

Table des matières du tome LXXIV, fascicule 2

	- ugc
J. Jakubík, Cardinal properties of lattice ordered groups	85-98
L. Monteiro, Algèbre du calcul propositionnel trivalent de Heyting	99-109
L. Rudolf, θ -continuous extensions of maps on τX	111-131
W. Nitka, On convex metric spaces VI	133-144
M. K. Armbrust, An algebraic equivalent of a multiple choice axiom	145-140
S. Valenti, Sur la dérivation k-pseudo-symétrique des fonctions numériques	147-159
R. Telgársky, Concerning product of paracompact spaces	153-159

Les FUNDAMENTA MATHEMATICAE publient, en langues des congrès internationaux, des travaux consacrés à la Théorie des Ensembles, Topologie, Fondements de Mathématiques, Fonctions Réelles, Algèbre Abstraite.

Chaque volume paraît en 3 fascicules.

Adresse de la Rédaction et de l'Échange: FUNDAMENTA MATHEMATICAE, Śniadeckich 8, Warszawa 1 (Pologne).

Le prix de ce fascicule est 4.00 \$.

Tous les volumes sont à obtenir par l'intermédiaire de ARS POLONA-RUCH, Krakowskie Przedmieście 7, Warszawa 1 (Pologne).

DRUKARNIA UNIWERSYTETU JAGIELLOÑSKIEGO W KRAKOWIE

Cardinal properties of lattice ordered groups

by

J. Jakubík (Košice)

Pierce [6], [7] defined a cardinal property of complete Boolean algebras as a rule that assigns to any complete Boolean algebra B a cardinal fB such that $fB_1 = fB_2$ whenever B_1 and B_2 are isomorphic. He proved that if f is increasing, then each complete Boolean algebra B can be decomposed into a complete direct product of Boolean algebras B_i that are homogeneous with regard to f. The aim of this note is to prove some analogical results for lattice ordered groups. In § 1 there are studied "increasing" cardinal properties. In § 2 we prove that a complete and laterally complete l-group G is a complete direct product of l-groups G_i such that either any two non-trivial intervals of G_i are finite or they have the same length; in § 3 an analogical theorem concerning the powers of intervals is proved.

§ 0. Preliminaries. We shall use the standard notations for lattices and lattice ordered groups (cf. [1], [2]). Let G be an l-group; the group operation is denoted by + and the lattice operations by \wedge , \vee . If x, $y \in G$ and $x \wedge y = 0$, then x and y are said to be disjoint (this fact is denoted by $x \delta y$). A subset $X \subset G$ is disjoint if x > 0 for any $x \in X$ and any two distinct elements of X are disjoint. $Y \delta x$ ($Y \delta X$) means that the element x (each element of X) is disjoint with each element y of the set Y. Let $G^+ = \{x \in G: x \ge 0\}$ and for any $X \subset G^+$ write $X^\delta = \{y \in G^+: X \delta y\}$. G is laterally complete if for any disjoint subset $\{x_a\} \subset G$ there exists $\bigvee x_a \in G$. Let L be a lattice, $a, b \in L$, $a \le b$. The interval [a, b] is the set $\{x \in L: a \le x \le b\}$; [a, b] is a non-trivial interval, if $a \ne b$. [a, b] is a prime interval when card [a, b] = 2. L is a bounded lattice if it is an interval. A subset $X \subset L$ is convex if $[a, b] \subset X$ whenever a and b belong to X. A set $Y \subset L$ is a closed sublattice of L if $\{y_a\} \subset L$, $\bigvee y_a = y$ implies $y \in Y$, and dually.

Let $I \neq \emptyset$ be a set and for any $i \in I$ let H_i be an l-group. The complete direct product $H = \Pi^*H_i$ ($i \in I$) is the system of all vectors $h = (..., h_i, ...)_{i \in I}$, $h_i \in H_i$, with operations $+, \wedge, \vee$ that are performed componentwise; then H is an l-group. Instead of h_i we write also h(i)-

^{7 -} Fundamenta Mathematicae, T. LXXIV

The l-subgroup K of H consisting of all elements $k \in H$ such that the set $I(k) = \{i \in I: k(i) \neq 0\}$ is finite is the (discrete) direct product of l-groups H_i . An l-subgroup G of H is called a complete subdirect product of l-groups H_i if for any $i_0 \in I$ and any $h^{i_0} \in H_{i_0}$ there is an element $g \in G$ satisfying $g(i_0) = h^{i_0}$, g(i) = 0 for any $i \in I$, $i \neq i_0$. Let A, B be l-ideals of an l-group G. If $A \cap B = \{0\}$, A + B = G, then G is isomorphic to the direct product of l-groups A and B; in such a case we write $G = A \times B$. The additive linearly ordered group of all integers (all reals) is denoted by $N(R_0)$.

Let \mathcal{B} be the class of all bounded lattices containing more than one element and let \mathcal{K} be the class of all cardinals. Let f be a mapping of the class \mathcal{B} into \mathcal{K} such that $fL_1 = fL_2$ whenever L_1 is isomorphic to L_2 and L_1 , $L_2 \in \mathcal{B}$. The mapping f is said to be a cardinal property defined on \mathcal{B} . A lattice L is called f-homogeneous if $fL_1 = fL_2$ for any two convex sublattices L_1 , L_2 of L such that L_1 , $L_2 \in \mathcal{B}$. If card L = 1, then no sublattice of L belongs to \mathcal{B} and hence L is f-homogeneous for any cardinal property f. A cardinal property f is increasing if $fL_1 \leq fL_2$ for any pair of lattices L_1 , $L_2 \in \mathcal{B}$ such that L_1 is a convex sublattice of L_2 .

- § 1. Increasing cardinal properties. Let $G \neq \{0\}$ and let f be an increasing cardinal property on the class \mathcal{B} . We shall consider the following conditions on f:
- (c₁) If $t_i \in G$, $0 < t_i$ (i = 1, 2), $f[0, t_1] = f[0, t_2]$ and if $[0, t_1]$ and $[0, t_2]$ are f-homogeneous, then $f[0, t_1 + t_2] = f[0, t_1]$.
- (c₂) If $t_i \in G$, $0 < t_1 \le t_2 \le ...$, $f[0, t_1] = f[0, t_i]$, $\forall t_i = t$ and if the intervals $[0, t_i]$ are f-homogeneous (i = 1, 2, ...), then $f[0, t] = f[0, t_1]$!

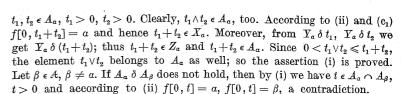
Let \mathcal{A} be the set of all cardinals α such that $f[a, b] = \alpha$ for some non-trivial interval [a, b] of G and for any $a \in \mathcal{A}$ write

$$X_a = \{x \in G: \ x > 0, f[0, x] \le a\} \cup \{0\},$$

 $Y_a = \{y \in G: \ y > 0, f[0, y] < a\} \cup \{0\},$
 $Z_a = (Y_a)^{\delta}, \quad A_a = X_a \cap Z_a.$

- 1.1. Assume that (c_1) is valid. Let $a \in A$. Then
- (i) the set Aa is an ideal of the lattice G⁺ and a subsemigroup of G⁺,
- (ii) f[a, b] = a for any non-trivial interval [a, b] of A_a ,
- (iii) $A_{\alpha} \delta A_{\beta}$ for any $\beta \in A$, $\beta \neq \alpha$.

