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Cardinal properties of lattice ordered groups

by
J. Jakubik (KoSice)

Pierce [6], [7] defined a cardinal property of complete Boolean
algebras as a rule that assigns to any complete Boolean algebra B
a cardinal fB sueh that fB, = fB, whenever B, and B, are isomorphie.
He proved that if f is increasing, then each complete Boolean algebra B
can be decomposed into & complete direct product of Boolean algebras B;
that are homogeneous with regard to f. The aim of this note is to prove
some analogical results for lattice ordered groups. In § 1 there are studied
“increasing” cardinal properties. In § 2° we prove that a complete and
laterally complete [-group G is a complete direct product of I-groups G«
such that either any two non-tfrivial intervals of Gy are finite or they
have the same length; in § 3 an analogical theorem concerning the powers
of intervals is proved.

§ 0. Preliminaries. We shall use the standard notations for lattices
and lattice ordered groups (cf. [1], [2]). Let & be an I-group; the group
operation is denoted by -- and the lattice operations by A, V.If z, ye @
and zAy = 0, then z and y are said to be disjoint (this fact is denoted
by @ y). A subset X C G is disjoint if 2 > 0 for any » ¢ X and any two
distinet elements of X are disjoint. ¥ §x (¥ 6 X) means that the ele-
ment # (each element of X) is disjoint with each element y of the set Y.
Let @7 = {x e G: 2> 0} and for any X C &% write X’ = {y e G": X 67}
G is laterally complete if for any disjoint subset {z,} C G there exists
V. €@ Let L be a lattice, a,b e¢L, a<b. The interval [a,b] is the
set {wel: a <z <b}; [a,b] is 2 non-trivial interval, if a # b. [a, b] is
a prime interval when -card [a,b]= 2. L is a bounded lattice if it is an
interval. A subset X CI is convex if [a, b] C X whenever a and b belong
to X. A set Y CL is a closed sublattice of L if {y.} CL, V¥ =y implies
¥ ¢ ¥, and dually. '

Let T #+ @ be a set and for any 4 < I let H; be an l-group. The com-
plele direct product H = IT*H; (1 eI) is the system of all vectors
h = (.., hi, ...)ier, hs € Hy, With operations +, A, Vv that are performed
componentwise; then H is an l-group. Instead of ks we write also A(i)-
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The I-subgroup K of H consisting of all elements % ¢ H such that the
set I(k)= {t e I: k(i) 0} is finite is the (discrete) direct product of
I-groups H;. An l-subgroup @ of H is cal}ed a complele subdirect product
of I-groups H; if for any ¢ eI and any 1" € Hy, there is an element g ¢ ¢
satistying g(ip) = 1", g(i) = 0 for any 4 < I, i+ 4,. Let .4, B be I-ideals
of an I-group G. If A ~ B = {0}, A+B = @, then @ is isomorphic to the
direet product of -groups 4 and Bj; in such a case we write G = A xB.
The additive linearly ordered growp of all integers (all reals) is denoted
by N(R,).

Let B be the class of all bounded lattices containing more than one
element and let X be the class of all cardinals. Let f be a mapping of the
class B into X-such that fI, = fL, whenever L, is isomorphic to L, and I, y
L, ¢ $. The mapping f is said to be a cardinal property defined on $.
A lattice L is called f-homogeneous if fI, = fL, for any two convex sub-
lattices L, Ly of L such that L,, L, e $. If card L = 1, then no sublattice
of I belongs to B and hence L is f-homogeneous for any cardinal prop-
erty f. A cardinal property f is imereasing if fI, < fL, for any pair of
lattices L, L, €  such that L, is a convex sublattice of I,.

§ 1. Increasing cardinal properties. Let G {0} and let f be an in-
creasing cardinal property on the class $. We shall consider the followin;
eonditions on f: '
(e) If e, 0<t (1=1,2), f[0,%4]=f[0,] and if [0,¢] and
[0,1,] are f-homogeneous, then f[0,t,--£,] = f[0, t,].
- (e) If he @, 0<t, <t < iy FI0, 8,]=f[0, %], V=1 and if the
Intervals [0, ;] are f-homogeneous (4 =1, 2, ...), then f[0, #]= f[0, #,]!
Le't -:& ]?e the set of all eardinals « such that f[a, b]= « for some
non-trivial interval [a, b] of @ and for any. a € A& write
Xe={re@: 2> 0,f0,s] < a} v {0},
Yo= {yeG: ¥>0,f[0,y] < ap v {0},
Zo=(Y.), Ady=1ZX.nZ,.
1.1. Assume that (c,) is valid. Tet o e £, Then -
(i) the set 4, is an ideal of the lattice G+ and a subsemigroup of G*,
(11) fla, b1= o for any non-trivial interval [a, b] of A,
(i) 4.8 Ap for amy Be, psa. ’
Proof. Let{ e 1> 0. [
he clomment 1 e} - Then t « Xe, wheneo f10, 1) < a. It {0, 1] < o
e e g8 %0 Y, and since ¢ ¢ Z,, we have ¢ § t, a contradiétion;
8 implies that f{0,{] = a. Let heds, 0 <t <t Sinee f is increasing
JI0, 4] < @, whenee ¢, ¢ X,. From Yoot if follows that Y, s t; thu;

tieZ, andi ed, . If 0 <t <% then the interval [t,,¢] is isomorphic

to [0,1—4) and 0<i—t, <t; therefore f[t,, #]— a and (ii) holds. Let
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1,1y € Aay 3> 0, 1> 0. Clearly, AL, € Aq, too. According to (i) and (c,)
0, +%] = a and hence #,+1, ¢ Xo. Moreover, from ¥,8%, Y.61, we
get Y.0 (3,4 1,); thus #,+14, € Z, and t,+1, e 4,. Since 0 < v, <t -1,
the element ¢, Vi, belongs to 4, as well; so the assertion (i) is proved.
Let B e, f # a. If 4, 6 A5 does not hold, then by (i) we have ? e 4, ~ 4,,
t> 0 and according to (ii) f[0,{]= a, f[0,t] = B, a contradiction.

