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are isomorphic. Two fe-spaces X and Y are homeomorphic iff the lattices
Ly(X) and Lg(Y) are isomorphic.

Remark. Thepc- and fe-gpaces play roles in the theory of T(,-spztces
analogous to the roles of compact and realcompact spaces in the theory
of Tyehonoff spaces. It is interesting to note that it is possible to define
a .concept which is analogous to pseudocompactness. A T,-space X ig
said to be a pseudo-pc-space if each element of (X, B) is bounded above
on every irreducible closed subset of X.

) It is clear from Lemma 4.1 that a Ty-space X is a pseudo-pe-space
iff every irreducible closed subset of X has the FCI- pl‘-operty and also
that a T)-space is a pe-space iff it is both an fe- and a pseudo-pe-gpace.
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On the position of the set of monotone mappings
in function spaces

by
R. Pol (Warszawa)

K. Kuratowski and R. C. Lacher have shown in [53] that if X and ¥
are compact topological spaces and ¥ is locally connected, then the set
of all monotone mappings of X onto ¥ is closed in Y¥ (endowed with
the compact-open topology). In an earlier paper [4] K. Kuratowski showed
that if the space X is compact and metric and ¥ an arbitrary metric
space, then the monotone mappings of X into ¥ form a @;-set In Ix.

Tn this connection the guestion arises whether the above theorems
can be generalized by dropping the assumption of the compactness of X
and restricting the considerations to perfect mappings. More generally,
in the space Y¥ can consider subset #C ¥ C YX (we shall be interested
in closed or perfect monotone mappings), and, under certain assumptions
on X and Y, one can prove that & is closed (or that is a @,-set) in ¥.
Below we shall prove a few facts of this type and give examples illustrating
role of the assumptions which have been made.

We adopt the terminology and notation of [2] and [3]. All the spaces
considered below are Hausdorff spaces. The space ¥X of mappings of X
into ¥ will be considered with the compact-opén topology. The symbol
M(4, B), where A C X, BC ¥, will denote the set {fe¢ ¥*| f(4) CB}.

LEMyA 1. Let X be an arbitrary space, Y a locally conmnected space
and @ the set {f: X->X| f~(8) C X is connected for all open and connected
SC Y}

If the mapping f: X ;ZY satisfies the conditions

(i) the boundary Frf (y) is compact for every y e Y,

(ii) if ye ¥ and U is a neighbourhood of the set f~Yy), then ihere
exists an open set V C X such that f~(y) C V C U and the boundary FrV is
compact,

(iii) fe®,
then f is a monotone, closed mapping.
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Proof. We shall first prove that f is a closed mapping.

Let 4 be an arbitrary closed subset of X and assume that ¢ eﬂfT)\ fl4).
Hence f~'(y) C X\A. By (ii) there exists an open set ¥ C X such thas
FfHy) CV CX\4 and the boundary FrV is compact. Since the compact
set f(Fr¥) does not contain the point y and ¥ is a locally connected
Hausdorff space, there exists a connected and open neighbourhood §
of y such that §~ f(FrV) = 0. Since y ef(A) and f is onto, there exist
a point aed such that f(a) ¢S and a point bef Yy). Since fea
there ‘exists a g ¢ M(FrV, Y\S) » M({a, b}, 8) ~ &. But b ¢ g7H8) ~ Vj
aeg(8) ~ (X\V) and g7(8) ~ FrV = @; hence §7%8) is not connected,
contrary to the assumption that g < @.

Now we shall prove that f i3 a monotone mapping.