Proof. Let $t \in A_{\alpha}$, t > 0. Then $t \in X_{\alpha}$, whence $f[0, t] \leq \alpha$. If $f[0, t] < \alpha$, the element t belongs to Y_{α} and since $t \in Z_{\alpha}$, we have $t \delta t$, a contradiction; this implies that $f[0, t] = \alpha$. Let $t_1 \in A_{\alpha}$, $0 < t_1 \leq t$. Since f is increasing, $f[0, t_1] \leq \alpha$, whence $t_1 \in X_{\alpha}$. From $Y_{\alpha} \delta t$ if follows that $Y_{\alpha} \delta t_1$; thus $t_1 \in Z_{\alpha}$ and $t_1 \in A_{\alpha}$. If $0 < t_1 < t$, then the interval $[t_1, t]$ is isomorphic to $[0, t - t_1]$ and $0 < t - t_1 < t$; therefore $f[t_1, t] = \alpha$ and (ii) holds. Let



1.2. If (e₁) is fulfilled, $t \in G$, t > 0, f[0, t] = a, and the interval [0, t] is f-homogeneous, then $t \in A_a$.

Proof. Clearly $t \in X_a$. Let $y \in Y_a$, $t \wedge y = u$. If u > 0, then $f[0, u] \le f[0, y] < \alpha$ and, at the same time, $[0, u] \subseteq [0, t]$, whence $f[0, u] = \alpha$, a contradiction. Therefore $Y_a \delta t$ and thus $t \in A_a$.

From 1.1 and 1.2 we obtain the following:

1.3. Assume that (c_1) holds and let $a \in A$. Let F_a be the family of all convex sublattices L_1 of the lattice G^+ such that $0 \in L_1$ and $f[t_1, t_2] = a$ for any non-trivial interval of L_1 . Then A_a is the greatest element of the family F_a (ordered by set-inclusion).

1.4. Let (c_1) be valid and for any $a \in A$ let $B_a = \{t \in G: there exist t_1, t_2 \in A_a such that <math>-t_1 \le t \le t_2\}$. Then (i) B_a is an l-ideal of the l-group G; (ii) f[a, b] = a for any non-trivial interval [a, b] of B_a ; (iii) $B_a \cap B_\beta = \{0\}$ for each $\beta \in A$, $\beta \ne a$.

Proof. If $t \in B_a$, then clearly $-t \in B_a$ and from 1.1 (i) it follows that B_a is a subsemigroup of G; hence B_a is a subgroup of G. From this and from the convexity of A_a we infer that B_a is a convex subset of G and therefore by the definition of B_a the element $t \vee 0$ belongs to B_a for any $t \in B_a$; thus B_a is a convex l-subgroup of G. For proving that B_a is normal it suffices to verify that $A_a = B_a^+$ is a normal subset of G. Let $t \in A_a$, t > 0, $x \in G$ and write t' = -x + t + x. Since the intervals [0, t] and [0, t'] are isomorphic, it follows from 1.1 (ii) and 1.2 that $t' \in A_a$; thus (i) holds. Let [a, b] be a non-trivial interval of B_a ; then [a, b] is isomorphic to [0, b-a] and $[0, b-a] \subset A_a$, whence f[a, b] = a. If $x \in B_a \cap B_\beta$, $a \neq \beta$, $x \neq 0$, then $0 \neq |x| \in A_a \cap A_\beta$, a contradiction.

1.5. Let (c_1) be valid and let G_a be the family of all convex sublattices L of G such that $0 \in L$ and $f[t_1, t_2] = a$ for any non-trivial interval of L. Then B_a is the greatest element of the family G_a .

Proof. According to 1.4, B_a belongs to the family G_a . Assume that $L \in G_a$, $t \in L$, $t \neq 0$. If $[0, 0 \lor t]$ is a non-trivial interval, then it is f-homogeneous and $f[0, 0 \lor t] = a$, whence by 1.2 $0 \lor t \in A_a$. If $[0 \land t, 0]$ is a non-trivial interval, then it is f-homogeneous and isomorphic to $[0, -(0 \land t)]$; thus $-(0 \land t) \in A_a$. This implies that $t \in B_a$ and hence $L \subseteq B_a$.

1.6. THEOREM. Let f be increasing and assume that (e_1) is valid. For any $a \in A$ and $g \in G$ let $G_a(g)$ be the family of all convex sublattices L of G

such that $g \in L$ and $f[t_1, t_2] = a$ for each non-trivial interval of L. Let $G_a(g)$ be partially ordered by set-inclusion. Then (i) any family $G_a(g)$ contains a greatest element (this will be denoted by $B_a(g)$); (ii) $B_a(0)$ is an 1-ideal of G and $B_a(g) = B_a(0) + g$; (iii) $B_a(g) \cap B_{\beta}(g) = \{g\}$ for any $\beta \in A$, $\beta \neq a$.

Proof. Let $g \in G$. The mapping $\varphi(t) = t + g$ being an automorphism of the lattice G, it follows from 1.5 that $B_a + g = B_a(g)$ is the greatest element of the family $G_a(g)$; (ii) and (iii) are consequences of 1.4.

For any $\alpha \in A$ let \bar{A}_{α} be the set of all elements $t \in G$ that can be written in the form $t = \bigvee t_i, \{t_i\} \subset A_a$.

1.7. Let $\alpha \in A$ and assume that (c_1) holds. The set \overline{A}_{α} is a closed ideal of the lattice G^+ and a subsemigroup of G. If $\beta \in A$, $\beta \neq \alpha$, then $\overline{A}_{\alpha} \delta \overline{A}_{\beta}$. \overline{A}_a is a normal subset of the group G.

Proof. Let $t \in \overline{A}_a$, $t = \bigvee t_i, \{t_i\} \subset A_a, t^* \in G$, $0 \le t^* < t$. Since any lattice ordered group is infinitely distributive ([1]), $t^* = t \wedge t^* = \bigvee (t_i \wedge t^*)$ and $t_i \wedge t^* \in A_a$ by 1.1; therefore $t^* \in \overline{A}_a$. Let $S = \{s_i\}_{i \in J} \subset \overline{A}_a$, $\sup S = s$. For any $s_i \in S$ we have $T_i \subset A_\alpha$ such that $s_i = \sup T_i$. Thus

$$s = \sup_{j \in J} (\sup T_j) = \sup (\bigcup_{j \in J} T_j);$$

since $\bigcup T_i \subset A_a$, we have $s \in \overline{A}_a$. This proves that \overline{A}_a is a closed ideal of the lattice G^+ . Let $t = \bigvee_{i \in I} t_i$, $t' = \bigvee_{i \in I} t'_i$, $\{t_i\}$, $\{t'_i\} \subset A_a$. Then t+t' $=\bigvee_{i\in I}\bigvee_{j\in J}(t_i+t_j'), \text{ whence } t+t'\in \bar{A}_a. \text{ Further, let } \beta\in\mathcal{A}, \ \beta\neq\alpha, \ t=\bigvee t_i,$ $\{t_i\} \subset A_a, \ t' = \bigvee t'_i, \{t'_i\} \subset A_\beta$. According to 1.1, $t_i \wedge t'_i = 0$, and thus, by using infinite distributivity, $t \wedge t' = 0$. From the normality of A_a it follows that \overline{A}_n is also normal.