1.2. If (e,) is fulfilled, t e &, t> 0, f[0,1] = a, and the interval [0, 1]
is f-homogeneous, then te A,.

Proof. Clearly te X,. Let y ¢ Yo, tAy=u. If u> 0, then f[0, u}
< fl[0,y] < a and, at the same time, [0, u]C [0, ¢], whence f[0, u] = a,
a contradiction. Therefore Y, d¢ and thus te 4,.

From 1.1 and 1.2 we obtain the following:

1.3. Assume that (c;) holds and let ae . Let F, be the family of all
convex sublattices L, of the latlice G such that 0 ¢ L, and flt, tal = a for
any non-trivial interval of L. Then A, is the greatest element of the family F,
(ordered by set-inclusion).

1.4. Let (c;) be valid and for any ae# let B,= {l € G: there exist
., 1y € Ag such that —t; <t <t,}. Then (i) Bq is an l-ideal of the - group G
(ii) fla, b] = a for any non-trivial interval [a, b] of Be; (iii) Ba » B = {0}
for each B e, § # a. .

Proof. If te Ba, then clearly —te B, and from 1.1 (i) it follows
that B, is a subsemigroup of G; henee B, is a subgroup.of @. From this
and from the convexity of A, we infer that B, is a convex subset of ¢
and therefore by the definition of B, the element tvO0 belongs to B. for
any ¢ e By; thus B, is a convex I-subgroup of ¢. For proving that B, is
normal it suffices to verify that 4.= B is a normal subset of G Let
teds, 1>0, ze@ and write ¢ = —x+t-+». Since the intervals [0, 1]
and [0,1'] are isomorphic, it follows from 1.1 (ii) and 1.2 that #' e 4.
thus (i) holds. Let [a, b] be a non-trivial interval of B, ; then [a, b] is
isomorphic to [0,b—a]l and [0,b—a] C 4., whence f[a,d]=a If
weBy By, a# p, x+#0, then 0 = |#] e A, ~ A, a contradietion.

1.5. Let (c;) be valid and let G, be the family of all convex sublattices L
of @ such that 0 ¢ L and f[t,, t,] = a for any non-trivial interval of L. Then
B, is the greatest element of the family G.

Proof. According to 1.4, B, belongs to the family ¢, . Assume that
Le@,,tel, t+#0.1f [0, 0Vt] is a non-trivial interval, then it is f-homo-
geneous and f[0, 0vi] = «, whence by 1.2 0Vt e Aq. If [0AZ, 0] is a non-
trivial interval, then it is f-homogeneous and isomorphic to [0, —(0AD)];
thus —(0Af) e A,. This implies that 7 ¢ B, and hence L C Ba. =

1.6. TEEOREM. Let f be increasing and assume that (c,) is valid. For
any a ek and g e @ lot Galg) be the family of all-convex sublaitices L of &
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such that g e L and f[i;,1,] = a for each non-irivial interval of L. Let Gog)
be partially ordered by set-inclusion. Then (i) any family Gulg) contains
a greatest element (ihzs will be denoted by Bu(g)); (ii) B(0) is an l-ideal
of G and Bu(g) = Bal0)+g; (iii) Balg) ~ Balg) = {g} for any f e, f # a.

Proof. Liet ge G. The mapping ¢(t) = t+4¢ being an automorphism
of the lattice @, it follows from- 1.5 that B, + ¢ = B.(g) is the greatest
element of the family G.(g); (i) and (iii) are consequences of 1.4.

For any a e + let 4, be the set of all elements ¢ € ¢ that can be written
in the form t= \/ti, {{} C A..

1.7. Let-a e A and assume that (c,) holds. The set A, is a closed ideal
of the lattice G* and o subsemigroup of G. If e, B + a, then A8 H,.
A, is a normal subset of the group G.

Proof. Let ted,, t= Vi, {{i} CAa,t* @ 0<t* <! Since any
lattice ordered group is infinitely distributive ([1]), t* = tAt" = V/ (A L)

- and 1At € 4, by 1.1; therefore t* ¢ A,. Let 8= {s;};esC 4., supS =s.

For any s; ¢ S we have T;C 4, such that s; = supZ;. Thus

s = sup (sup Ty} = sup (|J T);
ied jeJ

since | ) T;C 4., we have s 4,. This proves that A, is-a closed ideal
of the lattice G7. Let t= v, = \/t;, {t:}, {t/}C Aa. Then t-4¢
i€ jeJ

\f \j (t:+13), whence 41t ¢ A,. Further, let fe, f #a, t= \/t,

iel 16
{13 C AL, ¥ = V1, {17} C 4p. According to 1.1, t;A%j =0, and thus, by
using infinite distributivity, ¢A#' = 0. From the normality of A, it follows
that 4, is also normal.