Let_ us assume that for a certain y ¢ ¥ we have T Uy) =4, v 4,
where A; = A4, 4; # @ for ¢= 1,2, and 4, NAy=0. Ay 4, and 4, amé
separated, we have Fr(d;u 4,)=Frd, v Frd,. From (i) it follows
txh.at the sets Frd; are compact, and X being a Hausdorff space, there
exist open disjoint sets &, G, such that 4,C ;. Since Gu G040 4,
= f"Y(y), by (i) there exists an open set V C X such that A, 0 4,CV
C 6w G, and the boundary FrV is compact. The sets Wy, = G; ~ V and
We=GnV are separated and Fr(W,u W,) = FrW, u FrW,. There-
fore the set Fr'W, is compact, W,D A and W, ~ A, = @. Since the com-
pact set f(FrW,) does not contain the point y and ¥ is a Hausdorff and
lmaliy connected space, there exists a connected and open neighbour-
hood 8‘ of Y such that 8~ f(FrW;) = 0. Take a;¢ A, for ¢ — 1, 2. The
set M = M(FrW,, Y\8) ~» M({a, a3}, §) is a neighbourhood of f in T,
It ge M, then g (8) ~ FrW, — O, a3 €g™(8) n Wy, a3 e g~4(8) (X\Wy);
hence the set g=(8) is not connected and g ¢ @. It follo;vs that M nd = 1@’
eontrary to (iii). Therefore f is monotone. ’

Lemwma 9. If f: X;;Y is a closed mapping such that Jor all ye ¥

the boundary FrfY(y) is compact, then for p 7

ﬂLéFrf*l(z) e i , for every compact Z C Y the set
Proof. Let X, ——-ggFr “y), ¥, =f(X,) and fi=7f|X,. The set X3

is elosed in X, hence h k

Y, 0of ¥ (see [21, Pro

compact. The le

bils % perfeet mapping of X, onto the cloged subset
em 3.X) and the inverge image fiYZ ~ Y,) is
mma now follows from the equality

ZLE,;Frf‘I(z) =f{Zn~ 7).

- ; . . :
hood (3 - i stz);I i;lxzt Xt' 18 & rim-compact space if for every z ¢ X and every neighbour-
X15t8 a neighbourhood ¥ of ¢ sueh that ¥V C U and ¥rV is compact
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LeEMMA 3. If the mapping f: X~;>Y is closed, the boundary Frf~'(y)
onto

is compact for every y ¢ ¥, and ¥ is a rim-compact (*) space, then for every
y e Y the set FHy) has & neighbourhood system consisting of open sets with
compact boundaries.

Proof. For an arbitrary 4 CY we have

W Frf~(4)C U Frfy).

yeFr4d
Indeed, Uylntf“l(y) CIntf~Y4)w Int(X\f*l(A)) = X\Frf~'(4), and
ye
thus Frf~(4) C |J Frf~'(y); from the continuity of f we have Frf %(A4)
ye¥ .
CfYFrd); hence Frf(4)C(|JFrfy)nfYFrd)= | Frf(y).
ye¥ yelrd

Now take an arbitrary point y ¢ ¥ and let G be an open neighbour-
hood of f~*(y). Since the mapping f is closed and ¥ is rim-compact, we
can find an open set H such that y e H C ¥\ f(X\@&) and the boundary
FrH is compact. For V = f~}(H) we have f~y) CV C & and by virtue
of (1), FrVC |J Frf'(2). By Lemma 2 we infer that the set FrV is

zeFrH
compact.

TeEOREM 1. If X is a paracompact space, and Y is locally connected,
rim-compact and satisfies the first axiom of countability, then the set of all
monotone closed mappings of X onto Y is closed in the set of all closed
mappings of X onto Y.

Proof. By Michael’s generalization of Vaingtein’s theorem ([6]), it
follows that if f: X;t—O)Y is a closed mapping, then Frf (y) is compact
for every y ¢ ¥. Hence — by Lemma 3 — f has properties (i) and (ii) of
Lemma 1. Our theorsm now follows from Lemma 1 and the theorem
([3], § 46, I, Theorem 9), which states that if f: X;;:Y is a monotone

closed mapping then the inverse image f~%(8) is connected for every
connected §C Y.

