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The category of recursive functions
by
Harry Gonshor (New Brunswick, N. J.)

1. Introduction. This paper was inspired by the appendix of [6]
where counter-examples are given which illustrate some difficulties in-
volved in developing a homomorphism theory for recursive groups. The
major diffieulty has nothing to do with groups but hinges on the existence
of one-one onto maps which are not isomorphisms. The principal aim of
this paper is to show that if we restrict ourselves to a suitable class of
onto maps (which we shall call “proper onto”) then a homomorphism
theory is obtained which satisfies the homomorphism theorems of universal
algebra. Moreover, the spirit of [5] suggests that the definition of proper
onto is reasonable.

In a preliminary section we give a survey of some of the properties
of the category of partially recursive functions. Unfortunately, the most
non-trivial results are counter-examples which show pathology. Never-
theless, we feel that there is a value in having an explicit record on the
nature of this category.

For concepts in category theory we use the notation in [7]. For
concepts in recursive function theory and notations (e.g., the use of “&”

for the set of non-negative integers) we use the papers of J. C. E. Dek-
ker [1]-[5].

2. The category. We consider the category whose objects are sets
of non-negative integers and whose morphisms are restrictions of partial
recursive funetions.

The null set is a conull object and a unit set is a null object as in
the category of sets. In addition monics are one-one and epics are onto.
Fortunately, the family of partial recursive functions is at least rich
enough to enable us to use essentially the same proofs as in the category
of sets.

PROPOSITION 1. Two sets are categorically equivalent iff they are
recursively equivalent.

This is essentially proved in [2] without using the language of
category theory. The result shows that the concept of R.E.T. arises
naturally out of a categorical point of view.
Fundamenta Mathematicae, T. LXXV
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PROPOSITION 2. The coproduct is the Delkker sum and the product is
the Dekker product. )

Proof. We indicate the mappings only. The proofs are trivial. Given
a and B, define y = [J(m 0): m ea]u [J(@,1): © ef]. Then the coproduct

i the pair of maps aSy, B —> y with w () = J (2, 0) and uy(y) = J(y, 1).
Given « and f define y = [J(2,9): @ e and y ¢ f]. Then the produet is

the pair of maps y > a, ¥ % B where py(2) = k(z) and py(2) = 1(z). Note
that these represent the coproduct and product in the category of sets
a8 well.

The category is not balanced, i.e., there exist mono-epics which are
not igomorphisms. In fact any regressive immune set {#,} may be regarded
as an epi-subobject of & by means of the map #—>n. Not all epi-sub-
objects of ¢ are of this form. For example, if s, and ¢, are two separable
regressive sets whose union is not regressive then the map s,—>2n,
t,—2n-+1 is mono-epic.

The existence of monics which do not correspond to subsets in the
usual manner suggests consideration of extremal monics. f is an extremal

monic if f is & monic and for all factorizations f= gh with % epie, & is

necessarily an isomorphism. In the category of all tor tcal spaces,
for example, extremal monics correspond to actual sul 8. We now
show that this happens also in our category.

ProrosITION 3. Eaxtremal monics correspond to subs

Proof. Suppose a—->ﬁ is extremal monic. Let y = imf and factor

a—->-ﬂ as a—a-y—>ﬁ where ¢ ig the inclusion map. Since g is epie, ¢ 1s an
isomorphism. Henee f is equivalent to .

Suppose a-> B is an inclusion map Let a—>/3 = a—>y—>/3 where p is

epic. Then p is one-one onto. Hence y—> g factors as y—> a—>ﬂ Since p
~ and- g are inverses of each other, p is an isomorphism.
" Equalizers are obtained by the same construction as in the category
of sets. The pullback of

a ~6~I-‘—>a
lf is zl lf
f—>y B—y

g
where d=[J(z,y): veaq, yef and f(x) = g(y)] and % and I have their

usual meanings in recursive function theory. Thus the category is finitely
complete. The following is immediate but worth noting.

PROPOSITION 4. For regressive epi-subobjects of & the intersection is
the Dekker min. function [3].
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The category is not finitely cocemplete. (It is, of course, intuitively
plausible to expect more difficultier on the right than on the left.) We
shall construct a diagram without a pushout. It follows from ([7] dual
of Proposition I, 17.3) that coequalizers do not always exist.

