94

H. Gonshor

References

- J. C. E. Dekker and J. Myhill, Recursive equivalence types, Univ. California Publ. Math. (N. S.) 3 (1960), pp. 67-214.
- [2] Infinite series of isols, Proc. Symposium on recursive function theory (Amer. Math. Soc. Providence, R. I., 1962), pp. 77-96.
- 3] The minimum of two regressive isols, Math. Zeit. 83 (1964), pp. 345-366.
- 4] Good Choice Sets, Annali della scuola normale superiore di Pisa, Serie III, Vol. XX, Fasc. II (1966).
- [5] The recursive equivalence type of a class of sets, Bull. Amer. Math. Soc. 70 (1964), pp. 628-632.
- [6] M. Hassett, Some theorems on regressive isols and isolic groups, Ph. D. thesis, Rutgers University, 1966.
- [7] B. Mitchell, Theory of categories, New York 1965.

Recu par la Rédaction le 27, 10, 1969

Non-alternating mappings

bу

H. W. Berkowitz (Hoboken, N. J.)

- 1. Introduction. In [5] Whyburn introduced the concept of non-aternating mapping which generalizes the concept of monotone mapping. Kuratowski in [1] and Kuratowski and Lacher in [2] have given sufficient conditions for spaces of monotone mappings to be topologically complete. McAuley in [3] has proved a similar theorem for non-alternating mappings, where the range space is the unit interval. In this paper we continue this line of investigation for spaces of non-alternating mappings. We also consider the problem of when non-alternating mappings are monotone, and under what condition there exist non-alternating mappings between two spaces; these problems were originally investigated by Whyburn in [6], [7], and [8].
- **2.** Definition. A mapping f from a space X into a space Y is said to be *non-alternating* if for each pair of points a, b in $Y, f^{-1}(a)$ does not separate $f^{-1}(b)$ in X.

A compact metric continuum D is a *dendrite* if it is locally connected and contains no simple closed curve. A dendrite D has the following properties, see [8]:

- (i) every two points of D are separated by a third point;
- (ii) every point of D is either a cut point or an end point;
- (iii) one and only one arc exists between any two points of D.

For $a, b \in D$, the unique arc between a and b is denoted by [a, b]. If X and Y are topological spaces, the space of all mappings (continuous functions) from X into Y is denoted by C(X,Y) and is topologized by the compact-open topology. The subspace of C(X,Y) consisting of all non-alternating mappings from X onto Y is denoted by N(X,Y).

If X is a metric space, the metric for X will be denoted by d(-,-); if $x \in X$ and $\varepsilon > 0$, then the set $\{y \in X: d(x,y) < \varepsilon\}$ will be denoted by $B(x,\varepsilon)$. Euclidean n-space is denoted by R^n . Fr denotes the frontier of a set.

If A and B are subsets of a space, A meets B means $A \cap B \neq \emptyset$. The closure of A is denoted by $\mathrm{Cl}(A)$.

3. Spaces of non-alternating mappings. In [2] the following is proved. THEOREM A. If X and Y are compact Hausdorff spaces and Y is locally connected, then the space of all monotone mappings from X onto Y is closed in C(X,Y).

A similar theorem for the non-alternating case was proved in [3]:

THEOREM B. If X is a compact metric continuum and I is the unit interval, then N(X, I) is closed in C(X, I).

Theorem 3.2 below is a direct generalization of Theorem B. The example following Theorem 3.2 shows that Theorem A does not generalize to the non-alternating case, however, Theorem 3.3 gives a sufficient condition for N(X, Y) to be topologically complete.

LEMMA 3.1. Let X be a compact Hausdorff space, Y a 1st countable, locally connected Hausdorff space, and $f \colon X \to Y$ a non-alternating mapping of X onto Y. Let $a \in Y$ and suppose C is a component of $Y - \{a\}$, then $f^{-1}(C)$ is connected.

Proof. Suppose $f^{-1}(C)$ is separated, so that $f^{-1}(C) = A \cup B$, where A and B are non-empty, disjoint open sets in $X - f^{-1}(a)$. We may assume that there exists $p \in f(A)$ such that $p \in \mathrm{Cl}(f(B))$. Thus there exists a sequence, $\{p_i\}_{i=1}^{\infty}$, in f(B) which converges to p.