K. Morita ([7], simplified proof in [1]) proved that if f: X ;ZY is
a closed monotone mapping such that Frf~(y) is compact for every
yeY and X is rim-compact, then ¥ is also rim-compact. Hence, from
the quoted above result of Michael and our Theorem 1, we obtain

THEOREM 2: If X is a paracompact and rim-compact space and ¥ is
locally connected amd satisfies the first awiom of countability, then the set
of all monotone closed mappings of X onto ¥ is closed in the set of all closed
mappings of X onto Y.

THEOREM 3. If X is a paracompact space and X is a locally connected,
locally compact space, then the set of all monotone closed mappings of X
onto X is closed in the set of all closed mappings of X onto Y.


Artur


18 " R. Pol

Proof. This follows from the argument given in the proof of
Theorem 1, because the Vaingtein—Michael theorem is valid also under
the assumption of local compactness of ¥, and every locally compact
space is obviously rim-compact.

TeEoREM 4. If X is a paracompact space and Y s & locally connected,
Tocally compact space, then the set of all monoione, perfect mappings of X
onto Y is closed in the set of all closed mappings of X onto X.

Proof. Let A= {f: X;;:Y[ f is & monotone, perfect mapping},
and let f: Xn—n—;Y be an arbitrary closed mapping such that fe A. By

the Vainiteln-Michael theorem for every y ¢ Y the boundary Frf~'(y)
is compact and from Theorem 3 we infer that -
{2) f is a monotone mapping .

Suppose that there exists a g, ¢ ¥ such that f~'(y,) is not compact.
Let us observe first that

(3) Frf~y,) # 0 .

Indeed, suppose that Frf~Y(y,) = &. Then, as f is closed, ¥, is an
isolated point in Y. Let us take an arbitrary point a e f~*y,). As fe 4,
 there exists a g <M({a}, {3}) ~ 4. Since 9(fwo) » 4o amd  fy,) i

connected by (2), we have g(f~(y,)) = yo. Thus f~(yo) C g~ (y,), contrary

to the assumption that f~'{y,) is not compact.
Now take two open sets V¥, V,C ¥ such that

() ¥oeViCV;CV, and 7, is compact.
Let {P,es be the family of all components of Y\V,. Since Y\V, is

locally connected, {P,},.g is an open covering of ¥Y\V;. The compact
set Fr¥, is contained in ¥\V,, hence there exist s, ..., sz ¢ § such that

(5) F1V,C P, u..u P,.

Take poirgs 2 e X such that f(a) e P, for i=1, ..., k.
Since fe A, there exists a mapping

.

(6) 9 < M{Frf~y,), Vi) ~ O M({ws}, Py)nd.
Let A = fyN\g Y(V,). We shall show that

(7) 4 is open and g7Mg(d))= 4.

h By_gﬁ) 97V 2 Frf~Y(y,) and A = Intf~(y,\g~*(7,) is an open set.
Since 97 (j%)) A Frf~(y,) = @ and ¢-is a monotone mapping, we have
97{9(@)) CF~ye) for all ae . Tt follows that g d) = U g7(g(a)

aed

Cfge) and g7{g(4)) = 4.
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‘We shall now prove that
(8) g(4) is open-and-closed in Y\V, .

By (7), g(4) is open even in ¥. Since g(4) = g(4)Cg(4d v g (V1))
= g{d) v Vy, g(4) is closed in ¥\V;.

As f‘l(yo)Cg‘l(g(f“l(yo))), the set f~Yy,) is not compact and g is
a perfect mapping, we infer that g{f~'(y,)) is not compact; thus g( o))
A (I\V,) 0. By virtue of (3) and (6) g(f/ (%)) ~V:+# 0. From the
eonnectedness of g{f~'(y,)) and from (4) we have g(f~(y,)) ~ FrV, # 0,
and thus g(4) n FrV, # @. Take z ¢ g(4) ~ FrV,; by virtue of (5), 2 e Py,
and by (8) P, Cg(4). From (6) it follows that g(w;) ¢ Py, then g(z;)
eg(A) and, by (7) z;, ¢ A Cf Yy,). So we have f(a;)=14,, contrary to
the choice of #,. The contradiction shows that f~*(y,) must be compact,
which completes the proof.