Let us put $\bar{B}_{\alpha} = \{t \in G: \text{ there exist elements } t_1, t_2 \in \bar{A}_{\alpha} \text{ such that }$ $-t_1 \leqslant t \leqslant t_2$.

From 1.7 we immediately obtain the following:

1.7.1. Let $a \in A$ and assume that (c_1) is fulfilled. The set \overline{B}_a is an 1-ideal of G. If $\beta \in A$, $\beta \neq a$, then $\overline{B}_a \cap \overline{B}_{\beta} = \{0\}$.

Let us now assume that G is a complete l-group (i.e., that the lattice G is relatively complete), $g \in G^+$ and for any $a \in A$ write

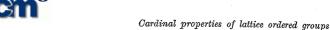
$$g_a = \sup\{t \in A_a: t \leqslant g\}$$
.

By the definition of \bar{A}_{α} , $g_{\alpha} \in \bar{A}_{\alpha}$.

1.8. Let G be a complete l-group and suppose that (c_i) holds. Then $g = \bigvee g_a \ (a \in A) \ for \ any \ g \in G^+. \ If \ g = \bigvee h_a \ (a \in A), \ h_a \in \overline{A}_a \ for \ each \ a \in A,$ then $h_a = g_a$.

Proof. Put $\bigvee g_{\alpha} = h$. Clearly $h \leq g$. Assume that h < g and write -h+g=k; further, let

(1)
$$\beta = \min\{f[0, b]: 0 < b \leq k\}$$
.



There exists $b_0 \in G$, $0 < b_0 \le k$ such that $f[0, b_0] = \beta$. Then for any $b_1 > 0$, $b_1 \leqslant b_0$ we have $f[0, b_1] \leqslant f[0, b_0]$ and according to (1) $f[0, b_1] \geqslant \beta$, whence the interval $[0, b_0]$ is f-homogeneous. Thus, by 1.2, $b_0 \in A_{\beta}$. There is a subset $\{t_i\} \subset A_\beta$ such that $g_\beta = \bigvee t_i$. Therefore, we have

$$g_{\beta} + b_0 = (\bigvee t_i) + b_0 = \bigvee (t_i + b_0)$$

and $t_i + b_0 \in A_\beta$ by 1.1. Moreover, $t_i + b_0 \leqslant g_\beta + b_0 \leqslant h + k = g$, whence (by the definition of g_{β}) $\bigvee (t_i + b_0) \leqslant g_{\beta}$; thus $g_{\beta} + b_0 \leqslant g_{\beta}$, a contradiction. Therefore $\bigvee g_{\alpha} = g$. If $\bigvee h_{\alpha} = g$, $h_{\alpha} \in \overline{A}_{\alpha}$, then for any $a_0 \in A$

$$g_{\alpha_0} = g_{\alpha_0} \wedge g = \bigvee (g_{\alpha_0} \wedge h_{\alpha}) = g_{\alpha_0} \wedge h_{\alpha_0}$$

by 1.4. Analogously, we obtain $h_{a_0} = g_{a_0} \wedge h_{a_0}$, whence $g_{a_0} = h_{a_0}$.

In 1.9-1.20 we assume that G is a complete l-group and that (c_1) is valid.

1.9. For any $\alpha \in A$ and any $g \in G^+$, let $\varphi_{\alpha}(g) = g_{\alpha}$. Then φ_{α} is a homomorphism of the lattice ordered semigroup G+ onto the lattice ordered semigroup \overline{A}_a . For $g \in \overline{A}_a$ we have $\varphi_a(g) = g$ and $\varphi_{\beta}(g) = 0$ whenever $\beta \in \mathcal{A}$, $\beta \neq \alpha$.

Proof. Let $g, h \in G^+$. Then $g_{a_1} \delta g_{a_2}$ for any $a_1, a_2 \in A$, $a_1 \neq a_2$, and thus, by using infinite distributivity, $g \wedge h = \bigvee (g_a \wedge h_a)$; further, we have $g \vee h = \bigvee (g_a \vee h_a)$. Since by 1.7 $g_a \wedge h_a$ and $g_a \vee h_a$ belong to \overline{A}_a , it follows from 1.8 that $(g \wedge h)_a = g_a \wedge h_a$, $(g \vee h)_a = g_a \vee h_a$. Moreover,

$$g+h=\bigvee_{a\in A}g_a+h=\bigvee_{a\in A}(g_a+h)=\bigvee_{a\in A}\bigvee_{b\in A}(g_a+h_b).$$

If $\alpha \neq \beta$, then $g_{\alpha} \delta h_{\beta}$, whence (cf. [1]) $g_{\alpha} + h_{\beta} = g_{\alpha} \vee h_{\beta} \leqslant (g_{\alpha} + h_{\alpha}) \vee (g_{\beta} + h_{\beta})$; thus $g+h = \bigvee (g_a+h_a)$; therefore, according to 1.7 and 1.8, $(g+h)_a$ $=g_a+h_a$. Hence φ_a is an homomorphism. From the definition of g_a it follows immediately that for $g \in \overline{A}_a$ we have $g_a = g$; moreover, from $\overline{A}_a \delta \overline{A}_\beta$ we obtain $q_{\beta} = 0$ for any $\beta \in \mathcal{A}, \beta \neq \alpha$.

1.10. Let $g, h, g', h' \in G^+$, g-h=g'-h', $a \in A$. Then $g_a-h_a=g'_a-h'_a$.

Proof. Since G is a complete l-group, G is commutative. Hence g + h' = g' + h and thus, by 1.9, $g_a + h'_a = g'_a + h_a$.

For any $k \in G$ there exist elements $g, h \in G^+$ such that k = g - h; put $k_{\alpha} = g_{\alpha} - h_{\alpha}$. According to 1.10 k_{α} is uniquely determined by k. From 1.9 and 1.10 we obtain the following:

1.11. If $g \in \overline{B}_a$, $\beta \in A$, $\beta \neq a$, then $g_a = g$, $g_{\beta} = 0$. The mapping $g \rightarrow g_a$ is a homomorphism of the group G onto the group \overline{B}_a .

1.12. The mapping $g \rightarrow g_a$ is a homomorphism of the lattice G onto the lattice \bar{B}_a .

Proof. Let $g, h \in G$. There exists $k \in G$ such that $k \leq g, k \leq h$. Then $g-k, h-k \in G^+$ and thus, according to 1.9, and 1.11

$$(g \lor h)_{a} - k_{a} = [(g \lor h) - k]_{a} = [(g - k) \lor (h - k)]_{a}$$
$$= (g - k)_{a} \lor (h - k)_{a} = (g_{a} \lor h_{a}) - k_{a};$$

therefore $(g \vee h)_{\alpha} = g_{\alpha} \vee h_{\alpha}$. The proof for the operation \wedge is analogous. Write $H = \Pi^* \overline{B}_{\alpha} \ (\alpha \in \mathcal{A})$ and consider the mapping $\varphi \colon G \to H$ defined by $\varphi(g) = (\dots, g_{\alpha}, \dots)$. Let $\varphi(G) = H_0$.

1.13. The mapping φ is an isomorphism of G onto H_0 .

Proof. According to 1.11 and 1.12, φ is a homomorphism, whence it suffices to prove that from $\varphi(g_1) = \varphi(g_2)$ follows $g_1 = g_2$. Let $\varphi(g_1) = \varphi(g_2)$ and write $g = g_1 \vee g_2 - g_1 \wedge g_2$. Then $\varphi(g) = 0$, whence $g_a = 0$ for each $\alpha \in \mathcal{A}$; moreover, $g \in G^+$, whence by 1.8 $g = \bigvee g_a = 0$ and thus $g_1 = g_2$.