Let us put B.= {f¢G: there exist elements #,,%; e A, such that
—h<t< L)

From 1.7 we immediately obtain the following:

1.7.1. Let a e & and assume that (c,) is fulfilled. The set B, is an Z—uleal
of G. If Be#, f 5 a then B.n By— {0}.

Let us now assume that & is a complete I-group (i. e., that the lattice
G is relatively complete), g ¢ ¢ and for any aedt wrlte
Jo=sup{fe As: 1< g}. .
By the definition of A, g, e 4,.

1.8. Let G be a complete 1-group and suppose that (c,) holds. Then

?he_ﬂ\%ng, (;ﬂea'(:)for any ge G If g = \/h, ( (@ e &), ha e da for each o e A,

Proof. Put Vg, =
—h--g = k; further, let

1) f=min{f[0,5]: 0 <b<k}.

h. Clearly*h < g. Assume that % < g and write
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There exists bye@, 0<by<% such that f[0,Bb,] = p. Then for any
by > 0, b, << by we have [0, b,] < f[0, by] and according to (1) f[0, b,] > 8,
whence the interval [0, b,] is f-homogeneous. Thus, by 1.2, b, ¢ 45. There
is a subset {f;} C A3 such that gz = \/#;. Therefore, we have

gﬁ"f‘bn: (vti)+bo= V(ti‘f‘bo)

and #-+byeds by 1.1. Moreover, ti-+by<gs+by<h-+%k=g, whence
(by the definition of gz) \/ (ti+by) < gs; thus gs+ b, < g, a eontradiction.
Therefore \/ ga=g. If Vha=g, hae 4., then for any aq e

Jao = Ju NG = V (‘gﬂu'/\ ho) = oo A iy

by 1.4. Analogously, we obtain s, = guA hey, Whence gay = Ra,.

In 1.9-1.20 we assume that G is a complete [-group and that (c¢)
is valid.

1.9. For any o e & and any g e G+ , let qﬂa(g) = ¢a. Then @ is a homo-
morphism of the lattice ordered semmmup G onto the lattice ordered semi-
group Ao. For ge A, we have gulg) =g and @plg) =0 whenever fe#,
B #a

Proof. Let g, he G7'. Then g, 6 ¢, fOr any ay, o, ¢ &4, a; # a5, and
thus, by using infinite distributivity, gah = V (g.Aha); further, we have
gvh =V (gaVhs). Since by 1.7 g.Ahe and gaVhe belong to A, it follows
from 1.8 that (gAh)e = gaAha, (§Vh)e = guVha. Moreover,

= = = o+ ).
o= Vgekh= Vo= VY (ot

If a # B, then g, 6 hg, whence (cf. [1]) gat+hp = guVhs < (gt Fa) V (ga+ Dp)s
thus g+ = \/ (ga+Na); therefore, according to 1.7 and 1.8, (g-+h)e

= ot . Hence @. is an homomorphism. From the definition of g, it
follows immediately that for ¢ ¢ 4. we have g, = g; moreover, from A, 6 4
we obtain gz = 0 for any f e #,8 # a.

1.10. Let g,

Proof. Since @ is a complete I-group, & is commutative. Hence
g-+%" = ¢'+h and thus, by 1.9, go+he = ga-tha-

For any % e @ there exist elements g,he G such that k= g—h;
put ks = go—ha. According to 1.10 k, is uniquely determined by k. From
1.9 and 1.10 we obtain the following:

L1L If g e Bo, f e #, f # a, then ga= g, gp = 0- The mapping § =g
i8 a homomorphism of the group G onto the group B..

h,g', b €@, g—h =g —h', aekt Then go—he= go—ha.

1.12. The mapping §->ga is @ homomorphism of the lattice G onto the

lattice B,.
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Proof. Let g,heG: There exists he@ such that k<g, k<h.
Then g—k, h—%keG" and thus, according to 1.9, and 1.11
(gVh)a—kea=[(gVh)—kla = [(g—F)V (A —F)]a
= (g—F)aV(h—k)a = (gaV lha) —Fo; ,
therefore (gVh): = goVhe. The proof for the operation A is analogous.

Write H = IT*B, (ae #) and consider the mapping ¢: @ ->H defined
by @(g) = () gy ). Let (G) = Hy.

1.13. The mapping ¢ is an isomorphism of G onto H,.

Proof. According to 1.11 and 1.12, ¢ is a homomorphism, whence
it suffices to prove that from ¢(g) = @(g.) follows g, = g,. Let ¢(g,)
= @{g,) and write g = g;Vgy—¢:Ag,.- Then ¢(g)= 0, whenee g.= 0 for
each a € A; moreover, g € G*, whence by 1.8 9=V go= Oand thus g, = g,.

According to 1.11, for any a, € #£ and any ¢* ¢ B, there is an element
heH® {namely h = ¢(¢)) such that h(a) =g, h(a)=0 for any a e,
@ # . Thus H, is a complete subdirect product of I-groups B, (a e ).

1.14. Let P; (i eI) be L-groups, P=1II*"P; (i eI). Assume that an
l-subgroup Q of P is a complete subdirect product of I-groups P; and that
@ is laterally complete. Then Q = P.

