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This process may be described also as “changing a given topology
into & coarser one”.

Tn this paper, in the preceding section, a class of selfcomplete topo-
logies T on Z was constructed. It is not difficult to prove, that for each
of these the set of continuous characters contains a Cantor set ¢ CZ
= R|Z. '

The method used for the construction of selfcomplete topologies
can be very roughly deseribed as “constructing so fine a topology on Z,
that all possible Cauchy nets are convergent to an element of Z”.

So it seems difficult to reconcile the two aims in the following

6.1. Problem. Does there exist a minimally almost periodic and
selfeomplete topology on Z?
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_ Fixed point sets of homeomorphisms on dendrites ()
by
Helga Schirmer (Ottawa)

1. Introduction. It has been known for some time that not every
non-empty closed subset of a dendrite D can be the fixed point set of
s homeomorphism. G. E. Schweigert [5] proved that such a fixed point
set cannot consist of one end point only, and several further restrictions
can be found in [4]. These restrictions are mainly concerned with the
behaviour of the fixed point set on the end points and branch points of D.

Here we show that the fixed point set of a homeomorphism of D is
in fact to a large extent determined by the end points and branch points

which it contains. More precisely: if the fixed point set F of a homeo-

morphism f of D contains points of the closure ¥ of the set of all end
points and branch points of D, then we can construet an isotopy relative
to V which transforms f into a homeomorphism which is fixed point free
on D\V (Theorem 1). If, on the other hand, F' contains no end points
and branch points, then F consists of a single point of order two
(Theorem 2). .

Many, but not all, of the known restrictions on the fixed point set
of a homeomorphism of D also hold for monotone surjective self-maps
[4], [6]. Tt is shown in § 4 that Theorem 1 cannot be extended to monotone
maps. I do not know whether Theorem 2 (suitably modified) is still true
in the monotone case.

2. Dendrites. The purpose of this paragraph is to collect the properties
of dendrites needed in this paper. They can be found in [2], [4], [6], [T]
and [8].

A dendrite D is a metfric continnum (i.e. compaet connected Haus-
dorff space) in which every pair of distinet points is separated by a third
point. It has a partial order structure which was developed by L. E. Ward,

(1) This research was partially supported by the National Research Council of
Canada (Grant A 7579). }
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Jr. [6], [7]. Select any point reD as a root, and define z <y if z = 7
@ separates r and y, or @ = y. Then r < # for every & ¢ D. If )

L(p)= {weD| <},
M(p) = {we¢ D p < a},

then the sets L{p) and M (p) form a subbasis for the closed sets of D (61,
p- 148. The set [p, g1 = M(p) ~ L(g) is a non-empty closed chain (i.e. if;
Is linearly ordered) if p < g. We write (p, g) for [p, g\({p} v {g}).

A pointi m e 4 is called a mazimum (minimum) of the subset 4 of D,
denoted by max A(min4d),if m < & (z < m) for every @ ¢ A. It is shown

in [6], Theorem 1, that every non-empty closed subset of D containg
" & maximum and & minimum. ~ :

The order o(p) of a point p e D is defined in [8], p. 48. If either o(p)
or the number of components of D\{p} is finite, then these two numbers
are equal [8], p. 88. The point p is called an end point if o(p) =1, and
a branch point if o(p) = 3. : .

D is not only connected, but also arcwise connected, and the arc
between any two of its points p and g, written arcpg, is unique [8], p. 89.
We have arepg = [m, p] v [m, ¢], where m = max (L(p) ~ L(q)) [4], Lem-
ma 2.3. The point p is & branch point of D if and only if there are at
least three arcs in D with p as a common end point which are pairwise
disjoint except for p [2], p. 44. o

The proofs of our results lean heavily on the fact that a homeomor-
phism of D preserves its order structure. We use the following lemma,

Lemwa. A homeomorphism f: D—>D is strictly ‘isotone (i.e. z<<y
implies f(x) < fly)).— A strictly isotone bijective transformation f: D->D
8 a homeomorphism.

Proof. The first part is proved in [6], Lemma 13 and p. 156. The
second part is a consequence of the facts that for a strictly isotone bijection
fiL(@)) = L(g(x)) and (M () = M(f(z)) for all zeD, and that L(z)
and M(z) form a subbasis for the cloged sets of D.

3. Fixed point sets of homeomorphisms on dendrites. Let % be the set
of all end points and B be the set of all branch points of the dendrite D,
and define V = Cl(E < B), where Ol denotes the closure. ¥ reduces to
the set of all vertices of D if D is a finite graph. We first consider the case
where the fixed point set F of a homeomorphism contains pointé of both V
and D\V, and show that then the fixed points in D\V can be eliminated
by an isotopy.