According to 1.11, for any $a_0 \in A$ and any $g^{a_0} \in \overline{B}_{a_0}$ there is an element $h \in H^0$ (namely $h = \varphi(g^{a_0})$) such that $h(a_0) = g^{a_0}$, h(a) = 0 for any $a \in A$, $a \neq a_0$. Thus H_0 is a complete subdirect product of l-groups \overline{B}_a ($a \in A$).

1.14. Let P_i ($i \in I$) be l-groups, $P = \Pi^* P_i$ ($i \in I$). Assume that an l-subgroup Q of P is a complete subdirect product of l-groups P_i and that Q is laterally complete. Then Q = P.

Proof. Let $p = (..., p_i, ...) \in P$. To any p_i there correspond elements $u_i, v_i \in P_i^+$ such that $p_i = u_i - v_i$. Write $u = (..., u_i, ...), v = (..., v_i, ...)$. Since Q is a complete subdirect product of l-groups P_i , for any $i \in I$ there are elements $u^i, v^i \in Q$ such that $u^i(i) = u_i, v^i(i) = v_i, u^i(j) = v^i(j) = 0$ whenever $j \in I$, $j \neq i$. The system $\{u^i: i \in I\}$ is disjoint, whence $u = \bigvee u^i \in Q$; similarly, $v = \bigvee v^i \in Q$, whence $p \in Q$ and thus P = Q.

By summarizing, we have the following assertion:

1.15. THEOREM. Let G be a complete l-group. Assume that f is increasing and that (c_1) is fulfilled. For any $\alpha \in \mathcal{A}$ let \overline{B}_α be the system of all $b \in G$ such that there are subsets $\{t_i\}$, $\{t_j'\} \subset A_\alpha$ satisfying $-(\bigvee t_i) \leqslant b \leqslant \bigvee t_j'$. Then \overline{B}_α are convex l-subgroups of G and G is isomorphic to a complete subdirect product of l-groups \overline{B}_α ($\alpha \in \mathcal{A}$). If G is laterally complete, G is isomorphic to a complete direct product of l-groups \overline{B}_α ($\alpha \in \mathcal{A}$).

The lattices \overline{B}_a need not, in general, be f-homogeneous, and this is the reason for searching for a "better" complete subdirect decomposition of G. (Example. For any non-trivial interval $[a, b] \subset G$ put $f[a, b] = \max\{\operatorname{card}[a, b], \aleph_0\}$. Then f is increasing and satisfies (c_1) (cf. 3.1). Let I be an infinite set, $C_i = E$ for each $i \in I$, $G = II^*C_i$ ($i \in I$) and let $\alpha = \aleph_0$. Denote by H the discrete direct product of l-groups C_i ($i \in I$). We have $A_\alpha = H^+$, $B_\alpha = H$. Since each element $0 < g \in G$ is the supremum of some subset of H^+ , we get $\overline{B}_\alpha = G$. Let $g \in G$, g(i) = 1 for each $i \in I$. Clearly, $f[0,g] > \aleph_0$ and $f[0,h] = \aleph_0$ for any $0 < h \in H$. Therefore \overline{B}_α is not f-homogeneous.) Under the same assumptions as in 1.15 let $\alpha \in \mathcal{A}$ be

fixed, $\bar{B}_a \neq \{0\}$. Choose any maximal disjoint subset $\{a_i\}_{i \in I}$ of the l-group \bar{B}_a . Hence $a_i \in A_a$ for each $i \in I$. Let $b \in \bar{B}_a$, b > 0. Then there is a subset $\{t_j\} \subset A_a, t_j > 0$, $\bigvee t_j = b$. For any t_j there exists an a_i such that $t_j \wedge a_i > 0$; thus $b \wedge a_i > 0$, and therefore $\{a_i\}_{i \in I}$ is a maximal disjoint subset of the l-group \bar{B}_a . For any $i \in I$ write $C_i = \{b \in \bar{B}_a : |b| \wedge a_j = 0$ for each $j \in I, j \neq i\}$. It is known that C_i is a closed convex l-subgroup of \bar{B}_a (cf. [2], p. 119, Proposition 12).

1.16. $C_i \cap C_j = \{0\}$ for any $i, j \in I$, $i \neq j$.

Proof. Let $x \in C_i \cap C_j$, $i \neq j$. Then $|x| \in C_i$, whence $|x| \delta a_k$ for any $k \in I$, $k \neq i$; moreover, from $x \in C_j$ we obtain $|x| \delta a_i$. If $x \neq 0$, then $|x| \notin \{a_m\}_{m \in I}$ and $\{a_m\}_{m \in I} \cup \{|x|\}$ is a disjoint set, a contradiction.

For any $0 \le g \in \overline{B}_a$ and any $i \in I$ write $g_i = \sup\{t \in C_i: t \le g\}$. Since C_i is a closed sublattice of \overline{B}_a and \overline{B}_a is a closed sublattice of G, we have $g_i \in C_i$.

1.17. $g = \bigvee g_i \text{ for any } g \in \overline{B}_a, g \geqslant 0.$

Proof. Clearly, $g_i \leq g$ for each g_i ; let $\bigvee g_i = h$ and assume h < g; let g - h = k. Then there exists an $i_0 \in I$ such that $k \wedge a_{i_0} = a > 0$. Thus $a \in C_{i_0}$, $g_{i_0} + a \in C_{i_0}$ and $g_{i_0} < g_{i_0} + a \leq h + k = g$; hence g_{i_0} is not the greatest element of the set $\{t \in C_{i_0}: t \leq g\}$, which is a contradiction.

Now the same method that was used in 1.9-1.15 yields (by applying 1.16 and 1.17) the following:

1.18. The l-group \overline{B}_a is isomorphic to a complete subdirect product of l-groups C_i $(i \in I)$.

An element e of an l-group H is called a weak unit of H if $h \wedge e > 0$ whenever $h \in H$, h > 0.

1.19. Let e be a weak unit of a complete l-group H, h ϵ H, h \geqslant 0. Then

$$\bigvee_{n=1}^{\infty} (ne \wedge h) = h.$$

This assertion is proved in [8], p. 97, for the case where H is a complete vector lattice ("K-space"), but the proof remains valid also for complete l-groups.

Let us remark that for any $i \in I$ the element a_i is a weak unit of A_i (otherwise there would exist a positive element $d \in A_i$ such that $a_i \delta d$ and then, according to 1.16, we would have $a_j \delta d$ for each $j \in I$, whence $\{a_i\}_{i \in I} \cup \{d\}$ would be a disjoint set, a contradiction).

1.20. If (c_2) holds, then f[a, b] = a for any non-trivial interval [a, b] of C_i .

Proof. Since [a, b] is isomorphic to [0, b-a], it suffices to prove that f[0, t] = a for any $t \in G_i$, t > 0. From $a_i \in A_a$ it follows that $na_i \in A_a$ for any positive integer n, and since a_i is a weak unit of \overline{B}_a , $0 < na_i \land t \in A_a$,

we have $f[0, na_i \wedge t] = a$ and all these intervals are f-homogeneous. By 1.19

$$\bigvee_{n=1}^{\infty} (na_i \wedge t) = t,$$

and thus according to (c_2) f[0, t] = a.

