorem 3 follows immediately from Theorem 1 and the
Pinched Bicollar Lemma of [9].
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