Since C and $Y-(\{a\} \cup C)$ are open in Y, A and $X-(A \cup f^{-1}(a))$ are open in X. Thus $f^{-1}(p) \subset A$ and $f^{-1}(p_i) \subset B$. Since X is compact, there are points in $f^{-1}(p)$ which are limit points of $\bigcup \{f^{-1}(p_i): i=1, 2, ...\}$, but this contradicts A and B being disjoint open sets in $X-f^{-1}(a)$.

THEOREM 3.2. If X is a compact Hausdorff space and D is a dendrite, then N(X, D) is closed in C(X, D).

Proof. Let f be in the closure of N(X, D). It is clear that f is onto. There exists a sequence $\{f_i\}_{i=1}^{\infty}$ in N(X, D) such that $\{f_i\}_{i=1}^{\infty}$ converges to f.

Let $a, b \in D$, we wish to show that $f^{-1}(b)$ does not separate $f^{-1}(a)$ in X. Let c separate b from a in D. Let the second separate $f^{-1}(a)$ in f^{-1

Let c separate b from a in D. Let the component of $D-\{b\}$ containing a be denoted by C_b . Let the component of $D-\{c\}$ containing a be denoted by C_c . Note that $c \in C_b$. By Lemma 3.1, $f_i^{-1}(C_b)$ and $f_i^{-1}(C_c)$ are connected. We have for any i:

$$\operatorname{Cl}(f_{i}^{-1}(C_{c})) \subset f_{i}^{-1}(C_{c}) \cup f_{i}^{-1}(c) \subset f_{i}^{-1}(C_{b}),$$

where $\operatorname{Cl}(f_i^{-1}(C_c))$ is a continuum.

Let $K = \{x \in X : \text{ every neighborhood of } x \text{ meets an infinite number of } \operatorname{Cl}(f_i^{-1}(C_c))\}$. K is a continuum.

We shall now show that $f^{-1}(C_c) \subset K$. If $f(x) \in C_c$, let $\varepsilon = d(f(x), D - C_c)$.

There exists an integer N such that $d(f_i(x), f(x)) < \varepsilon$ for i > N. Thus $f_i(x) \in C_c$ and hence $x \in f_i^{-1}(C_c)$ for i > N. Therefore $x \in K$.

We shall now show that $f^{-1}(b) \cap K = \emptyset$. Let f(x) = b and $\varepsilon = d(b, \operatorname{Cl}(C_c))$. Let N be an integer, where $d(f_i, f) < \varepsilon/3$ for i > N. Then $f^{-1}(B(b, \varepsilon/3)) \cap f_i^{-1}(\operatorname{Cl}(C_c)) = \emptyset$, since $y \in f^{-1}(B(b, \varepsilon/3))$ implies that

$$d(b, f_i(y)) < d(b, f(y)) + d(f(y); f_i(y)) < \varepsilon.$$

Since $\operatorname{Cl}(f_i^{-1}(C_c)) \subset f_i^{-1}(\operatorname{Cl}(C_c))$ it follows that $f^{-1}(b) \cap K = \emptyset$.

Since $f^{-1}(a) \subset K$ and K is connected, we have that f is non-alternating.

EXAMPLE. Let B^3 be a 3-cell and B^2 be a 2-cell. We shall show that $N(B^3, B^2)$ is not closed. Let $B^2 = \{x \in R^2 \colon ||x|| \le 1\}$ and $B^3 = B^2 \times [-1, 1]$. We denote the origin in R^n by 0, and the boundary of B^2 , the unit circle, by S. We shall use the vector space structure of R^2 in describing points in the interior of B^2 ; thus if $x \in S$, the radius from 0 to x is equal to $\{tx: 0 \le t \le 1\}$. Hence $B^3 = \{(tx, s): x \in S, 0 \le t \le 1, -1 \le s \le 1\}$.

We shall define a sequence of mappings, $\{f_i: B^3 \to B^2\}_{i=1}^{\infty}$, where each f_i is a non-alternating onto mapping, $\{f_i\}_{i=1}^{\infty} \to f$, and f is not non-alternating.

We now define f_i for i = 1, 2, 3, ...

