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Non-alternating mappings
) oy
H. W. Berkowitz (Hoboken, N. J.)

1. Introduction. In [3] Whyburn introduced the concept of non-
aternating mapping which generalizes the concept of monotone mapping.
Kuratowski in [1] and Kuratowski and Lacher in [2] have given sufficient
conditions for spaces of monotone mappings to be topologically complete.
MecAuley in [3] has proved a similar theorem for non-alternating mappings,
where the range space is the unit interval. In this paper we continue
this line of investigation for spaces of non-alternating mappings. We
also consider the problem of when non-alternating mappings are mono-
tone, and under what condition there exist non-alternating mappings
between two spaces; these problems were originally investigated by
Whyburn in [6], [7], and [8].

2. Definition. A mapping f from a space X into a space Y is said
to be non-alfernating if for each pair of points a,b in ¥, fa) does
not separate f~(&) in X.

A compact metric continuum D is a dendrite if it is locally connected
and contains no simple closed eurve. A dendrite D has the following
properties, see [8]: .

(i) every two points of D are separated by a third point;

(i) every point of D is either a cut point or an end point;

(iii) one and only one arc exists between any two points of D.

For a,b ¢ D, the unique arc between a and b is denoted by [a, b].

If X and Y are topological spaces, the space of all mappings (con-
tinuous functions) from X into ¥ is denoted by C(X,Y) and is topo-
logized by the compact-open topology. The subspace of ¢(X,Y) eon-
sisting of all non-alternating mappings from X onto ¥ is denoted by
N(X,T).

If X is a metric space, the metric for X will be denoted by a(—y -);
if #eX and £> 0, then the set {y ¢ X: d(w,y) < s} will be denoted
by B(z, ¢). Buclidean n-space is denoted by R™ Fr denotes the frontier
of a set. .
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If 4 and B are subsets of a space, 4 meets B means 4 ~ B £@.
The closure of 4 is denoted by Cl(4).

3. Spaces of non-alternating mappings. In [2] the following is proved.,

TEROREM A. If X and Y are compact Hausdorff spaces and Y is locally
connected, then the space of all monotone mappings from X onto Y is closed
in C(X,Y).

A similar theorem for the non-alternating case was proved in [31:

THEOREM B. If X is a compact metric continuum and I is the wnit
interval, then N (X, I) is closed in O(X, I).

Theorem 3.2 below is a direct generalization of Theorem B. The
example following Theorem 3.2 shows that Theorem A does not generalize
to the non-alternating case, however, Theorem 3.3 gives a sufficient
condition for N (X, ¥) to be topologically complete. ) :

Leya 3.1. Let X be o compact Hausdovff space, ¥ a 1st countable,
locally connected Hausdorff space, and f: X >¥ g non-alternating mapping

of X onto Y. Let a ¢ Y and suppose O is a component of ¥ — {a}, then f7(0)
s connected.

Proof. Suppose f*(C) is separated, so that f~(0) = 4 u B, where A
and B are non-empty, disjoint open sets in X — fa). We may assume
that there exists pef(4) such that p e Ol f(B)). Thus there exists
a sequence, {p;}i-1, in f(B) which converges to p.

Since € and ¥ —({a} v 0) are open in ¥, 4 and X— (4 v f(a)
are-open in X. Thus f~(p) C A and f~Y(p;) C B. Since X is compact, there
are points in f~(p) which ave limit points of U{fNpe): i=1,2,..),
but this contradicts 4 and B being disjoint open sets in X — Fa)

TEEOREM 3.2. If X is a compact Hausdorff space and D is a dendrite,
then N(X, D) is closed in C(X, D)

Proof. Let f be in the closure of N{(X, D). It is clear that f is onto.
There exists a sequence {fi}3; in N (X, D) such that {fi}i=1 converges to f.
Leta, b e.D, we wish to show that f~(b) does not separate fa)in X.