Let o be a non-recursive set. Then the diagram .a—>¢ where i is the
2
&
inclusion mapping has no pushout (incidentally if a is recursive the
obvious construction does lead to a pushout). Suppose a>s were
iy {7
e—>f3
. g
a pushout. # may be chosen so that f = e. Then f and g are recursive.
xe a—=f(z) = g(x). Now [z: f(z) = g(x)] is recursive. Hence H(z)[z¢a
and f(z) = g(«)]. Let a ¢ a such that f(a) = g(a) and let b ¢ f. We define
a diagram a>& as follows. v {B}, ¢'(z)= glx), f'(2)=f(z) if
iy 7

; ey
z # a and f'(a) = b. Then x e a~['(x) = g'(») i.e. the diagram commutes.
By definition of pushout H(p ZL>y) such that 2f = f’ and hg = g'. Then
f(a) = if(a) = hg(a) = g'(a). This contradicts the construction of f’
and g'.

This result might suggest that if a colimit exists then it is the swme
as the colimit in the eategory of sets. This is not true either. Let a be

ey en

non-recursive and suppose a € a and b e o’. Consider the diagram o e o’

i 12

where ¢; is the restrietion of the identity map, (V) [zl(w) = a] and

(V) is(®) = b. Then the colimit in the eategory of sets is £—>{a , b} where
zea=flr)=a and x € a’=f(z) =b. Of course, f is not a morphism in

‘ ¢ .
our category. We claim that the constant map e— {0} is a colimit. Suppose
we have a commutative diagram

ey es
a“*f - a— : ie. fe; = fi, and fe, = fi,.
i1 p iz
v
B

Then f is constant on « and on o'. Since a set of constancy must be re-
cursive f is necessarily constant. Thus we obtain an obvious unique map

{0} iﬁ which satisfies ge = f.
The categorical approach permit alternative proofs for the elementary
properties of addition, multiplication, and the min. funetion [1], [3].
7*
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Although the usual proofs are trivial this may have expository value.
We cannot expect this general approach to enable us to prove deeper
theorems in the theory of R.E.T.’s. For example, more structure is needed
to handle something as basic as inductive definitions categorically.

3. Homomorphism theory. We discuss sets first and consider universal

algebras later. First, a reasonable definition of quotient object is suggested -

in [5]. A quotient object of a is a good choice (abbreviated as g.c.) set
of a g.c. decomposition of a. The theory in [5] thrives on the fact that
all g.c. sets of a given decomposition are recursively equivalent. We now
state an elementary result.

PROPOSITION 5. For any R.E.T. B, A is o quotient object of B iff
A<LB and A #0.

Proof. First suppose that 4 < B. Then (Hae A)(HS e B)(Hy)
(¢ wy=p and « is separable from y). Let ¢ e a. Define f(z) =2 f zrea
and f(z)= a it 2 ey. f has a partial recursive extension and induces
3 g.c. decomposition with a as a g.c. set.

Now suppose a e A and let f induce a g.c. decomposition of a. Letb
B = f(e). Then g is separable from a—f since f = [z ¢ a: f(z) = «] and
o—p=[@ea: f(z) =2]. If B is the RE.T. of § then B < A.

It is clear from the existence of immune epi-subobjeets of ¢ that not
all -onto maps lead to quotient objects. We will study certain classes of
onto*maps.

f
DEFINITION 1. a>f is proper onfo iff @(f2>a) such that fgy=1
(i.e. f is a retraction).

; .
DEFINITION 2. a->f is strongly proper -onto if f has a partial recursive
extension f' with domain & such that f'(§—a)n = @.

Although the definition of proper onto might appear to be too re-
strictive note that all g.c. maps ave proper onto. Note also that the class

of proper onto maps and of strongly proper onto maps are both closed
with respect to composition.

Leuma 1. Al strongly proper onto maps are proper onto but not con-
versely. In fact there ewists a g.c. map which is not strongly proper onto.

Proof. Suppose f is strongly proper onto and choose f’ as in the
definition. By elementary recursive funection theory there exists a partial
recursive function g defined at least on § and range contained in & such
that f'g = 1. Since f'(6—a) ~ § = @, the range of g is necessarily included
in a. This shows that f is proper onto.

Let a be non r.e. and consider the decomposition consisting of a only.
Let a € a. The constant map into & is clearly a g.c. map. However, since
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the inverse image of an r.e. set is r.e. the map is not strongly proper
onto. Q.E.D.

LeMMA 2. For one-one maps the following are equivalent

(1) f is proper onto,

(2) f is strongly proper onto,

(3) f has a partial recursive one-one extension.

Proof. (2) = (1) by Lemma 1. (1) == (3) by [2]. It is obvious that
(3) = (2).

Thus a proper onto map is a generalization of an isomorphic map
in the case where the map is not necessarily one-one. Lemma 1 suggests
that it is more reasonable to consider proper maps than strongly proper
maps.

We now come to the main theorems of this paper.

FIRST ISOMORPHISM THEOREM. If f is a proper map from a onio §,
then the partition induced in a by f is a g.c. decomposition and f induces
a recursive equivalence between a g.c. set of the decomposition and p.