Proof. Let p = (..., pi, ...) € P. To any p; there correspond elements
wi, v € PT such that pi= ws—v,. Write w = (.., %, ...), 0= (0, ¥4, ...).
Since @ is a complete subdirect product of I-groups P;, for any 4eI
there are elements «’,v’ e such that ui(i)‘= iy (1) = vs, w(j) = v )
= 0 whenever jel, j# i The system {u’: icI} is disjoint, whence
w=\/ %" eQ; similarly, v = V' ¢ @, whence p ¢Q and thus P = Q.

By summarizing, we have the following assertion:

1.15. THEOREM. Let G be a complete l-group. Assume that f is in-
creasing and that (e,) is fulfilled. For any a < # let B, be the system of all
b « G such that there are subsels {1}, {#;} C Aq satisfying — (V1) < b << V1.
Then B, are convexr l-subgroups of G and G is isomorphic to a complete
subdirect product of I-groups B, {(ae ). If G is laterally complete, @G is
isomorphic 1o @ complete direct product of l-groups B, (a e A). -

The lattices B. need not, in general, be f-homogeneous, and this
is the reason for searching for a “better” complete subdirect decomposi-
tion of &. (Example. For any non-trivial interval [a, b]C @ put fla, b]
= max {eard[a, b], %}. Then f is increasing and satisfies (e,) (cf. 3.1).
Let I be an infinite set, C; = E for each i¢ I, @ = IT*(; (ieI) and let
&= . Denote b;v H the discrete direct produet of I-groups O (iel).
We have 4o = H7, B: = H. Since each element 0 < g ¢ G is the supremum
of some subset of H', we get B,= Q. Let ge@, g(i) =1 for each iel.
Clearly, f0,9]> %, and f[0, k] =y, for any 0 < h e H. Therefore B, is
not f-homogeneons.) Under the same assumptions as in 1.15 let a'e & be
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tixed, B.# {0}. Choose any maximal disjoint subset {ai}ses of the
J-group B.. Hence a;e A, for each iel. Let be B,, b> 0. Then there
is a subset {t;} C A«, ;> 0, \/1;=b. For any {; there exists an a; such
that t;Aa; > 0; thus bAa; > 0, and therefore {a;};cs is & maximal disjoint
subset of the l-group B,. For any iel write C;= {be Ba: lblAa;= 0
for each j e I,j # i}. It is known that €; is a closed convex I-subgronp
of B, (cf. [2], p. 119, Proposition 12). )

1.16. Oy~ Cy= {0} for any i,jel, i+ j.

Proof. Let ®e O ~ Oy, i # j. Then |z] ¢ C;, whence |z| é azr for any
Lkel, k +#1; moreover, from z ¢ C; we obtain || 6 a;. If « + 0, then |z|
¢ {amtmer AN {@m}mer v {|2|} is a disjoint set, a contradiction.

For any 0 < g € B, and any i eI write g;= sup{i e Cs: t < g}. Since
¢; is a closed sublattice of B, and B, is a closed sublattice of &, we
have g; € Cy.

1.17. g= \/ g: for any ge Ba, g > 0.

Proof. Clearly, g; < ¢ for each g;; let \/g;i = and assume 2 < g;
let g—h = k. Then there exists an i, ¢ I such that kAa;, = a > 0. Thus
aeCiyy gintaeCy and gy <gy+a<ht+k=g; hence g; is not the
greatest element of the set {f e C;: t < g}, which is a contradiction.

Now the same method that was used in 1.9-1.15 yields (by applying
1.16 and 1.17) the following:

1.18. The 1-group B. is isomorphic to a complete subdirect product
of I-groups C; (i elI).

‘An element e of an I-group H is called a weak wunit of H if hae> 0
whenever h e H, > 0.

1.19. Let ¢ be a weak unit of a complete l-group H, h e H, h = 0. Then

(neAh)="h.

1

T<<s

This assertion is proved in [8], p. 97, for the case where H is a com-
plete vector lattice (“K-space”), but the proof remains valid also for
complete I-groups.

Let us remark that for any i I the element a; is a weak unit of 4,
(otherwise there would exist a positive element d ¢ 4; such that a;6d
and then, according to 1.16, we would have a; § d for each j e I, whenece
{as}ier © {d} would be a disjoint set, a contradiction).

1.20. If (c,) holds, then fla,bl= a for any non-irivial interval
[a, b] of Cs. .

Proof. Since [a, b] is isomorphic to [0,b—a), it suffices to prove
that f[0,1] = a for any ¢ e Ci, t > 0. From a; ¢ 4, it follows that na; e A,
for amy positive integer n, and since a; is a weak unit of By, 0 < nazAte Ao,
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we have f[0,na:At]= a and all these intervals are f-homogeneous.
By 119

-5}

V(naint)y =1,

n=1

and thus according to (c,) f[0,{]= a.

From 1.15, 1.18 and 1.20 we obtain:

1.21. TEEOREM. Leét G be a complete L-group and let f be an nereasing
cardinal property satisfying (c;) and (¢,). Then G is isomorphic to a complete
subdireet product of f-homogeneous l-groups. If @ is also laterally complete,
then it is isomorphic to @ complete direct product of f-homogeneous 1- groups.