. ‘Le’c- ¢ separate b from o in D. Tiet the component of D {b} con-
taining ¢ be denoted by Cp. Let the component of D — {c¢} containing a

be denoted by C.. Note that ¢ (. By Lemma 3.1, f7(C,) and f7%(C,)
are connected. We have for any 4:

CL{f7*(C.)) C £7Y(0) w fie) CFTY(0),
where Cl{f(C.)) is a continuum.

Let K = {m e X: every neighborhood of z meetg an .infinite number
of C1{f(C.)}. K is a continuum. '

We shall now show that f~(0,) C &. Ef(z) e Coylet 6= a(f(=), D— 0.
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There exists an integer N such that a{fi(x), f(a;)) < ¢ for 2> N. Thus
fi(z) € 0; and hence z € fX(C,) for ¢ > N. Therefore z ¢ K.

We shall now show that f7(b) " K =0. Let f (:2.3) =b and
¢ = d(b, C1(Cc)). Let N be an integer, where d(fs,f) < ¢/3 for i > N. Then

B, £/3) ~ 17(CL(Ce)) = @, since ¥ € fY(B(b, ¢/3)) implies that
a(b, fily) < d(b,F ) +a(f ) fily)) <e.

Since CL(f£'(C4)) Cf(OL(C.) it follows that f7() ~ K = . .
Since f(a) C K and K is connected, we have that f is non-alternating,
BxAvPLe. Let B® be a 3-cell and B* be a 2-cell. We shallq show that

N (B, B is not closed. Let B® = {z ¢ B* |laf] < 1} and B: = B*x[—1,1].

We denote the origin in R" by 0, and the boundary of B, the. u‘mt cu'.cle,

by 8. We shall use the vector space structure of E* in descrlpmg points

ixi the interior of ]92; thus if @ € S, the radius from 0 to x is equal to

{tw: 0 <t<1}. Hence B® = {(tz,5): xe §,0<1< 1, ——lqgsél}.

We shall define a sequence of mappings, {fi Ba—>B‘}i=1, where each
fi is a non-alternating onto mapping, {fiiz1~f, and f is not non-alter-
nating.

We now define f; for i=1,2,3, ..

(i) filtz, 1) = filtz, —1) = ta.
(il) For 0 <t <1, fi(tx, 0) = fafi.

(iil) For 0 < |s| < 1, filw, s) = |slz+(1—ls))z/i.

(iv) For 0 <t <1, fi(te, s) = tfi», s).

Note that f, is the projection map. To picture f; ff)r i>2, let D be
a diameter of B?, choose « and’f such that 0 <a<1fi<f< 1. Let the

v

o

f-"Vx) v f o

/ B e

. y kfl—wﬂx) / 4// i (X)

‘~\f[1(x/i)
5?2 ‘ D-[-1,1
Fig. 1

i ' v ar D and Dx[—1,1],
endpoints of D be » and y. In Figure 1 we havg s
a verticle cross-section of B, with fii(am), fi'(z/i), fi(px), fi'(z), and
f7Y(0) indicated; the first three of these are hyperbolas.
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It is easy to see that f; is non-alternating. To show that f is not non-
alternating, note that B*x {0} Cf~(0), while for = e &, f*(u)= {w} x
x {1, —1}. Thus f~(0) separates f~*(=) in B%

THroREM 3.3. If X and Y are Peano continua, then N(X,Y) is o Gy-set
in C(X,Y), and is thus topologically complete.

Proof. Let Gn= {fe C(X,Y): there exist x,ye ¥, with d(s,y)
>1/n, such that f'(x) separates f™(y) in X}. Note that N (X , ¥)
=0X,Y)— U{Gu:n=1,2,..} :

‘We shall show that @, is closed for each n, thus proving the theorem.

Suppose {f:}ies C G» and {fi}i; converges to fe (X, Y). For each 4
there exists #:, y1 ¢ ¥ such that d(@, 45) > 1/n and f7(2;) separates T )
in X. Without loss of generality we can assume {w;}i; converges to g
and {y};=: converges to y in ¥.