Proof. Choose ﬁ-g>a so that fg = 1. Then gf is a g.c. map for the
decomposition induced by f and the image of gf is a g.c. set satisfying the
required property. Q.E.D.

This result together with the fact that g.c. maps are proper onto
justifies the study of proper onto maps. The class of strongly proper
onto maps is too small for our present purpose hut has potentialities in
future studies.

SECOND ISOMORPHISM THEOREM. Let H be an equivalence relation
on a and y a subset of a with yH = a. Suppose that H induces a g.c. de-

composition of a with at least one g.c. set & included in y. Then Ey/—— is re-
Y
a
cursively isomorphic fo —.

a
T
Of course the restriction of the g.c. function on a to y serves as the g.c.
funetion on y.

THIRD ISOMORPHISM THEOREM. Let H be an equivalence relation
on o and let i be a g.c. set with g.c. function f of the corresponding de-
composition of a. Then there is a one-one correspondence between g.c. de-
compositions of f and g.c. decompositions of a containing H such that the
corresponding g.c. sets are recursively isomorphic.

Proof. This i3 trivial since & is a g.c. subset of both 2 and

Proof. Identify g with % and consider the usunal one-one corre-

spondence in the category of sets between equivalence relations on g and
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equivalence elations on a containing H. We first show that the g.c. property
is preserved both ways. First, let ¢ be a g.c. function on § with g.c. set y.
Then ¢f is a g.c. function with the same g.c. set which induces the required
partition. Conversely, if G is an equivalence relation containing H and ¢
is the corresponding g.c. function, then fg is a g.c. function which induces
the required partition on f. The last statement of the theorem is clear

since the g.c. sets may even by chosen so as to be identical (as in the

first part of the proof).

We now turn to universal algebras. No recursiveness properties are
required on the operations. It seems natural to relegate recursiveness
to the morphisms and have the objects as gemeral as possible. First, if
a congruence relation induces a g.c. decomposition then the quotient
algebra induces an algebra on any g.c. set in an obvious manner and the
natural recursive isomorphism of the underlying g.c. sets is an algebra
isomorphism. Incidentally; if any operation is recursive, then the induced
operation on the g.c. set is recursive. It is easy to see that the isomorphism
theorems Temain wvalid for universal algebras.

4. Extensions to non-onto maps. If we could restrict the class of epi-
morphisms to proper onto maps the category would be balanced. We
had hoped for a suitable restriction on the class of all maps to give us
a well-behaved category, e:g., an abelian category for the case of abelian
groups. Unfortunately no concept has been found for general maps which
works as well as proper onto maps for onto maps. We now indicate some
pathology involved in the attempts at generalization.

1 1 .
DEerFINITION 1. Suppose we define a— g as proper iff a—imf is proper
onto. This seems like a natural definition; however the class of proper
maps under this definition is not closed with respect to composition!

ExavpLE. Let a= {r,} be regressive immuyne with regressing fune-

. 7

tion k and let =y =¢. Let a->f be the inclusion map and let ﬁiy

be defined as g(n) = um[E™ 9 (n) = ¥™(n)]. Then f and g are proper.
ntimes

As an inverse for g it suffices to take J(0,1,1,...). On the other hand gf

maps Ty into # hence the only possible inverse would map # onto 7.

Since {ra} is immune such a map is not recursive.

DerFINITION 2. We define a—iﬂ as proper iff (Hmapyg) g(f) Ca and
Jg(&) = 2 if & ¢ imf. For onto maps this reduces to the definition of proper
fmto just as in the previous case; however this definition gives some
importance to f— f(a). For example if ¢ is not r.e. then the inclusion
map a—>¢ is not proper by Definition 2 although it is by Definition 1.

The class of proper maps under this definition is not closed under compo-
sition.

icm®

The category of recursive functions 93

Exavprs. Let o= {27} where {z.} is Tegressive immune, let f

= av {2n+1}, and let y = ¢ Let aiﬁ be the inclusion map, ﬁiy be
defined as g{2m) = g{2n-+1) = n. Since a is separable from {2n--1},
f has an inverse function. n—2n+1 is an inverse function for g. The only
possible inverse function for gf would be n—27, which is not recursive

sinee m—1, I8 not recursive.

We will try to extend the concept of strongly proper onto maps.
¥ i, .

DEFINITION 3. a-+f is proper iff a—imf is strongly proper onto.

Exivpre. Let a be non re., let aCpg with g recursive and let

i
y = {z} where ¢ . Define a—f as the inclusion map and ﬁiwy as the
constant map. It is easy to see that f and g are proper but gf is not proper.
Finally we give some importance to f—f(a).