Under the same assumptions as in Theorem 1.21 let o ¢ be fixed,
B, # {0} and leb 4, = {as}icz, be the system of all atoms of the lattice B
There exists a maximal digjoint subset A, = {a:}ser such that I,CI.
Let i; € I,. Sinee [0, ay] is a prime interval, it is a chain and thus (cf. [5]
Thm. 1') there exists a direct decomposition ’

Eu = an X Qio .
such that R;, is linearly ordered and ay, e Ry,. Moreover, R;, is complete.
and a;, is an atom of Rf, whence R;, is isomorphic to the I-group N con-
sisting of all integers. (cf. [1]). Obviously A’ = AN{ai,} i3 a subset of @,
and 4’ is a maximal disjoint subset of @1 therefore, Ry, = ;. Now
let ieI\I, and assume that C; contains a prime interval [w, »]. Then
v—u = a;, is an atom of the lattice B, ay, ¢ Gy ~ Oy according to 1.16,
Ciu n Cy= {0}, a contradiction. Thus for 4 « INT, each non-trivial interval
of the l-group C; is infinite. Hence from 1.21 follows:

1.22, THEOREM. Let G 5 {0} be a complete 1- group and let f be an
increasing cardinal property satisfying (c,) and (c,). Then there emists
a complete subdirect decomposition of G with factors Cx (k € K) such that (i)
each factor Cy is f-homogeneous and (i) for any & ¢ K either Oy is isomorphic
to N or each non-trivial interval of Ck is infinite.

1.23. Aeccording io the constructions of subdirect decompositions of G
{Thm. 1.15) and of B (ef. 1.17 and 1.18), we may assume that the factors Oy
in 1.22 are l-ideals of G and that, for any ge @GF, g ="/ ¢ (k e K), where

g is the k-th component of g with regard to the subdirect decomposition of &
described in 1.22.

3

) .§ 2 Lengths of intervals of a lattice ordered group. Let [, b] be a non-
t!‘ﬂ'-lﬂal interval .Of a lattice L and let R[a, b] be the system of all maximal
chains of the interval [a,b]. We define the length s[a, b] of [a, b] by

8[a,b] = min{cardR: R« Rla, b]}.
Write fjfa, b] = max {sle, b, x}.

icm®
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9.1. Let L be a complete infinitely distributive lattice, R e RL. Let 0 be
the least element of L,aeL, a>0. Then R, = {rAa: reR} belongs to
R0, al. .

Proof. Clearly R, is a chain, B, C[0, a]; assume that R, ¢ [0, al.
Then there exists b e[0,a]\R; such that R; v {b} is a chain. Let Ru(Ry)
be the set of all » ¢ B such that rAe <b (rAa > b). Since L is complete,
there exists an 7, € B such that r= Ari (rie Ey). Then Toha = A (rina)
>b (rpAe=>b cannot hold, since rAa eR,, b¢R,). Write 1, = \(r
(r5 € Ru). Clearly, 7, = y; if 7= 7y, then ryAa = \/ (A @) < b, a contradie-
tion, If r, > 71, then [y, 7] is & prime interval, whence the set'l}l.= {Fo, 71,
ahTy, b, a7} is a non-modular sublattice of 1.3; <a. contradietion.

The assertion dual to 2.1 can be proved similarly.

9.9. Let I be a complete infinitely distributive lattice, [u, v]C L, u < v,
R e RL. Then there is an By e R[w, v] such thot cardR, < card R.

Proof. Let 0 be the least element of L. Accordil.lg to 21 R = {rAwv:
r e R} belongs to R[0,v] and hence, by the &SSGl‘th]’l dual to 2.1, R,
= {r'vu: r' e R’} e R[u, v]. Obviously cardR, < cade < ez‘u:d%e. ‘ .

Let @ be a complete I-group. Since @ is infinitely distributive, it
follows from 2.2 that f; is increasing.

23. Let G be a complete L-group. Then f, satisfies (c).

Proof. Let tie @, >0 (i=1,2), A0, tl]_:fz[O,tzl =a, fil0, %+
+14,]= B. Since f; is increasing, a < . The lattices [0, t:,‘] and [, ,+1.]
a.reuisomorphie, and thus fift, t;+1] = a. ‘There are chains R, € %[0, tIR;,
R, ¢ R[t,, t,+1] such that carétRl!%1 < oz],1 cardgﬂz < a; the set R,v R,

s to R[0,t,+1,] and card R < o; hence = a. )
belmiget 7y =[ {}l[lj,_bz]]: [a,b]C &, a< b} From 2.3 and 1.6 follows:

9.4, THEOREM. Let G = {0} be a complete L-group. Let ae &y, a'> N
(@ =%,). For any ge@G let Gi(g) e the family o.f .all.com)ex su;lattwels L
of G such that g « L and the length of each ngn—tﬁwml mtm"ual. of eqlua .;;
(equals or is less than a). Then (i) any family Gi{g) has a greatest elem
Bu(g), (ii) Ba(0) is am l-ideal of @& and Ba(g) = B,(0)+g.

Tet us remark that for a non-complete I-group & f, need nqt be;
increasing. Example: Let A(B) be the additive group of all ja,tgoxia),
(veal) numbers with the natural order, ¢ = AXB,ty= (0, 0), &, = IEe t, 1%
ty=(1,1). Then fi[t,,?,]= ¢ (the power of thfe cont]inu;nilt)i.ee -

={r,r 0<r<l,red} Risa maximal. echain of the la 05 L]
and card R = ¥; hence f,[fy, ta] = ¥o- .