_ T@OREM 1. Let f: D+>D be o homeomorphism of a dendrite D with
fweq pomtrset F.If FAV #0, then there exists an isotopy fi (0 <t << 1)
:iat;}mvto V such that fo =fyand f,= g has a fiwed point set which is a sub-

icm®

Fixzed point sets of homeomorphisms on dendriles 119
Proof. As FnV # @, we can select a root r ¢ F~ V. For every
x e D\V, consider the sets L(z)~ TV and M(z) ~ V. They are closed, the
first is non-empty as r e L{x) nV, and the second as M(z) contains
a maximum which is clearly a maximum of D' and hence [4], Lemma 2.2
an end point. Therefore both sets contain a maximum and a minimum.
As L(x) is a chain, the maximum of L(z) ~ V is unique. But the minimum
of M(x) ~V is unique also: if there exist, for some z ¢ D\V, two points
n,; and n, such that both are a minimum of M(x) ~V, then it follows
from the definition of a minimum that », and n, are not comparable.
As mie M(z) for i=1,2, we have w< mn;, and hence 2<%k if
k= max[L(n;) ~ L(n,)], so that & ¢ M (). As arc n,n, = [k, m] [k, ny],
the point % is a common end point of the otherwise disjoint ares [%, n.],
[k, ns] and [r, k]. Therefore %k is a branch point and hence keV. So
ke M(z) "V, and by definition % < n¢. As n, and n, are not comparable,
this 'implies k< n; and k<< n,, which is impossible if »n; are minima. So

we see that the minimum of M (z) n ¥ must be unique. Put

m(z) = m.aJX[L(m) ~V for every = e D\V.
n(x) = min[ M (z) ~ V]
Let Q= UJ (m(w), 7 (w)), where the union is taken over all z e D\V for
which (m (@), n(x)) n F s @. Note that then ¥ C.D\@. In order to define
the desired isotopy we first show that m(z) e F and n(z) e F if x<Q.
As every point of (m(x), n (m)) is of order two, we see that for any point
P e(m(z), n(z) nF

m(z) = max[L(z) n V] = max[L(p) ~n V],
n(x) = min[ M (z) A V]=min[M(p) ~ V].

As p eF, the lemma implies f(L(p))= L(p) and f(M(p))= M(p). For
2 homeomorphism eclearly f(¥)= 7V, hence f(L (p) V) =L(p)nV and
AM(p) V)= M(p) ~ V. But f is strictly isotone, so it maps a maximum
(minimum) of a set onto a maximum (minimum) of the image set. There-
fore f(m(z))= m(x) and f(n(z)) = n(z). :

We now define a homeomorphism g: D->+D. If zeD\Q, put g(z)
= f(x). Now assume & ¢ @. Then m(r) ¢ F' and n(x) ¢ F, hence the lemma
implies f() € (m(x), n(z)). Give D a convex metric [1], [3] and express =
in the form

@ =2Am(@)+(1—2A)n(z), where 1= i(z) is such that 0< A<< 1.
Define g(z) by
g(z) = Pm(z)+ (1— D) n(z).

Fundamenta Mathematicae, T. LXXV 9
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Then 0< <1, so that ¢(a) ¢ (m(2),n(x)). Both f and g induce, for

all « « @, a bijection of [m(z), n(z)] onto itself, and g = f on D\Q, therefore

we see that g is a bijection of D onto itself. The fact that f is strictly isotone

implies that g is strictly isotone, and hence the lemma shows that g ig

a homeomorphism. By construction it is fixed point free on D\V Cg.
If we define f; by ’

fd@) = tg@)+ (1—0)f(@) (@eD; 0<i<1),

then f, = f and f; = g, so that f; is a homotopy from f to g. It is relative
to ¥, as g(@) = f(x) for every « ¢ V. As f; maps, for all 0 < ¢ <1, each
set (m(x), n(x)) C @ onto itself, and f; = f on D\Q, each f; is a surjection.
Both f and g are strictly isotone, and therefore f; iy strietly isotone for
all 4, so that it is also an injection. Hence f; is the desired isotopy, and
Theorem 1 is proved.

If F~V =0, then an inspection of the proof shows that it still

works if ¥ is replaced by V u {r}, where the root # ¢ F' ~ (D\V). In this -

case the isotopy f; transforms the homeomorphism f into a homeomor-

phism g with fixed point set ¢ such that ¢CV v {#} and ¢ =F on ¥V,

hence @ = {r} consists of a single point of order two. We can strengthen
this statement in two ways: the isotopy is in fact the identity, and the
assumption F~V =@ can be replaced by F ~ (B v B)=@. This can
be seen from the next theorem. ‘

TaROREM 2. Let f: D>>D be a homeomorphism of a dendrite D with
fizwed point set F. If F ~(B'w B) = @, then F consists of a single point p
of order two, and the two components of D\{p} are homeomorphic and inter-
changed by f. . i

. Proof. ¥ # @ as D has the fixed point property, and o(x) = 2 for
every ¢ e F.as Fn~ (Eu B)=0. Select an arbitrary point p e F. Then
D\{p} has two components, say K; and K,. As they are open in D\{p},
they are open in D, and hence XK, u P}=D\K; (i,j=1,2; i %j) is
closed in D, and therefore [8], p. 88 a subdendrite. The point p is an end
point of K; v {p}, as K; is connected in D and hence in Ko {p}.