Remark 1. Theorems 2 and 4 can be slightly generalized as follows:

TraroREM 2. Let X be a rim-compact space, ¥ a locally connected space,
E={f: X—? Y| f is closed and monotone} and ¥ = {f: X—:Yl Frf ()
onto onto

is compact for every y e Y}.

Then the intersection Z ¥ is closed in the set V.

Indeed, if X is rim-compact and f e ¥, then f satisfies conditions (i),
(ii) of Lemma 1; furthermore if f e &, then f~%(8) is conunected for every
connected S C Y. Theorem 2’ follows now from Lemma 1.

THEOREM 4. If X is an arbitrary space and Y is a locally connected,
locally compact space, then the set A of all perfect monotone mappings X
onto Y is closed in the set ¥ = {f: XE Y| FrfYy) is compact for every

yeX} )
We can assume that 4 #@. Then X is locally compact (see [2],
Problem 38.Y) and a forfiori rim-compact. By Theorem 2’ we have
ANPCENY and, as in the proof of Theorem 4, we can show that
AP = .

Remark 2. Under the assumptions of Theorem 2 the set of all
monotone closed mappings of X onto Y is identical (as observed by
Morita in [7]) with the set of all monotone, quotient (%) mappings of X
onto Y for which the boundaries of inverse images of points are compact.
Tndeed, in this case such a quotient mapping f satisfies conditions (i)
and (ii) of Lemma 1; furthermore, if S is an open and connected subset
of ¥, then f~%(8) is connected, thus the condition (iii) is also satisfied.

Now we shall show that the assumptions in our theorems are essential.
e shall use the fact that the compact-open topology in ¥~ is identical

(2} A mapping f: X—)mY is quotient if f7'(4) is closed in X implies that 4 is
N oni
closed in ¥.


Artur


80 R. Pol

with the topology of uniform convergence on compacta induced in ¥<
by an arbitrary uniformity compactible with the topology of X (see [2],
Theorem 8.2.3). Let E? denote the Euclidean plane, and for a, b e 2
leb [a, b] denote the closed segment with end-points @ and b.

Exampre 1. The assumptions “Y s rim-compact” in Theorem 1,
4 X is rim-compact” in Theorem 2 and “Y s locally compact” in Theorem 3
cannot be omitted.

Take in E? the points @, = (0, 0) Y= (1,0) and @, == (0, 1/n),

¥ =(1,1/n) for n=1,2, ... and X = U (%, Ynl @ Yo, 1] [%9, 2,]. De-

note by R the decomposition of X into the sets {x} for 2 ¢ [@,, 2] © [Yy, 11]
and {[wy, 2,1 [¥, ¥} The quotient space ¥ = X/B is metrizable,
because the natural quotient mapping p: X X/R is perfect (see [2],
Problem 4.8); let d be a metric in Y. For every ¢ >0 there exist open,
disjoint squares K;, K, with sides parallel to the axes and centres at ,
and y,, such that Xn(KluKz)Cp—l(B(p(wo), e/2)), where B(y, ) is
a ball of radius » with centre at y. Let Z C X be an arbitrary compact set.
Take the first my such that Z ~ [#,, y,] C Ky v K, for n>n, and feoz
X—Y defined by ’
outo
o
e () for @ e {J@n, 1],
i e n=1 '
foa®) =1 plz) for - @ e[Tppy1y Yngrl © [@, 2] [Yo, 9],
plet+(@—m,)) for zelm, y¥n]  and > w1

It is easy to see that sug d(f, z(2), p (%)) < ¢, hence

pe{fyzl £>0,ZCX is compact} .

The mappings f, , are perfect and monotone, and p is perfect, but not
monotone, as p 1(p(m0) (@0, %] [Yy, ¥1] i3 not connected.

Exawpre 2. The assumption “Y satisfies the first amiom

aye . I -

ability™ in Theorem 2 is essential. T & of coun

Let X and B be as in Example 1. Take X' — X\{z, !