9.5. Let @ be a complete 1-group. Then f fulfils (c,).

Proof. Let 0 <t; ¢ @, fi[0, ti] = o and let .[0 ,'ti] be fl-homgge;gle;()lis
((=1,2,..), t, <ty<.. V=1 Since f, i INCreasing, A0, 1> o

D)

i=1,2,..) that
Let & be the system of all intervals [fi,tirs] (fo=0; i=1,2,..) tha


Artur


94 . J. Jakubik

are non-trivial. Aceording to the f,-homogenity of [0, t;11], fit, tiv1] = a
whenever [4;, fi41] is non-trivial. For each L, ¢ § there exists a maxima]
chain B; ¢ RI; such that card E; < o; let E be the union of all these Z,.
Then R e R[0, {] and card B < a, whence f,[0,1] = a.

From 2.3, 2.5 and 1.22 we obtain:

2.6, THEOREM. Let G be a complete 1-group. Then @ is £s0morphic
to a complete subdirvect product of 1-groups Cx (k ¢ K) such that for each
ke K cither (i) every interval of Oy is finite, or (i) any two non-irivig]
intervals of Cy have the same length ax > Ny If @ 4s laterally complete, then
G is isomorphic to & complete divect product of 1-groups Cy. -

Now we may ask whether we could obtain analogical results if we
define the length of a bounded lattice L (cardl > 1) by the rule

s'L = sup {card R: R e RL}.

Put f,l.= max {s'L, s,}. Clearly, f, is increasing. Let @ = {0} Dbe an
I-group, #, = {fJa, b): [e,8]C&,a< b}. !

2.7. fo fulfils (e,).

P?oof. Let 0 <tie@,f0,%]=a (i=1,2). Then flt, i+t =a
and, sinee f, is increasing, £,[0,%,--4,] > a. Let R « R[0, ¢ +1,] and write
By= {ry: r,=rAl,7eR), R,= {rst 73 =rVi;, 7 € R}. The set By (R,) is
a chain in [0,#,]([t,?,414,]), whence card R, < o, cardR, < a. Sinee
G is. distributive and » is the relative complement of the element t, in
the interval [#,,r,], the pair of elements (r1,%,) uniquely determines r.
Thus card R < card (R, X R,) < a. This proves that f,[0, 4 +t,] = a.

From 2.7 and 1.6 we obtain the following: )

2.8. Let G + {0} be an L-group, ae#,, a> 5 (a=v,). For any ge@
let Gi{g) be fhf* Jamily of oll convex sublattices T, of G such that ¢ « L and for
any non-irivial interval L, of T s'L, = a (8'Ly < o). Then (i) each Jamily
Gu(g){ﬁ;li a grealest element Bi(g), (ii) BL(0) is an 1-ideal of G and Big)
== ol g,

There exist complete I-
Example: Let I=11,2,
any ¢ el define t; by

groups G such that f, fails to satisfy (c,).
)y Gi= DN for each tel, @= IT*Gy. For

Wi=1 for jeI,j<i,

1;’[[% tl:;e}r,— 1‘{‘5":)[: 1 Eh & such that 0(j) = 0, 1( J)=1 for each j e I. Clearly,
gen:ao':ls = Xlﬁ?é ;1:” e%ee Fl0; 8] = v, and all intervals [0, #] are f,-homo-
geneous. Vo D<t<ty< .. \ij—T : 5.1 ;
isomorphie to the Bosee, anzeb » Vir=1 and the interval [0,1] i

] ! T2 B eonsisting of all ;
There s a chain  in B sk that e B g of all subsets of the set I.

: = ¢ (cf. [4]). Thus f, [0, 1] = ¥,.
. ;ft ]f beta' If?,ttlfse, L, C L. The set L, is dense in L, it szm[ [21,, %] # 0@
¥ non-trivial interval [a, 5]C L. We- define the reduced length s*L

and  #(j) = 0 otherwise.
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of a bounded lattice by $*L = min{a e X: there exists an R <KL and
a dense subset I, of B such that cardL; = o}. By the same method as
in 2.1-2.6 analogical results for the reduced length can be proved.

§ 3. The powers of intervals of an l-group. Let @ be an I-group, ¢ # {0}.
For any non-trivial interval [a, b] C G we write fa, b] = max {card[a, b],
g}, Obviously, f; is increasing.

3.1. fy satisfies (ey).

Proof. Let 0 <tie @, fil0,t]=a (i=1,2), f3[0, 1-+3s] = f. Then
flt, hth]l=a<p and each element t ¢ [0, ¢, +1,] is uniquely-determined
by the pair (tAfLy,tvt). Since Aty e[0,1], 1Vt e[t,t,+4], we have
card [0, t,+1,] < card[0, ¢;] eard[t;, t, +1,] < a. Thus f[0, 4 +5]) = a.

Let #; = {fs{a, b]: [a,b]C &, a <b} From 3.1 and 1.6 we obtain:

3.2. THEOREM. Let G be an l-group, aedf;, a> % (a=%). To any
g e @ there exists a grealest conver sublattice BY{g) of G containing g such
that each non-trivial interval of Bi(g) has the power a (the power <sp). The
set BY0) is an l-ideal of & and Bi(g) = Bi(0)+g.

3.3. Let G be a complete 1-group. Then there exists a decomposition
G = A x B such that (i) A is a complete subdirect product of linearly ordered
groups isomorphic to N, and (ii) B does not contain any prime interval.