From 1.15, 1.18 and 1.20 we obtain:

1.21. THEOREM. Let G be a complete l-group and let f be an increasing cardinal property satisfying (c_1) and (c_2) . Then G is isomorphic to a complete subdirect product of f-homogeneous l-groups. If G is also laterally complete, then it is isomorphic to a complete direct product of f-homogeneous l-groups.

Under the same assumptions as in Theorem 1.21 let $\alpha \in \mathcal{A}$ be fixed, $\bar{B}_{\alpha} \neq \{0\}$ and let $A_0 = \{a_i\}_{i \in I_0}$ be the system of all atoms of the lattice \bar{B}_{α}^+ . There exists a maximal disjoint subset $A_0 = \{a_i\}_{i \in I}$ such that $I_0 \subset I$. Let $i_0 \in I_0$. Since $[0, a_{i_0}]$ is a prime interval, it is a chain and thus (cf. [5], Thm. 1') there exists a direct decomposition

$$\bar{B}_a = R_{i_0} \times Q_{i_0}$$

such that R_{i_0} is linearly ordered and $a_{i_0} \in R_{i_0}$. Moreover, R_{i_0} is complete and a_{i_0} is an atom of $R_{i_0}^+$, whence R_{i_0} is isomorphic to the l-group N consisting of all integers (cf. [1]). Obviously $A' = A_0 \setminus \{a_{i_0}\}$ is a subset of Q_{i_0} and A' is a maximal disjoint subset of Q_{i_0} ; therefore, $R_{i_0} = C_{i_0}$. Now let $i \in I \setminus I_0$ and assume that C_i contains a prime interval [u, v]. Then $v - u = a_{i_0}$ is an atom of the lattice \overline{B}_a^+ , $a_{i_0} \in C_{i_0} \cap C_i$; according to 1.16, $C_{i_0} \cap C_i = \{0\}$, a contradiction. Thus for $i \in I \setminus I_0$ each non-trivial interval of the l-group C_i is infinite. Hence from 1.21 follows:

1.22. THEOREM. Let $G \neq \{0\}$ be a complete l-group and let f be an increasing cardinal property satisfying (c_1) and (c_2) . Then there exists a complete subdirect decomposition of G with factors C_k $(k \in K)$ such that (i) each factor C_k is f-homogeneous and (ii) for any $k \in K$ either C_k is isomorphic to N or each non-trivial interval of C_k is infinite.

1.23. According to the constructions of subdirect decompositions of G (Thm. 1.15) and of B_a (cf. 1.17 and 1.18), we may assume that the factors C_k in 1.22 are l-ideals of G and that, for any $g \in G^+$, $g = \bigvee g^k$ ($k \in K$), where g^k is the k-th component of g with regard to the subdirect decomposition of G described in 1.22.

§ 2. Lengths of intervals of a lattice ordered group. Let [a, b] be a non-trivial interval of a lattice L and let $\mathcal{R}[a, b]$ be the system of all maximal chains of the interval [a, b]. We define the length s[a, b] of [a, b] by

$$s[a, b] = \min \{ \operatorname{card} R : R \in \mathcal{R}[a, b] \}.$$

Write $f_1[a, b] = \max\{s[a, b], s_0\}$.

2.1. Let L be a complete infinitely distributive lattice, $R \in \mathcal{R}L$. Let 0 be the least element of L, $a \in L$, a > 0. Then $R_1 = \{r \land a : r \in R\}$ belongs to $\mathfrak{R}[0, a]$.

Proof. Clearly R_1 is a chain, $R_1 \subset [0, a]$; assume that $R_1 \notin \mathcal{R}[0, a]$. Then there exists $b \in [0, a] \setminus R_1$ such that $R_1 \cup \{b\}$ is a chain. Let $R_u(R_v)$ be the set of all $r \in R$ such that $r \wedge a < b$ $(r \wedge a > b)$. Since L is complete, there exists an $r_0 \in R$ such that $r_0 = \bigwedge r_i$ $(r_i \in R_v)$. Then $r_0 \wedge a = \bigwedge (r_i \wedge a) > b$ $(r_0 \wedge a = b$ cannot hold, since $r_0 \wedge a \in R_1$, $b \notin R_1$). Write $r_1 = \bigvee r$ $(r_i \in R_u)$. Clearly, $r_0 \geqslant r_1$; if $r_0 = r_1$, then $r_0 \wedge a = \bigvee (r_j \wedge a) \leqslant b$, a contradiction. If $r_0 > r_1$, then $[r_1, r_0]$ is a prime interval, whence the set $L_1 = \{r_0, r_1, a \wedge r_0, b, a \wedge r_1\}$ is a non-modular sublattice of L; a contradiction.

The assertion dual to 2.1 can be proved similarly.

2.2. Let L be a complete infinitely distributive lattice, $[u, v] \subset L$, u < v, $R \in \mathcal{R}L$. Then there is an $R_1 \in \mathcal{R}[u, v]$ such that $\operatorname{card} R_1 \leqslant \operatorname{card} R$.

Proof. Let 0 be the least element of L. According to 2.1 $R' = \{r \wedge v : r \in R\}$ belongs to $\Re[0, v]$ and hence, by the assertion dual to 2.1, $R_1 = \{r' \vee u : r' \in R'\} \in \Re[u, v]$. Obviously $\operatorname{card} R_1 \leqslant \operatorname{card} R' \leqslant \operatorname{card} R$.

Let G be a complete l-group. Since G is infinitely distributive, it follows from 2.2 that f_i is increasing.

. 2.3. Let G be a complete l-group. Then f_1 satisfies (c_1) .

Proof. Let $t_i \in G$, $t_i > 0$ (i = 1, 2), $f_1[0, t_1] = f_2[0, t_2] = \alpha$, $f_1[0, t_1 + t_2] = \beta$. Since f_1 is increasing, $\alpha \leq \beta$. The lattices $[0, t_2]$ and $[t_1, t_1 + t_2]$ are isomorphic, and thus $f_1[t_1, t_1 + t_2] = \alpha$. There are chains $R_1 \in \mathcal{R}[0, t_1]$, $R_2 \in \mathcal{R}[t_1, t_1 + t_2]$ such that $\operatorname{card} R_1 \leq \alpha$, $\operatorname{card} R_2 \leq \alpha$; the set $R_1 \cup R_2$ belongs to $\mathcal{R}[0, t_1 + t_2]$ and $\operatorname{card} R \leq \alpha$; hence $\beta = \alpha$.

Let $A_1 = \{f_1[a, b]: [a, b] \subset G, a < b\}$. From 2.3 and 1.6 follows:

2.4. THEOREM. Let $G \neq \{0\}$ be a complete l-group. Let $a \in A_1$, $a > \aleph_0$ $(a = \aleph_0)$. For any $g \in G$ let $G^1_a(g)$ be the family of all convex sublattices L of G such that $g \in L$ and the length of each non-trivial interval of L equals a (equals or is less than a). Then (i) any family $G^1_a(g)$ has a greatest element $B_a(g)$, (ii) $B_a(0)$ is an l-ideal of G and $B_a(g) = B_a(0) + g$.