£ T - 1 (3 k4 ’ — 0’ yo} R = R ~
n (X‘x X'y and p: X'>X'[R' = Y. Let ZC X' be a eompaci; set. Take
the first , such that Z ~ [ ; Y2l = @ for n > n,. Let

I o
p'(z) for we U [(B,,,, Yn] ,

fo@)=1{p'z) = - for e[ o) Vgt 1] © (%0, 317 O (9o, 7411,

P+ (g y—2,)) for @ ela,,yn] and n >ny41 .

Th i : X'—Y g i
e mapping f,: X ;—;Y is closed and monotone; furthermore
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fzlZ = p'|Z; thus p’ e {f;| ZC X' is compact}, but p’ is closed and not
monotone.

ExAvpLE 3. The assumption “¥ 4s locally compact” in Theorem 4
cannot be replaced by rim-compactness.

Let = (cos o sin ) Xy={dem| 0 <A</}, n=1,2,.., and

4in
X = UX,, Define f: X—~—->X by
n=1
!(0,0) for m=1and 0<i<1,
F(d2) = n 1
[(—h—;—l—)lzn_l for n>1 and 0<Z<;’;’
and for m = 2,3, .. fm: X>X by
[l )
zm forr n=1and 0<I<],
1
fml(d2n) = | r}.zn_l for 1<n<mand 0<<A<< 2
llz,, for wn>m and O<l<;’;.

For z¢X we have |f(2)—fm(2)]<1/m and the homeomorphisms fu
converge uniformly to the closed, monotone, but not -perfect map-
ping f.

It has.been shown in [5] that the assumption of local connectedness
of ¥ cannot be omifted in all the above theorems. In this context we
will show a little more:

ExAMPLE 4. The assumption “Y is locally connected” in Theorem 4
cannot be omitted, even if we restrict ourselves to the set of monotone
and closed mappings.

[ A -
Let 2, = coslﬁ,smm) for n=1,2,.., = (1,0) and X, = {iz|

<A<1} for n=0,1,.. Put X= |JX, and define the mapping
n=0
fit X—X by

onto

(0,0) for m=1and 0<i<1,
fOz)=14,, for n>1land 0<<i<],
A2y for n=0and 0<A<1.

Fundamenta Mathematicae, T. LXXV (5]
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Let gm: [0,1]-[0, 1] for m = 2,3, ... be defined by

————-}"1 for 0<l<1—}—,
m— m
Pm(2) = m—1 1 1

(m—1) (1—7)4—% for l_ﬁ <AL1,

and define fm: X—+X by

om(A)zm  for m=1and 0<<A<],
fmldzn) = { 22,_, for l<n<mand 0<<A<1,
yre for n>m,n=0and 0<i<l.

For zeXyu {d] 0<i<1-1/m} v X,u...we have [fn(2)—f(2)|
< 1/m and homeomorphisms fn converge in the compact-open topology
to the closed, monotone, but not perfect mapping f.

Lemua 4 (cf. [8]). If X, Y,Z are arbitrary spaces such that Y CZ
and F is a compact subset of X, then the set My = {(f, 2) ¢ ¥X X Z| 2 ¢ f(F)}
={f,9) e YEXTY| yef(F)} is closed in YXx Z; furthermore if ¥ is
meirizable, then M, is a Q,-set in YXx Y.

Proof. Note that '

@ M={f,9) <Y XZ| zef(F)} is closed in Y'xZ.

Indeed, if (f,2) ¢ M, we have z¢ f(F) and there exists an open set
UC? such that f(F)C U and z¢ U; now the set M(F, U)x (Z\D) is
a neighbourhood of (f,2) in ¥¥x Z disjoint with M,.

Consider the restriction p: ¥YX x Z—>¥F % Z, where =

o(f,2) = (fIF, =
for f e« ¥ and z€Z. We have ’ 128 = (2

(10) ¢ M) = {(f, 9) « Y X Y| y € (fIF)(F)}
' ={F,9) e TXX Y| y f(F)} = M.