Proof. Let f be an increasing cardinal property satisfying (c,) and (c,)
(for example, f=f,). Consider the complete subdirect decomposition
with factors Cx (ke K) treated in 1.22 and 1.23. Let K, be the system
of all Oy isomorphic to N. We denote by A (B) the set of all g ¢ ¢ such
that g; = 0 for each & e E\K, (k ¢ K,). Then clearly G = 4 x B and A(B)
is isomorphic to a complete subdirect prcduct of I-groups Ck, _ke‘K‘,
(k € K\K,). Let [, t,] be a non-trivial interval of B. Then [1, t,] is iso-
morphic to [0, 1], e B, t,—t = t> 0, whence t=\/tx(k ¢ K\Ko)."There
exists &, e K\X, such that i >0 and, since Cy, does nqt contain any
prime interval, we have 1’ ¢ Cxf, 0 < t’ < tx,. Therefore the intervals [0, 1]
and [, 1,] are not prime. .

3.4. Let @G be a complete l'-gwmp, ae@, a>0, and assume that fmy
disjoint subset of G ds finite. Then the lattice [0, a] s isomorphic to a direct
prodact of a finite number of chains. :

Proof. At first we shall prove that for each be[0,al, b >0 th(?re
is an element b,, 0 < b, < b, such that [0,b,] is & chain. For otherwise

there would exist b,, by €[0,b],b,> 0, >0, bbb, Further, there

would exist positive disjoint elements by, by € [0, b,]. In this way we
could construct an infinite disjoint subset {by, by, by, -} C [0, al, Which
is a contradiction. Hence there exists a maximal di§jomt sgbsei; B
= {by, bs, ..., bu} of [0, a] such that each interval [0, bs] is a chain. Since
@ is Archimedean, for each b; there exists an integer n;>1 such that
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niby € 0. Put a; = aAnib;. The interval [0, nbq] is a chain for any integer 5,
(cf. [5), Lemma 17.2), whence aAnb; = a; for each % = ns. Let \/ gy = o
a—a’ = k. Clearly k> 0; assume that % > 0. Then there exists b, eB
such that ki, = kAby > 0. Thus ag+ ki < (5,+1) by, G+ gy, < 0+ = ,
whenece an+ ki, < ah{ny+1)bs, = ag, 2 contradiction. Therefore % — ¢
and ¢ = V a;. Bach interval [0, a;] C [0, n:b¢] is & chain and the mapping
x>{rAa} (i=1,..,7) is an fsomorphism of the lattice [0, a] onto the
direct product II[0,a;] (¢ =1,2,..,n).

3.5. Let G be a complete 1-group and let B. have the same meaning as
in 3.3. Let [0, b1C B be a non-trivial. f,- homogeneous tnterval, f3[0, b] = g,
Then ofo = a. o

Proof. At first assume that each disjoint subset of [0, b] is finite,
Then by 3.4 there exist elements by, ..., b, € [0, D], b; > 0, such that each
interval [0, b¢] is a chain and [0, b] is isomorphic to the direct product
of intervals [0, b;]. According to [3, Thm. 1] there exist I-ideals B;of ¢
such that B; are linearly ordered and.b; ¢ B;. Moreover, B; are complete
and sinee B:C B does not contain any prime interval, each B; is iso-
morphic to the additive I-group R, of all reals (cf. [1]); thus card[0, b;] = ¢
and card[0, b] = ¢ = ¢®. Now let us suppose that there exists an infinite
disjoint subset of the interval [0, b]; then there exists a disjoint subset
{byy byy ...} of [0,D]. Since any non-trivial interval of B is infinite,
card[0,b] = a >N, and, according to the fs-homogenity of [0, b],
card[0, bl = a for i =1,2, ... Write b’ = Vbi(i=1,2,..) and consider
the mapping ¢: & —{zAb;} of the lattice [0, %] into I7*[0, b¢]. By using
the infinite distributivity of [0,5] it iy easy to verify that @ is an iso-
morphism. Hence « = card[0, b'] = card II*0, by] = o,

3.6. Let G be a complete L-group and let B be as in 3.3. Then [ satisfies
(eq) with regard to B.

Proof. Let t; ¢ B, f,[0, #;] = « (i=1,2,..)
and assume that all intervalg [0, t:] are f,
contain prime intervals, card[0, ] = « f
we have »= \/(xAl;), whence t

V0t K<ty < oy Vli=t
-homogeneous. Since B does not
ori=1,2,.. For any « [0, {]
; i he mapping = »{wAt;} (i=1,2,..)
Is*a. monomorphism of the set, [0, ¢] into the complete direct product
[0, @]; from this we obtain fs[0, ] = eard[0, ¢] < card IT*10, 1] = aff
and o = @ according to 3.5. Therefore (since fa is increasing) f,[0, t] = a.
_According to 3.1 and 3.6, we may apply Th. 1.21 o the (- group B;
since 4 is isomorphic to a’ complete subdirect product of linearly ordered
groups Cy (k < Ky) such that any interval of Ci is finite, we have the
following resnlt: ’

. 3.7. ;EHEGRE]EL Lat G be a complete L-group. Then @ is isomorphic
‘ a @ow;psi.le 3ul?d1rect p'{‘o.cluat of 1-greups Oy (k € K) such that, for each Ci,
one of the following conditions holds: (i) any interval of Cx is finite and Cy is
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inearly ordered, or (ii) any non -trivial interval of Cy has the same cardinality
d oy = Gk :

“ M}Jet ;:x be a cardinal, o = a. Then there is a lattice ordered group
G, # {0} such that cardfa,b]=a for each non-trivial interval of G.
Ve construct G. as follows: .