- (i) $f_i(tx, 1) = f_i(tx, -1) = tx$.
- (ii) For $0 \leqslant t \leqslant 1$, $f_i(tx, 0) = tx/i$.
- (iii) For 0 < |s| < 1, $f_i(x, s) = |s|x + (1 |s|)x/i$.
- (iv) For $0 \le t < 1$, $f_i(tx, s) = tf_i(x, s)$.

Note that f_1 is the projection map. To picture f_i for $i \ge 2$, let D be a diameter of B^2 , choose α and β such that $0 < \alpha < 1/i < \beta < 1$. Let the

Fig. 1.

endpoints of D be x and y. In Figure 1 we have D and $D \times [-1, 1]$, a verticle cross-section of B^3 , with $f_i^{-1}(\alpha x)$, $f_i^{-1}(x/i)$, $f_i^{-1}(\beta x)$, $f_i^{-1}(x)$, and $f_i^{-1}(0)$ indicated; the first three of these are hyperbolas.

It is easy to see that f_i is non-alternating. To show that f is not non-alternating, note that $B^2 \times \{0\} \subset f^{-1}(0)$, while for $x \in S^1$, $f^{-1}(x) = \{x\} \times \{1, -1\}$. Thus $f^{-1}(0)$ separates $f^{-1}(x)$ in B^3 .

THEOREM 3.3. If X and Y are Peano continua, then N(X,Y) is a G_{δ -set in C(X,Y), and is thus topologically complete.

Proof. Let $G_n = \{f \in C(X, Y): \text{ there exist } x, y \in Y, \text{ with } d(x, y) \ge 1/n, \text{ such that } f^{-1}(x) \text{ separates } f^{-1}(y) \text{ in } X\}.$ Note that $N(X, Y) = C(X, Y) - \bigcup \{G_n: n = 1, 2, ...\}.$

We shall show that G_n is closed for each n, thus proving the theorem. Suppose $\{f_i\}_{i=1}^{\infty} \subset G_n$ and $\{f_i\}_{i=1}^{\infty}$ converges to $f \in C(X, Y)$. For each i there exists $x_i, y_i \in Y$ such that $d(x_i, y_i) \ge 1/n$ and $f_i^{-1}(x_i)$ separates $f_i^{-1}(y_i)$ in X. Without loss of generality we can assume $\{x_i\}_{i=1}^{\infty}$ converges to x and $\{y_i\}_{i=1}^{\infty}$ converges to y in Y.

We want to show $f^{-1}(x)$ separates $f^{-1}(y)$ in X. Suppose the contrary, then, since $X-f^{-1}(x)$ is locally connected, there is a component, C, of $X-f^{-1}(x)$ containing $f^{-1}(y)$. Thus there is a continuum K in C, containing $f^{-1}(y)$. There is a connected neighborhood, N(K), of K, such that $\mathrm{Cl}(N(K)) \subset C$. Finally, there is a neighborhood, M, of $f^{-1}(x)$, such that $\mathrm{Cl}(N(K)) \subset \mathrm{Cl}(M) = \emptyset$.

Now we show that there exists an I, such that for i > I, $f_i^{-1}(y_i) \subset N(K)$. Suppose the contrary, then without loss of generality we can assume for each i there exists $z_i \in X$ such that $f_i(z_i) = y_i$ and $z_i \notin N(K)$. Suppose $\{z_i\}_{i=1}^{\infty}$ converges to z. Thus $z \notin f^{-1}(y)$, but

$$d(f(z), y) \leq d(f(z), f(z_i)) + d(f(z_i), f_i(z_i)) + d(f_i(z_i), y),$$

and the sum on the right can be made arbitrarily small, which implies f(z) = y. This contradiction implies the existence of the desired I. Similarly there exists I' such that for i > I', $f_i^{-1}(y_i) \subset N(K)$ and $f_i^{-1}(x_i) \subset M$, so that $f_i^{-1}(x_i)$ cannot separate $f_i^{-1}(y_i)$ in X, another contradiction. Hence G_n is closed.

4. Non-alternating mappings on simply connected Peano continua. We first prove a theorem about simply connected Peano continua which follows from a similar theorem about R^2 .

THEOREM 4.1 (See [4], Theorem 9.2). If F_1 and F_2 are two closed disjoint sets in \mathbb{R}^2 , then two points which are connected in both $\mathbb{R}^2 - F_1$ and $\mathbb{R}^2 - F_2$ are connected in $\mathbb{R}^2 - (F_1 \cup F_2)$.