The mapping ¢ is continuous; hence b - i

; : Y (9) and (10) M, = ¢~ (M) is
closed in Y¥xZ. T Y is metrizable, the space Y7 is also metriza.gble,
‘_1 l!{, sa G‘,-subsgn of Y X ¥ as a closed subset of a metrizable space.
implies that ¢™(M,) = M, is a G,-set in Y¥x ¥, which completes
the proof. ’

i, ?émz:omﬁ Let X be a rim-compact and o-compact (¥), metrizable space
Z;zﬂ 'r :; }mmza.ble sp:al;c}e. Then the set I' = {f ¢ YX| f~Y(y) 4s compact and
or every y € Y} is a Gy-set inthe set Q — X fYy) 4
for cvery 4 « Ty s {f e YE| f~(y) is compact

7 3 *
(f) We say that X is a o-compact space if X — U X;, where X; are compact sub-
o

spaces of X. Obviously, every o-compact metric s]pa,ce1 i8 separable,
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Proof. Let aY be an arbitrary compactification of ¥ and let P
=02xY,Q=0xaY¥. For an open set ¢ C X such that Fr& is compact
put [6]={{f, %) €Q] f{w)nG#0, ()~ (X\G) #0 and f{u)~
~FrG =0}

We shall show first that

(11) [G] is an F -set in Q .
Let us note that [G]= A ~ B, ~ B,, where
A={(f,w) Q| f(u)~Fr@ =0},
B, = {(f,u)eQ| fH{u)~n @ #0} and
B, = {(f, u) €@l f(u) ﬁv(X.\(?) # @} .
We have A ~ P = {(f,y) e 2x Y| f{y) » Fr@ = B}; hence by Lemma 4
the set A ~ P is an F -set in P. Thus A nP = DIF,., where F = FZ

= F9~ P and we obtain
o0
A=(AnP)u(dn(Q\P)=[[\JFH~ P4~ (Q\P)].
n=1
We shall prove now that both sets B; are F,-sets in @ and that
B;C P. By the symmetry of assumptions we may limit ourselves to B;.
Since X is metrizable, G is an F_-set in X and ¢ = | 4n, where 4T = A,.

n=1

=]
Since X is o-compact, X = | J Xn, where X, are compact. Hence G
n=1

= G Apn Xy and B, = D {(f, ) €Q] fFH{u)~ (An o Xm) # @}.- Since

the sets A, » X are compact, it follows from Lemma 4 that B, is an
F-set in Q. If u e a¥\Y and feQ, then f(u)~ & Cf(u)= O; hence
B, CP. Finally we have

0 (-]

AnB nBy= {{( UF3)~ -P] vidn (Q\P)]}“Blf‘32= UF2nBnB,.
n=1 n=1

The set on the right side is an F_-set in @, which proves (11).

Since X is a rim-compact, separable and metrizable space, there
exists (see [2], Theorem 1.1.7) a countable base whose elements have
compact boundaries. Let G, G, ... be all the finite unions of elements
of such a base. Let us denote by p the projection p: 2 X a¥—>Q and let

Y= p(U [G,,]]. Since p is closed (see [2], Theorem 3.2.8) ¥ is an F, -seb
n=1

in Q. Now it suffices to show that ¥ = Q\I' If f e O\T, then there exists
a point y ¢ ¥ such that fy)= 4, u 4y, di=A;, s #0,1=1,2 and
6*
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A;nd,=0. We can find a & satisfying GxD A, Gxn 4, = @. Thig
implies that (f,y) ¢[Gx] and that fe¥. Conversely, if fe ¥ there exist
& k and a point y € ¥ such that (f, y) e [Gx]. By the definition of [@4] it
follows that f~'(y) is not connected, hence fef\I'

T am thankful to Professor R. Engelking for his help and suggestions
in the preparation of this paper.
o Errata to the paper
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