7
DEFINITION 4. a—>f is proper if f has a partial recursive extension f’
with domain & such that f'(6—a) nf=@.

In contrast to the other cases the class of such maps is closed under

composition. Let a—j>/3 and ﬁiy be proper and choose 6,0 a and 6,0 8
and extensions f’ and g’ such that f'(6,— a) ~ f = O and ¢g'(d,— ) ny = O.
Let 8; = 6, ~ f'7Y(5,). Then 4, is an r.e. set satisfying a Cé, C ;. Let f'/
be the restriction of f' to &;. Then g’f’’ is a partial recursive extension
of gf and ¢'f""(6,—a) ~y = 0. Since an identity map is proper under
this definition the class of proper maps forms a subeategory.

In spite of this initial success for definition 4 serious weaknesses
remain. For example projection maps are not necessarily in this sub-
category, i.e. if a is non r.e., 8= {z} and y=[J(a,2): ae o] then the
restriction of the map 1 [with the usual meaning: IJ(z,y) = y] to y is
not in this subeategory.

We show finally that a and f do not have a product in this sub-
category. All we have shown so far is that the category product with its
projections is not in the subcategory. Let ¢ be a product of a and g with

maps y-;a and yi B. It is easy to see that for every pair (m,n) such
that m e a and n e § there exists a unique s ey such that f(s) =m and
g{s) = n. Note that the usual proof in the category of sets works since
the maps used are proper in the sense of Definition 4. We define k(m, n)
to be this unique s. Then fi(m,n) = m and gh{m, n) = n. f and g have
partial recursive extensions by definition of morphism. On the other
hand we have no a priori recursiveness properties for .

So far we have not made use of the given nature of a and g. Since f is
onto a non r.e. set, y is non r.e. Thus g maps a non r.e. set into the single

number & and is therefore not proper. This contradiction completes
the proof. .


Artur


94

38!
2]

[3]
[¢]

18]
[6]
7]

H. Gonshor

References

J. C. E. Dekker and J. Myhill, Recursive equivalence types, Univ. California
Publ. Math. (N. 8.) 3 (1960), pp. 67-214.

— Infinite series of dsols, Proc. Symposium on recursive funetion theory
(Amer. Math. Soe. Providence, R.I., 1962), pp. 77-96.

— The minimum of two regressive isols, Math. Zeit. 83 (1964), pp. 345-366.

— Good Choice Sets, Annali della scuola normale superiore di Pisa, Serie IIT,
Vol. XX, Fasc. II (1966).

— The recursive equivalence type of a class of sets, Bull. Amer. Math. Soc. 70 (1964),
pp. 628-632.

M. Hagsett, Some theorems on regressive isols and isolic groups, Ph. D. thesis,

Rutgers University, 1966.
B. Mitchell, Theory of categories, New York 1965,

RBegu par la Rédaction le 27. 10. 1969

icm

Non-alternating mappings
) oy
H. W. Berkowitz (Hoboken, N. J.)

1. Introduction. In [3] Whyburn introduced the concept of non-
aternating mapping which generalizes the concept of monotone mapping.
Kuratowski in [1] and Kuratowski and Lacher in [2] have given sufficient
conditions for spaces of monotone mappings to be topologically complete.
MecAuley in [3] has proved a similar theorem for non-alternating mappings,
where the range space is the unit interval. In this paper we continue
this line of investigation for spaces of non-alternating mappings. We
also consider the problem of when non-alternating mappings are mono-
tone, and under what condition there exist non-alternating mappings
between two spaces; these problems were originally investigated by
Whyburn in [6], [7], and [8].

2. Definition. A mapping f from a space X into a space Y is said
to be non-alfernating if for each pair of points a,b in ¥, fa) does
not separate f~(&) in X.

A compact metric continuum D is a dendrite if it is locally connected
and contains no simple closed eurve. A dendrite D has the following
properties, see [8]: .

(i) every two points of D are separated by a third point;

(i) every point of D is either a cut point or an end point;

(iii) one and only one arc exists between any two points of D.

For a,b ¢ D, the unique arc between a and b is denoted by [a, b].

If X and Y are topological spaces, the space of all mappings (con-
tinuous functions) from X into ¥ is denoted by C(X,Y) and is topo-
logized by the compact-open topology. The subspace of ¢(X,Y) eon-
sisting of all non-alternating mappings from X onto ¥ is denoted by
N(X,T).

If X is a metric space, the metric for X will be denoted by a(—y -);
if #eX and £> 0, then the set {y ¢ X: d(w,y) < s} will be denoted
by B(z, ¢). Buclidean n-space is denoted by R™ Fr denotes the frontier
of a set. .
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