We prove the following:

COROLLARY 4.2. Theorem 3.1 holds if R^2 is replaced by a simply connected Peano continuum P.

There exist x_1 and y_1 in $B^2 - (S \cup g^{-1}(F_1 \cup F_2))$, such that there are arcs from x' to x_1 , and y' to y_1 in $B^2 - g^{-1}(F_1 \cup F_2)$. Note that $B^2 - S$ is topologically R^2 , and that x_1 is not separated from y_1 by either $g^{-1}(F_1)$ or $g^{-1}(F_2)$ since $g^{-1}(F_1) \cap a_i = \emptyset$, for i = 1, 2. Thus by Theorem 4.1, x_1 and y_1 are connected in $B^2 - (S \cup g^{-1}(F_1 \cup F_2))$ and the corollary follows.

Using Corollary 4.2, we can duplicate the proof of Theorem 14.3 of [4], to obtain:

THEOREM 4.3. If x and y are separated by the closed set F in a simply connected Peano continuum P, then they are separated by a component of F.

We shall apply Theorem 4.3 in the proof of the main theorem of this section:

THEOREM 4.4. Let X be a simply connected Peano continuum and D be a dendrite. If $f \colon X \to D$ is a non-alternating mapping of X onto D, then f is monotone.

Before we prove this theorem we list the following lemmas, some of which are stated without proof.

LEMMA 4.5. For any $x \in D$, $D - \{x\}$ has at most a countable number of components.

Lemma 4.6. If C is a connected space, O is an open subset of C, and the frontier of O is connected, then C-O is connected.

LEMMA 4.7. Let X, D, and f be as in Theorem 4.4. Let $x \in D$ and suppose C is a component of $X - f^{-1}(x)$. Then $\operatorname{Fr} C \subset f^{-1}(x)$ and $\operatorname{Fr} C$ is connected.

Proof. Let $x_1
in f(C)$. There exists a sequence $\{x_i\}_{i=2}^{\infty}$ in $[x_1, x]$ such that $[x_i, x]
subseteq [x_{i-1}, x]$ for i = 2, 3, ..., and $\{x_i\}_{i=1}^{\infty} \rightarrow x$. If y
in f(C), then [y, x]
subseteq [y, x]
sub

Now $f^{-1}(x_2)$ separates $f^{-1}(x)$ from $f^{-1}(x_1)$ in X. Let $u \in f^{-1}(x)$ and $v \in f^{-1}(x_1)$; then there exists Q_2 , a component of $f^{-1}(x_2)$, such that Q_2 separates u from v in X. But $f^{-1}(x)$ is in the same component of $X - Q_2$ as is u, similarly for $f^{-1}(x_1)$ and v. Thus Q_2 separates $f^{-1}(x)$ from $f^{-1}(x_1)$ in X.

By induction we obtain Q_i , a component of $f^{-1}(x_i)$ such that Q_i separates $f^{-1}(x)$ from $f^{-1}(x_{i-1})$ in X.

Let $Q = \{p \in X : \text{ every neighborhood of } p \text{ meets an infinite number of the } Q_i\}$. Note $Q \subset f^{-1}(x)$. We now show that $Q = \operatorname{Fr} C$. We have that $Q \subset \operatorname{Fr} C$. If $p \in \operatorname{Fr} C$, let U be an open connected set containing p, then there exists $q \in U \cap C$. Thus there exists I such that i > I implies x_i

icm[©]

separates x from f(q) in D, and hence Q_{i+1} separates p from q in X and also in U. Therefore $Q_{i+1} \cap U \neq \emptyset$ for i > I, so $p \in Q$. Thus $Q = \operatorname{Fr} C$ and is connected.

Proof of 4.3. For any $x \in D$, we wish to show that $f^{-1}(x)$ is connected. Since x is either an end point or a cut point of D, we have two cases.

Case I. x is an end point. There exist $\{U_i\}_{i=1}^{\infty}$, a sequence of neighborhoods of x where $U_{i+1} \subset U_i$, $\bigcap_{i=1}^{\infty} U_i = \{x\}$, diameter $U_i < 1/i$, and each U_i has one boundary point x_i . Thus $\{x_i\}_{i=1}^{\infty} \to x$. Let C_i be the component of $X - f^{-1}(x_i)$ such that $f^{-1}(x) \subset C_i$. Then $f(C_i) \subset U_i$ and $Cl(C_i)$ is connected. It is easy to see that $f^{-1}(x) = \bigcap_{i=1}^{\infty} Cl(C_i)$ and thus is connected.