" Since of = ¢, there exists a Boolean algebra B. # {0} such that
card[b,, by] = « for any non-trivial interval of B, (cf. Pierce [6]). Let E be
the velctor lattice consisting of all elementary Carathéodory functions
on B. (cf. Goffman [3]); i.e., I is the set consisting of all forms

(2) ) f=ab+ ...+ arbn

ar " = iy A D Al ’i'ly 'z

Where a # 0 are leavls a:nd bi € Ba, bi “, 1.)11 b.! 0 j()]:' any %

(e{ nt}, i, ’Lg) and of the “empb' orm”; if g8 another suc form,
] gy 1 y f h

(3) g= a1b1+"'+a;’llb‘;n 3

then f, ¢ are considered as equal if i\llbi =z‘\=/1bi and if a; = a; whenever

bi‘/\ b; = 0. For any b, b’ € Ba let b— b be the relative complement of bA b’
! : . . = .
in the interval [0, b]. The operation + in E is defined by

n m n ™m

Fro= 2 Dtk a)unby+ X adb— Y 0+ 2, ailti= N b,

=1 j=1 i=1
o, e 3 - m
where in the summations only those terms are taken into account

m TLI )

" which a;+-a} # 0 and the elements biAbj, b ——7_\=/1 b, b;-—i\;/1 b; are 10T - ZeTO0.
The multiplication by a real & # 0is definefl }Jy a,f = (Wh)bfrl' j— 1(tzr,au,,)b;;,
0f is the empty form. The form (2) is positive, 1:E a; > 0 for ¢ —lIf , :..S,(O.)
Let G, be the subset of # consisting of the empty form f, &].1(1 of a oim 1;
such that a; = 0 are integers (i=1,2, ..., 'n,).' Then G. is an l-stgrofog
of the I-group E and card @ = o For proving that c?,rd[{},l g]i];ec;V for
any non-trivial interval [f, g] of G it suffices to examine the

o f1, f> fo. Liet f e G be the form (2) with a;>1 (=1, ..,n). Let
Y={beBa: 0<b<b}, Y={gebu g=1b,beX}.

Since card[0, b,] = a, we have card ¥ = o and, because Y Clfy, f1C Ga,

card = a. . N
l[I{O ’r];}fna.ins as an open gquestion whether for any caidina;r(a ;aﬁsa

fying a¥ — o there exists a complete I-group & such that o

for any non-trivial interval of &. o
Agﬂvlogously as in § 2 we may define the reduced power (;as,r:dgnts)e

a bounded lattice I to be the least cardinal a such tl:a,t t%lereo ix;?ougy i

subset I, of I, cardL, = a. Write f,L = max{card"L, No}e
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increasing, but f, fails to satisfy the condition (c;). Example: Let
G=RyXxByy go=1(0,0), ¢.=(1,0), g =(0,1). Clearly, Jdao, g3
= filgos go] = % and: the intervals [go, g:], [4s; 9] are f,-homogeneous.
Let L, be a dense subset of [g, ], 9= g,+¢.= (1,1). Let 7e[0,1],
By =(0,7), hy= (1, r). Then there exists g- e L, n[g,, g,] and g, = (a,, 7),
oy €[0,1]. Thus g, # gr, Whenever 7 7, and therefore cardl, =
= fil0; g1+ 9] # £il0, 3]
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Algebre du calcul propositionnel trivalent de Heyting
par

Luiz Monteiro (Bahia Blanca)

1. Introduction. Nous nous proposons dans cette note de déterminer
le nombre d’éléments de ’algébre H; avee un nombre fini de générateurs
libres (*). )

1.1. DEFINITION. Une algébre de Heyting (%) A sera dite une algébre
H, si Pégalité suivante est vérifiée:

(T) (@) D) —>(((b ->a) >b) —>b) =1
quels que soient les éléments a,b et ¢ de A.

" Ces algébres jouent dans 1’étude du calcul propositionnel trivalent de
Heyting (A. Heyting [5], J. Tukasiewicz [6], I. Thomas [16]) un rdle ana-
logue & celui des algébres de Boole dans le caleul propositionnel classique.

Il est évident que toute algébre de Boole, est une algébre Hg, car
dans les algébres de Boole est valable 'égalité (b-—>a)—b= b, qui
implique (T). '

Indiquons P’exemple le plus simple d*une alg&bre H,, qui n’est pas
une algébre de Boole: Soit T = {0, a,1} Pensemble formé par frois
éléments distinets sur lequel on définit les opérations A, V et — au moyen
des tables suivantes (auxquelles nous ajoutons la table de T’opération
de négation ] définie par v =z —0). :

A0 al vi0ael ~>l0a1l__lm
01000 0({0al 0|111/1
a0 aa a6 al {0110
1/0e1 1{111 1{0al]0

Cette algdbre a 6té considérée pour la premiére fois par A. Heyting
(1830). ‘

I’algébre de Boole B = {0,1} est une sous-algébre de T que nous
aurons & utiliser par la suite.

() Un résumé de cette note a &6 publié dans Notas de Légica Matematioa
Ne 19 (1964). -

() Voir: T. Skolém [14], G. Birkhotf [1], . 459, [3], p. 147, M. ‘;Vf ¢ E?If]t
A. Monteiro [8]. Nous avons adopté la terminologie de H. Rasiowa et R. Sikors .
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