We want to show f~'(x) separates f(y) in X. Supposé the contrary,
then, since X —f~(x) is locally connected, there is a component, C, of
X —fx) containing f~Y(y). Thus there is a continuum K in O, containing
f%). There is a connected neighborhood, N(K), of K, such that
CI{N(K)) C O. Finally, there is a neighborhood, M, of f(»), such that
Cl{(N (K)) ~ CL(HM) = @.

Now we show that there exists an T , Such that for ¢ > I, fi4(y:) C N (K).
Suppose the contrary, then without loss of generality we can assume for
each 4 there exists z;¢ X such that fy(z;) = ¥ and g ¥ N(K). Suppose
{ziic1 converges to z. Thus # ¢ f-(y), but

d(f(2),9) < d(f(z),f(zi))+d(f(zi),fi(zi))+d(f¢(z’¢), Y) ,

and the sum on the ljiglAlt can be made arbitrarily small, which implies
fl2)=y. Thls_contradlctlon implies the existence of the desired I. Simi-
larly there exists I' such that for i~ Iy fi{y) CN(K) and f7i(a) C M,

80 t‘havt fi*{@s) cannot separate f7'(y:) in X, another contradiction. Hence
Gr is closed. '

4. Non-alternating mappings on simply connected Peano continua. We

first prove a thgorem about simply connected Peano continua which
follows from a similar theorem about R,

dis ??O?E}‘[' 2} '(}Sb,ee [4], Theorem 9.2). If By, and F, are two closed

18)0u sels un 7, them two points which are co in b ?

By ure s P nnected in both R*— T, and
We prove the following:

COROLLARY 4.2. Theorem 3.1 ko

lds if R? 4 ;
nected Peano continuum P, bR replaced by o simply con-
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Proof. Let # and y be connected in P—F, and in P—F,. Let the
circle § be expressed as the union of two ares a; and a, where a ~ 0,
= {#,y'}. Then there exists a mapping ¢: §—»P, such that g(z') = =,
g =1y, g(a) CP—TF;, and g(a,) CP—F, Now g can be extended
to all of B

There exist #, and y, in B*—(S v g-{(F, v F,)), such that there are
ares from #’ to #;, and y’ to y, in B*—g~YF; v F,). Note that B*— 8 is
topologically R?, and that @, is not separated from y; by either g—Y(F;)
or g~YF,) since g~YF:) n a;=@, for i=1,2. Thus by Theorem 4.1,
x, and ¥, arve connected in B?— (S v gy v FZ)) and the corollary follows.

Using Corollary 4.2, we can duplicate the proof of Theorem 14.3
of [4], to obtain:

THEOREM 4.3. If z and y are separated by the closed set F' in a simply
connected Peano continuum P, then they are separated by a component of F.

We shall apply Theorem 4.3 in the proof of the main theorem of
this section: :

THEOREM 4.4. Let X be a simply connected Peano continuum and D be
a dendrite. If f: X »D is a non-aliernating mapping of X onto D, then f is
monotone.

Before we prove this theorem we list the following lemmas, some
of whieh are stated without proof.

Leyyva 4.5, For any x e D, D—{a} has at most a countable number
of components.

Levmma 4.6, If C is a connected space, O is an open subset of €, and
the frontier of O is connected, then C—O is connected.

Levwma 4.7. Let X, D, and f be as in Theorem 4.4. Let ¢ € D and sup-
pose C is a component of X —f~Yx). Then Fr C C f~(x) and FrC is connected.

Proof. Let o, e f(C). There exists a sequence {#:}7ws in [, ] such
that [#i, 2] C [wi-1, #] for i = 2,3, ..., and {#;}sm1—2. If y ef(0), then
[y,®] ~[xy, 2] = [a, 2], where a =2 and [y, a] v [a,z]= [y, 2,]. Thus
for some 7, #; separates z from y in D.

Now f~x,) separates f*z) from f~(x;) in X. Let u ef(z) and
© e f7,); then there exists ¢, a component of f—(z,), such that @,
separates » from v in X. But f™(#) is in the same component of X —@,
as is u, similarly for f~(z;) and v. Thus @, separates f(z) from f~*(2,) in X.