As f is a homeomorphism we either have f(K,)) = K, and f(K,) = K,
or f(K,) = K, and f(K,) = K,. In the first case Theorem 2 holds. In the
second case fl{(K, v {p}) is a homeomorphism of a dendrite which leaves
?he end point p fixed. Hence it also has a fixed point on K, w {p} which
Is of order 2 [4], Theorem 4.5, and therefore contained in B < B. Bub
we have assumed that F ~ (B B) =@, so this case is impossible.

4. Remarks, _

(i) It is not possible to replace V in Theorem 1 B ig i
shown by the following example, ' R
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In the #y-plane, select the points

e, =(0,2), e_=(0,—2),
a,=(0,1), a_=(0,—1),
.= (0, 0), dy = (0,1),

n 1 n
= (0’71-{-1) ! o = (n+1’n—‘,—1)’

. n=1,2,3,..

e
C_p= ’ na1 ’ —n T n—}—l’ n+1 3

Join them by the segments [e_, e, ] and [es, di] for i =0, &1, 42, ...

to obtain a -dendrite D with F={e,,e_,di] 1=0,+1, +2,..},
B={e} i=0,41,42,..} and V=P Bu{a,,a_} Define fonV by

fley) =ey, [fle)=e_,
flay)=ay, fla)=a_,
fled) = Cie1s
Hdi)= dyyq,

and extend it linearly over all [¢;, d;] and [e;, ¢;,,] and as a fixed point
free homeomorphism of (e,, a.) respectively (e_,a_) onto itself. Then
J is a homeomorphism with fixed points e,,e_e E, and a, ,a_eV but
¢ B v B. It is not possible to construct an isotopy relative to B v B so
that it frees f from the fixed points on D\(E v B).

(ii) ¥ D and hence ¥ = F v B is finite, then it follows from [4], § 6,
that Theorem 1 can be generalized to monotone surjective self-maps,
with the isotopy replaced by a homotopy firelV so that f; is a monotone
surjection for all 0 < ¢ < 1. But for arbitrary dendrites Theorem 1 eannot
Dbe extended to monotone surjective maps. In the example at the end
of § 4 in [4] a monotone surjective map is constructed which has one
fived point contained in E and one in D\V, and for which no homotopy
ferelV exists such that f; is a monotone surjection for all 0 <{< 1 and f,
has fixed points different from f, = f. I do not know whether Theorem 2
(with obvious modifications) holds for monotone surjective self-maps.

i=0,+1,42,..,
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CAEETON UNIVERSIY, ; Contmue} whlch. are a
Ottawa . one-to-one continuous image of [0, co)
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1. Introduction. In [5] it was shown that if a locally connected and
locally compact metric space is a one-to-one continuous image of the
real line, then it is one of the following five objects: an open interval,
a figure eight, a dumbbell, a letter theta, or a noose. Noting that each
of these objects is embeddable in the plane, the author asked the following
question: If a continuum (in this paper the term continuum will mean
@ nonempty compact connected metric space, not necessarily locally
connected) is a one-to-one continuous image of the real line, is it embedd-
able in the plane? As the Example below shows, the answer to this ques-
tion is no.

However, if a continuum is a one-to-one continuous image of the
half-line [0, o), then it is embeddable in the plane. The primary purpose
of this paper is to give a proof of this statement. In doing this we obtain
a characterization of the continua which are a one-to-one continuous
image of [0,-c0) (see the Structure Theorem below). This yields
a characterization (see the Corollary at the end of section 3) of the arcwise
connected -inverse limits of circles with onto bonding maps in terms of
one-to-one continuous images of [0, co) (¢f. Theorem 6 of [7.

Throughout this paper the term circle means a space homeomorphic
to {z in the plane: [2| = 1} and the term half-ray means a space homeo-
morphic to [0, o). The symbol S§ means the closure of .

Now we present the Example mentioned above of a continmum
which is a one-to-one continuous image of the real line but which is not
embeddable in the plane. The author wishes to thank G. S. Young for
his help with this example.

ExaMPLE. Let T Dbe the triod in the plane in 3-space formed by
the union of the line segment from (0,0,0) to (0,1,0) and the line
segment from (—1,0,0) to (1,0,0). Let § be the quarter of the unit
circle in the plane in 3-space from (—1,0,0)t0(0,1,0),ie, 8= {(z,y,0)
in 3-space: @2+ =1,-1<z< 0, and 0 <y < 1}. Let y be the semi-
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