Let us remark that for a non-complete l-group G f_1 need not be increasing. Example: Let A(B) be the additive group of all rational (real) numbers with the natural order, $G = A \times B$, $t_0 = (0, 0)$, $t_1 = (0, 1)$, $t_2 = (1, 1)$. Then $f_1[t_0, t_1] = c$ (the power of the continuum). Let $R = \{(r, r): 0 \le r \le 1, r \in A\}$. R is a maximal chain of the lattice $[t_0, t_2]$ and $\operatorname{card} R = \mathbf{N}_0$; hence $f_1[t_0, t_2] = \mathbf{N}_0$.

2.5. Let G be a complete l-group. Then f_1 fulfils (c_2) .

Proof. Let $0 < t_i \in G$, $f_1[0, t_i] = a$ and let $[0, t_i]$ be f_1 -homogeneous (i = 1, 2, ...), $t_1 \le t_2 \le ...$, $\bigvee t_i = t$. Since f_1 is increasing, $f_1[0, t] \ge a$. Let S be the system of all intervals $[t_i, t_{i+1}]$ $(t_0 = 0, i = 1, 2, ...)$ that

are non-trivial. According to the f_i -homogenity of $[0, t_{i+1}], f_i[t_i, t_{i+1}] = \alpha$ whenever $[t_i, t_{i+1}]$ is non-trivial. For each $L_i \in S$ there exists a maximal chain $R_i \in \mathcal{R}L_i$ such that eard $R_i \leqslant \alpha$; let R be the union of all these R_i . Then $R \in \mathcal{R}[0, t]$ and eard $R \leqslant \alpha$, whence $f_i[0, t] = \alpha$.

From 2.3, 2.5 and 1.22 we obtain:

2.6. THEOREM. Let G be a complete l-group. Then G is isomorphic to a complete subdirect product of l-groups C_k $(k \in K)$ such that for each $k \in K$ either (i) every interval of C_k is finite, or (ii) any two non-trivial intervals of C_k have the same length $\alpha_k \geqslant \mathbf{n}_0$. If G is laterally complete, then G is isomorphic to a complete direct product of l-groups C_k .

Now we may ask whether we could obtain analogical results if we define the length of a bounded lattice L (card L>1) by the rule

$$s'L = \sup \{ \operatorname{card} R : R \in \mathcal{R}L \}$$
.

Put $f_2L = \max\{s'L, s_0\}$. Clearly, f_2 is increasing. Let $G \neq \{0\}$ be an l-group, $A_2 = \{f_2[a, b]: [a, b] \subset G, a < b\}$.

2.7. f_2 fulfils (e_1) .

Proof. Let $0 < t_i \in G$, $f_2[0, t_i] = \alpha$ (i = 1, 2). Then $f_2[t_1, t_1 + t_2] = \alpha$ and, since f_2 is increasing, $f_2[0, t_1 + t_2] \ge \alpha$. Let $R \in \mathcal{R}[0, t_1 + t_2]$ and write $R_1 = \{r_1: r_1 = r \land t_1, r \in R\}$, $R_2 = \{r_2: r_2 = r \lor t_1, r \in R\}$. The set $R_1(R_2)$ is a chain in $[0, t_1]([t_1, t_1 + t_2])$, whence $\operatorname{card} R_1 \le \alpha$, $\operatorname{card} R_2 \le \alpha$. Since G is distributive and r is the relative complement of the element t_1 in the interval $[r_1, r_2]$, the pair of elements (r_1, r_2) uniquely determines r. Thus $\operatorname{card} R \le \operatorname{card} (R_1 \times R_2) \le \alpha$. This proves that $f_2[0, t_1 + t_2] = \alpha$.

From 2.7 and 1.6 we obtain the following:

2.8. Let $G \neq \{0\}$ be an l-group, $\alpha \in A_2$, $\alpha > \aleph_0$ ($\alpha = \aleph_0$). For any $g \in G$ let $G'_{\alpha}(g)$ be the family of all convex sublattices L of G such that $g \in L$ and for any non-trivial interval L_1 of L s' $L_1 = \alpha$ (s' $L_1 \leq \aleph_0$). Then (i) each family $G'_{\alpha}(g)$ has a greatest element $B'_{\alpha}(g)$, (ii) $B'_{\alpha}(0)$ is an l-ideal of G and $B'_{\alpha}(g) = B'_{\alpha}(0) + g$.

There exist complete l-groups G such that f_2 fails to satisfy (c_2) . Example: Let $I = \{1, 2, ...\}$, $G_i = N$ for each $i \in I$, $G = \Pi^*G_i$. For any $i \in I$ define t_i by

$$t_i(j) = 1$$
 for $j \in I$, $j \leqslant i$, and $t_i(j) = 0$ otherwise.

Further, let $\overline{0}$, $\overline{1} \in G$ such that $\overline{0}(j) = 0$, $\overline{1}(j) = 1$ for each $j \in I$. Clearly, $s'[\overline{0}, t_i] = i+1$, whence $f_{\overline{2}}[\overline{0}, t_i] = s_0$ and all intervals $[\overline{0}, t_i]$ are f_2 -homogeneous. We have $\overline{0} < t_1 < t_2 < ...$, $\bigvee t_i = \overline{1}$ and the interval $[\overline{0}, \overline{1}]$ is isomorphic to the Boolean algebra B consisting of all subsets of the set I. There is a chain R in B such that $\operatorname{card} R = c$ (cf. [4]). Thus $f_2[\overline{0}, \overline{1}] \neq s_0$.

Let L be a lattice, $L_1 \subset L$. The set L_1 is dense in L, if $L_1 \cap [a, b] \neq \emptyset$ for any non-trivial interval $[a, b] \subset L$. We define the reduced length s^*L

of a bounded lattice by $s^*L = \min\{a \in \mathcal{K}: \text{ there exists an } R \in \mathcal{R}L \text{ and a dense subset } L_1 \text{ of } R \text{ such that } \operatorname{card} L_1 = a\}.$ By the same method as in 2.1–2.6 analogical results for the reduced length can be proved.

§ 3. The powers of intervals of an l-group. Let G be an l-group, $G \neq \{0\}$. For any non-trivial interval $[a, b] \subset G$ we write $f_*[a, b] = \max\{\operatorname{card}[a, b], s_0\}$. Obviously, f_3 is increasing.

3.1. f_3 satisfies (c_1) .

Proof. Let $0 < t_i \in G$, $f_3[0, t_i] = a$ (i = 1, 2), $f_3[0, t_1 + t_2] = \beta$. Then $f_3[t_1, t_1 + t_2] = a \le \beta$ and each element $t \in [0, t_1 + t_2]$ is uniquely determined by the pair $(t \land t_1, t \lor t_1)$. Since $t \land t_1 \in [0, t_1]$, $t \lor t_1 \in [t_1, t_1 + t_2]$, we have $card[0, t_1 + t_2] \le card[0, t_1]$ card $[t_1, t_1 + t_2] \le a$. Thus $f_3[0, t_1 + t_2] = a$.

Let $A_3 = \{f_3[a, b]: [a, b] \subset G, a < b\}$. From 3.1 and 1.6 we obtain:

3.2. THEOREM. Let G be an l-group, $a \in \mathcal{A}_3$, $a > \aleph_0$ $(a = \aleph_0)$. To any $g \in G$ there exists a greatest convex sublattice $B_a^3(g)$ of G containing g such that each non-trivial interval of $B_a^3(g)$ has the power a (the power $a \in \aleph_0$). The set $B_a^3(0)$ is an l-ideal of G and $B_a^3(g) = B_a^3(0) + g$.