By induction we obtain @;, a component of f~(z) such that Q;
separates f(z) from fz;—,) in X.

Let @ = {p ¢ X: every neighborhood of p meets an infinite number
of the @;}. Note @ Cf(»). We now show that @ = FrC. We have that
Q CFr(. If p eFrC, let U be an open connected set containing p, then
there exists ge U ~ ¢. Thus there exists I such that i> I implies o
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separates « from f(¢) in D, and hence ¢+1 Separates p from ¢ in X and
also in U. Therefore Qi1 U # @ for i > I, s0 p € Q. Thus @ = Fr( and
is connected. ,

Proof of 4.3. For any « e D, we wish to show that f~(z) is con-
nected. Since % is either an end point or ¢ cut point of D, we have two cases.

Case L. # is an end point. There exist {U;}i1, a sequence of neighbor-
hoods of # where Uszy; C Us, (=i Ui = {}, diameter U; < 1fi, and each U;
has one boundary point ;. Thus {;}i=1 . Let C; be the component of
X —fYa;) such that f7(») C 0;. Then f(C;) CU; and CL(0y) is connected.
It is easy to see thab f™(#) = (7=1Cl(C;) and thus is connected.

Case II. % is a cub point. Thus f~(») separates X. By Lemmas 3.1
and 4.5 we have that X—jf%«) has at most a countable number of
components, {Cg}7 (all but a finite number of the C; may be empty).
Let X, = X—C;. By induction define X;= X; ,—0; for i= 2,3, ...
" By Lemmas 4.6 and 4.7, X; is connected for each ¢, thus f™(s) is con-

nected sinee f7#) = =1 X;. :

Our final result is an application of Theorem 4.3.

THEOREM  4.8. There is mo non-aliernating mapping from o simply
connected Peano continuum X onto The. circle S.

Proof. Suppose there were such 4 mapping f. Let #,ye¢8, by
Lemma 3.1 both X —f%() and X —f(y) are connected. But X — ( ) v
v f(y)) must be separated. Thus there exists a component ¢ of f~z) u
v f{y) which separates X. Since f(C) = & or y, we have a contradiction.
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Construction of eroup topologies on abelian oroups
group topolog group
by
J. W. Nienhuys (Utrecht)

Introduction. In this article we discuss a few methods for constructing
grouptopologies on abelian groups and the relations between these methods.

In section 1 and 2 the method of Hinrichs (intended for the ring of
integers, cf. [4]) is investigated together with its relation to the can-
struction occurring in [6]. In section 3 it is explained how the topology
of a given abelian group can be refined by making a character continuous.

Next the problem is studied of finding topologies T on an abelian
group G such that G Dbecomes a complete topological group with respect
to T. Generalizations of the results of section 8 of [6] and section 8 of [2]
are obtained in section 4 and 5 respectively. The methods used resemble
those introduced in section 1 and 2.

Finally, in section 6 it is observed that this paper basically deals
with refinements. The problem is posed of reaching the aims of section 4
and 5 of this article and theresult of [8], which is obtained by eoarsifying,
at the same time. ‘

Notations and terminology. All groups in this article will be com-
mutative and additively written. Let & be a group and U and ¥ subsets
of it. U4V is defined by U+V = {a+b: aeU,beV}; 1U—3— U and

nU = (n—1)U+ U, for n > 1. Instead of n{xz} we will write n and instead

of n{—=, 0, 2} we will write n-2.

‘We will denote a topological group frequently by (&, T) in which
G is a group and T a topology defined on it such that the operation
(2, y)—+z—y is continuous in both variables together. G, stands for (@, D),
in which D is the discrete topology on @. @ alone stands for the group @
without a topology. We may discuss topologies defined on it. Sometimes
we will also use the notation @ for a topological group, if there is no danger
for confusion about the topology that is meant.

Z will denote the group of integers, R the group of reals and by N we
will mean the positive integers including 0.
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