Case II. x is a cut point. Thus $f^{-1}(x)$ separates X. By Lemmas 3.1 and 4.5 we have that $X-f^{-1}(x)$ has at most a countable number of components, $\{C_i\}_{i=1}^{\infty}$ (all but a finite number of the C_i may be empty). Let $X_1 = X - C_1$. By induction define $X_i = X_{i-1} - C_i$ for i = 2, 3, ... By Lemmas 4.6 and 4.7, X_i is connected for each i, thus $f^{-1}(x)$ is connected since $f^{-1}(x) = \bigcap_{i=1}^{\infty} X_i$.

Our final result is an application of Theorem 4.3.

THEOREM 4.8. There is no non-alternating mapping from a simply connected Peano continuum X onto the circle S.

Proof. Suppose there were such a mapping f. Let $x, y \in S$, by Lemma 3.1 both $X-f^{-1}(x)$ and $X-f^{-1}(y)$ are connected. But $X-(f^{-1}(x) \cup f^{-1}(y))$ must be separated. Thus there exists a component C of $f^{-1}(x) \cup f^{-1}(y)$ which separates X. Since f(C) = x or y, we have a contradiction.

References

- [1] K. Kuratowski, On the completeness of the space of monotone mappings and some related problems, Bull. Pol. Acad. Sci. 16 (1968), pp. 283-285.
- [2] and R. C. Lacher, A theorem on the space of monotone mappings, to appear in Bull. Pol. Acad. Sci.
- [3] L. F. McAuley, A note on spaces of certain non-alternating mappings onto an interval, to appear in Duke Math. J.
- [4] M. H. A. Newman, Elements of the Topology of Plane Sets of Points, Cambridge 1951.
- [5] G. T. Whyburn, Non-alternating transformations, Amer. J. Math. 56 (1934), pp. 294-302.
- [6] Non-alternating interior retracting transformations, Ann. of Math. (2) 40 (1939), pp. 914-921.
- [7] The existence of certain transformations, Duke Math. J. 29 (1962), pp. 465-470.

[8] — Analytic Topology, New York 1942.

STEVENS INSTITUTE OF TECHNOLOGY Hoboken, New Jersey

Reçu par la Rédaction le 27. 1. 1970

Construction of group topologies on abelian groups

by

J. W. Nienhuys (Utrecht)

Introduction. In this article we discuss a few methods for constructing grouptopologies on abelian groups and the relations between these methods.

In section 1 and 2 the method of Hinrichs (intended for the ring of integers, cf. [4]) is investigated together with its relation to the construction occurring in [6]. In section 3 it is explained how the topology of a given abelian group can be refined by making a character continuous.

Next the problem is studied of finding topologies T on an abelian group G such that G becomes a complete topological group with respect to T. Generalizations of the results of section 8 of [6] and section 8 of [2] are obtained in section 4 and 5 respectively. The methods used resemble those introduced in section 1 and 2.

Finally, in section 6 it is observed that this paper basically deals with refinements. The problem is posed of reaching the aims of section 4 and 5 of this article and the result of [8], which is obtained by coarsifying, at the same time.

Notations and terminology. All groups in this article will be commutative and additively written. Let G be a group and U and V subsets of it. U+V is defined by $U+V=\{a+b\colon a\in U,b\in V\};\ 1U=U$ and nU=(n-1)U+U, for n>1. Instead of $n\{x\}$ we will write nx and instead of $n\{-x,0,x\}$ we will write $n\cdot x$.

We will denote a topological group frequently by (G,T) in which G is a group and T a topology defined on it such that the operation $(x,y) \rightarrow x-y$ is continuous in both variables together. G_d stands for (G,D), in which D is the discrete topology on G. G alone stands for the group G without a topology. We may discuss topologies defined on it. Sometimes we will also use the notation G for a topological group, if there is no danger for confusion about the topology that is meant.

Z will denote the group of integers, R the group of reals and by N we will mean the positive integers including 0.