3.3. Let G be a complete l-group. Then there exists a decomposition $G = A \times B$ such that (i) A is a complete subdirect product of linearly ordered groups isomorphic to N, and (ii) B does not contain any prime interval.

Proof. Let f be an increasing cardinal property satisfying (c_1) and (c_2) (for example, $f = f_1$). Consider the complete subdirect decomposition with factors C_k ($k \in K$) treated in 1.22 and 1.23. Let K_0 be the system of all C_k isomorphic to N. We denote by A(B) the set of all $g \in G$ such that $g_k = 0$ for each $k \in K \setminus K_0$ ($k \in K_0$). Then clearly $G = A \times B$ and A(B) is isomorphic to a complete subdirect product of l-groups C_k , $k \in K_0$ ($k \in K \setminus K_0$). Let $[t_1, t_2]$ be a non-trivial interval of B. Then $[t_1, t_2]$ is isomorphic to [0, t], $t \in B$, $t_2 - t_1 = t > 0$, whence $t = \bigvee t_k (k \in K \setminus K_0)$. There exists $k_1 \in K \setminus K_0$ such that $t_{k_1} > 0$ and, since C_{k_1} does not contain any prime interval, we have $t' \in C_{k_1'}$, $0 < t' < t_{k_1}$. Therefore the intervals [0, t] and $[t_1, t_2]$ are not prime.

3.4. Let G be a complete l-group, $a \in G$, a > 0, and assume that any disjoint subset of G is finite. Then the lattice [0, a] is isomorphic to a direct product of a finite number of chains.

Proof. At first we shall prove that for each $b \in [0, a]$, b > 0 there is an element b_1 , $0 < b_1 \le b$, such that $[0, b_1]$ is a chain. For otherwise there would exist $b_1, b_2 \in [0, b], b_1 > 0$, $b_2 > 0$, $b_1 \delta b_2$. Further, there would exist positive disjoint elements $b_{21}, b_{22} \in [0, b_2]$. In this way we could construct an infinite disjoint subset $\{b_1, b_{21}, b_{221}, \ldots\} \subset [0, a]$, which is a contradiction. Hence there exists a maximal disjoint subset $B = \{b_1, b_2, \ldots, b_n\}$ of [0, a] such that each interval $[0, b_i]$ is a chain. Since G is Archimedean, for each b_i there exists an integer $n_i \ge 1$ such that

 $n_ib_i \leqslant a$. Put $a_i = a \wedge n_ib_i$. The interval $[0, nb_i]$ is a chain for any integer n (cf. [5], Lemma 17.2), whence $a \wedge nb_i = a_i$ for each $n \geqslant n_i$. Let $\bigvee a_i = a'$, a-a'=k. Clearly $k \geqslant 0$; assume that k > 0. Then there exists $b_{i_0} \in B$ such that $k_{i_0} = k \wedge b_{i_0} > 0$. Thus $a_{i_0} + k_{i_0} \leqslant (n_{i_0} + 1)b_{i_0}, a_{i_0} + k_{i_0} \leqslant a' + k = a$, whence $a_{i_0} + k_{i_0} \leqslant a \wedge (n_{i_0} + 1)b_{i_0} = a_{i_0}$, a contradiction. Therefore k = 0 and $a = \bigvee a_i$. Each interval $[0, a_i] \subset [0, n_ib_i]$ is a chain and the mapping $x \rightarrow \{x \wedge a_i\}$ (i = 1, ..., n) is an isomorphism of the lattice [0, a] onto the direct product $\Pi[0, a_i]$ (i = 1, 2, ..., n).

3.5. Let G be a complete l-group and let B have the same meaning as in 3.3. Let $[0, b] \subset B$ be a non-trivial f_3 -homogeneous interval, $f_3[0, b] = a$. Then $a^{8a} = a$.

Proof. At first assume that each disjoint subset of [0, b] is finite. Then by 3.4 there exist elements $b_1, \ldots, b_n \in [0, b]$, $b_i > 0$, such that each interval $[0, b_i]$ is a chain and [0, b] is isomorphic to the direct product of intervals $[0, b_i]$. According to [5, Thm. 1'] there exist l-ideals B_i of G such that B_i are linearly ordered and $b_i \in B_i$. Moreover, B_i are complete and since $B_i \subset B$ does not contain any prime interval, each B_i is isomorphic to the additive l-group R_0 of all reals (cf. [1]); thus card $[0, b_i] = c$ and card $[0, b] = c = c^{N_0}$. Now let us suppose that there exists an infinite disjoint subset of the interval [0, b]; then there exists a disjoint subset $\{b_1, b_2, \ldots\}$ of [0, b]. Since any non-trivial interval of B is infinite, card $[0, b] = a \ge N_0$ and, according to the f_3 -homogenity of [0, b], card $[0, b_i] = a$ for $i = 1, 2, \ldots$ Write $b' = \bigvee b_i \ (i = 1, 2, \ldots)$ and consider the mapping $\varphi \colon x \to \{x \land b_i\}$ of the lattice [0, b'] into $\Pi^*[0, b_i]$. By using the infinite distributivity of [0, b'] it is easy to verify that φ is an isomorphism. Hence $a = \operatorname{card}[0, b'] = \operatorname{card} \Pi^*[0, b_i] = a^{N_0}$.

3.6. Let G be a complete l-group and let B be as in 3.3. Then f_3 satisfies (c_2) with regard to B.

Proof. Let $t_i \in B$, $f_3[0,t_i] = a$ (i=1,2,...), $0 < t_1 \le t_2 \le ...$, $\bigvee t_i = t$ and assume that all intervals $[0,t_i]$ are f_3 -homogeneous. Since B does not contain prime intervals, $\operatorname{card}[0,t_i] = a$ for i=1,2,... For any $x \in [0,t]$ we have $x = \bigvee (x \wedge t_i)$, whence the mapping $x \to \{x \wedge t_i\}$ (i=1,2,...) is a monomorphism of the set [0,t] into the complete direct product $\Pi^*[0,t_i]$; from this we obtain $f_3[0,t] = \operatorname{card}[0,t] \le \operatorname{card}\Pi^*[0,t_i] = a^{N_0}$ and $a^{N_0} = a$ according to 3.5. Therefore (since f_3 is increasing) $f_3[0,t] = a$.

According to 3.1 and 3.6, we may apply Th. 1.21 to the l-group B; since A is isomorphic to a complete subdirect product of linearly ordered groups C_k ($k \in K_0$) such that any interval of C_k is finite, we have the following result:

3.7. THEOREM. Let G be a complete l-group. Then G is isomorphic to a complete subdirect product of l-groups C_k $(k \in K)$ such that, for each C_k , one of the following conditions holds: (i) any interval of C_k is finite and C_k is

linearly ordered, or (ii) any non-trivial interval of C_k has the same cardinality a_k and $a_k^{\aleph_0} = a_k$.

Let a be a cardinal, $a^{\aleph_0} = a$. Then there is a lattice ordered group $G_a \neq \{0\}$ such that $\operatorname{card}[a, b] = a$ for each non-trivial interval of G_a . We construct G_a as follows:

Since $\alpha^{\aleph_0} = \alpha$, there exists a Boolean algebra $B_\alpha \neq \{0\}$ such that $\operatorname{card}[b_1, b_2] = \alpha$ for any non-trivial interval of B_α (cf. Pierce [6]). Let E be the vector lattice consisting of all elementary Carathéodory functions on B_α (cf. Goffman [3]); i.e., E is the set consisting of all forms

$$(2) f = a_1 b_1 + \ldots + a_n b_n$$

(where $a_i \neq 0$ are reals and $b_i \in B_a, b_i > 0$, $b_{i_1} \wedge b_{i_2} = 0$ for any $i_1, i_2 \in \{1, ..., n\}, i_1 \neq i_2$) and of the "empty form"; if g is another such form,

(3)
$$g = a_1 b'_1 + ... + a'_m b'_m,$$

then f, g are considered as equal if $\bigvee_{i=1}^n b_i = \bigvee_{j=1}^m b_j'$ and if $a_i = a_j'$ whenever $b_i \wedge b_j' \neq 0$. For any $b, b' \in B_a$ let b-b' be the relative complement of $b \wedge b'$ in the interval [0, b]. The operation + in E is defined by

$$f+g=\sum_{i=1}^{n}\sum_{j=1}^{m}(a_i+a_j')(b_i\wedge b_j')+\sum_{i=1}^{n}a_i(b_i-\bigvee_{j=1}^{m}b_j')+\sum_{j=1}^{m}a_j'(b_j'-\bigvee_{i=1}^{n}b_i),$$

where in the summations only those terms are taken into account in which $a_i + a'_i \neq 0$ and the elements $b_i \wedge b'_i$, $b_i - \bigvee_{j=1}^{n} b'_j$, $b'_j - \bigvee_{i=1}^{n} b_i$ are non-zero.

The multiplication by a real $a \neq 0$ is defined by $af = (aa_1)b_1 + ... + (aa_n)b_n$; 0f is the empty form. The form (2) is positive, if $a_i > 0$ for i = 1, ..., n. Let G_a be the subset of E consisting of the empty form f_0 and of all forms (2) such that $a_i \neq 0$ are integers (i = 1, 2, ..., n). Then G_a is an l-subgroup of the l-group E and card $G_a = a$. For proving that card [f, g] = a for any non-trivial interval [f, g] of G_a it suffices to examine the intervals $[f_0, f], f > f_0$. Let $f \in G_a$ be the form (2) with $a_i \geqslant 1$ (i = 1, ..., n). Let

$$Y = \{b \in B_a \colon 0 < b \leqslant b_1\}, \quad \overline{Y} = \{g \in G_a \colon g = 1b, b \in Y\}.$$

Since $\operatorname{card}[0, b_1] = a$, we have $\operatorname{card} \overline{Y} = a$ and, because $\overline{Y} \subset [f_0, f] \subset G_a$, $\operatorname{card}[f_0, f] = a$.

It remains as an open question whether for any cardinal α satisfying $\alpha^{\aleph_0} = \alpha$ there exists a complete l-group G such that $\operatorname{card} L = \alpha$ for any non-trivial interval of G.

Analogously as in § 2 we may define the reduced power card*L of a bounded lattice L to be the least cardinal α such that there exists a dense subset L_1 of L, card $L_1 = \alpha$. Write $f_4L = \max\{\operatorname{card}^*L, \aleph_0\}$. Obviously f_4 is

98

J. Jakubík

increasing, but f_4 fails to satisfy the condition (c_1) . Example: Let $G = R_0 \times R_0$, $g_0 = (0,0)$, $g_1 = (1,0)$, $g_2 = (0,1)$. Clearly, $f_4[g_0,g_1] = f_4[g_0,g_2] = \aleph_0$ and the intervals $[g_0,g_1]$, $[g_0,g_2]$ are f_4 -homogeneous. Let L_1 be a dense subset of $[g_0,g]$, $g=g_1+g_2=(1,1)$. Let $r \in [0,1]$, $h_1 = (0,r)$, $h_2 = (1,r)$. Then there exists $g_r \in L_1 \cap [g_1,g_2]$ and $g_r = (x_r,r)$, $x_r \in [0,1]$. Thus $g_{r_1} \neq g_{r_2}$ whenever $r_1 \neq r_2$ and therefore $\operatorname{card} L_1 = c = f_4[0,g_1+g_2] \neq f_4[0,g_1]$.

References

- G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloquium Publications, Vol. 25, Third Edition, 1967.
- [2] L. Fuchs, Частично упорядоченные алгебраические системы, Москва 1965.
- [3] C. Goffman, Remarks on lattice ordered groups and vector lattices. I. Carathéodory functions, Trans. Amer. Math. Soc. 88 (1958), pp. 107-120.
- [4] J. Jakubík, Remark on the Jordan-Dedekind condition for Boolean algebras, Časopis pěst. mat. 82 (1957), pp. 44-46.
 - 5] J. Jakubík, Konvexe Ketten in l-Gruppen, Časopis pěst. mat. 84 (1959); pp. 53-63.
- [6] R. S. Pierce, A note on complete Boolean algebras, Proc. Amer. Math. Soc. 9 (1958), pp. 892-896.
- [7] R. S. Pierce, Some questions about complete Boolean algebras, Proceedings of Symposia in pure matematics, Vol. II, Lattice Theory, Amer. Math. Soc., 1961.
- [8] В. Z. Vulich, Введение в теорию полуупорядоченных пространств, Москва 1961.

Reçu par la Rédaction le 28. 4. 1969

Algèbre du calcul propositionnel trivalent de Heyting

par

Luiz Monteiro (Bahia Blanca)

- 1. Introduction. Nous nous proposons dans cette note de déterminer le nombre d'éléments de l'algèbre H_3 avec un nombre fini de générateurs libres (1).
- 1.1. DÉFINITION. Une algèbre de Heyting (2) A sera dite une algèbre H_{\circ} si l'égalité suivante est vérifiée:

$$(T) \qquad ((a \rightarrow c) \rightarrow b) \rightarrow (((b \rightarrow a) \rightarrow b) \rightarrow b) = 1$$

quels que soient les éléments a, b et c de A.

Ces algèbres jouent dans l'étude du calcul propositionnel trivalent de Heyting (A. Heyting [5], J. Łukasiewicz [6], I. Thomas [16]) un rôle analogue à celui des algèbres de Boole dans le calcul propositionnel classique.

Il est évident que toute algèbre de Boole, est une algèbre H_3 , car dans les algèbres de Boole est valable l'égalité $(b \to a) \to b = b$, qui implique (T).

Indiquons l'exemple le plus simple d'une algèbre H_3 , qui n'est pas une algèbre de Boole: Soit $T = \{0, a, 1\}$ l'ensemble formé par trois éléments distincts sur lequel on définit les opérations \land , \lor et \rightarrow au moyen des tables suivantes (auxquelles nous ajoutons la table de l'opération de négation \neg définie par $\neg x = x \rightarrow 0$).

Cette algèbre a été considérée pour la première fois par A. Heyting (1930).

L'algèbre de Boole $B=\{0\,,1\}$ est une sous-algèbre de T que nous aurons à utiliser par la suite.

⁽¹) Un résumé de cette note a été publié dans Notas de Lógica Matemática № 19 (1964),

^(*) Voir: T. Skolem [14], G. Birkhoff [1], p. 459, [3], p. 147, M. Ward [17] et A. Monteiro [8]. Nous avons adopté la terminologie de H. Rasiowa et R. Sikorski [11].