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CAEETON UNIVERSIY, ; Contmue} whlch. are a
Ottawa . one-to-one continuous image of [0, co)
Regu par Ta Rédaction le 17, 11. 1970 by

Sam B. Nadler, Jr. New Orleans)

1. Introduction. In [5] it was shown that if a locally connected and
locally compact metric space is a one-to-one continuous image of the
real line, then it is one of the following five objects: an open interval,
a figure eight, a dumbbell, a letter theta, or a noose. Noting that each
of these objects is embeddable in the plane, the author asked the following
question: If a continuum (in this paper the term continuum will mean
@ nonempty compact connected metric space, not necessarily locally
connected) is a one-to-one continuous image of the real line, is it embedd-
able in the plane? As the Example below shows, the answer to this ques-
tion is no.

However, if a continuum is a one-to-one continuous image of the
half-line [0, o), then it is embeddable in the plane. The primary purpose
of this paper is to give a proof of this statement. In doing this we obtain
a characterization of the continua which are a one-to-one continuous
image of [0,-c0) (see the Structure Theorem below). This yields
a characterization (see the Corollary at the end of section 3) of the arcwise
connected -inverse limits of circles with onto bonding maps in terms of
one-to-one continuous images of [0, co) (¢f. Theorem 6 of [7.

Throughout this paper the term circle means a space homeomorphic
to {z in the plane: [2| = 1} and the term half-ray means a space homeo-
morphic to [0, o). The symbol S§ means the closure of .

Now we present the Example mentioned above of a continmum
which is a one-to-one continuous image of the real line but which is not
embeddable in the plane. The author wishes to thank G. S. Young for
his help with this example.

ExaMPLE. Let T Dbe the triod in the plane in 3-space formed by
the union of the line segment from (0,0,0) to (0,1,0) and the line
segment from (—1,0,0) to (1,0,0). Let § be the quarter of the unit
circle in the plane in 3-space from (—1,0,0)t0(0,1,0),ie, 8= {(z,y,0)
in 3-space: @2+ =1,-1<z< 0, and 0 <y < 1}. Let y be the semi-
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circle in 3-space with center (1/4, 1/4, 0) and radius V10/4 which containy

the three points (1, 0,0), (1/4,1/4,)/10/4), and (—1/2,1/2, 0). Finally,
let H be a half-ray in 3 -space which closes down precisely on 7T without

¥

(1,0,0)°

TFig. 1

t"youeﬂaing Tv B oy, (See Figure 1 above.) The continuum 7'v g u yuH
is clearly & one-to-one continuous image of the real line but a simple

?,ppliea,ﬁon of the Jordan Curve Theorem shows that it is not embeddable
in the plane.

2. Preliminary results. Throughout this section we let f: tO, o0) >4 be
& one-to-one continuous function onto g metric continunm (X, o) and
we let K= {zecX: there exists a Sequence {t,}%_ in [0, oo) su’eh that
t,~>0§ as %->00 and { f(t;,)};’,"zl. converges to }. In this section we show
tl‘xapt the set K 18 an are or a point of the form f([s,, 1y]) (see Lemma 4) and
give a deseription of the continuum F([t+1, o)) (see Lemma 8). Results

in this i i 5 . .
Thaorenf?em on will be used in the next section to obtain the Structure

LEwmva 1. The set K is nonempty and compact.
]E‘rco‘fx.x The lemma follows easily from the fact that X is a continuum
and K= {f(): t > n}.
fA=1

LeMys 2. The set & can. not cont

0L 1< o0, wn a se of the form S(lro, ©9)),

Proof. Suppose that there is a poing

C K. Then, since f 1s one-to-one, flln—1,2)) A K is nowhere dense in K

%o € [0, oo) such that f([r,, co)) -
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for each n=1,2,... Thus, since K= U(f([fn—l, 7’[])f\K), we have
et "

that K is of the first category in itself, a contradiction [3], p. 89.

Lemva 3. If = f(a) and y = f(b), with a < b, are each in K, then
f(la, b]) is contained in K. )

Proof. Suppose, on the contrary, that there exists z = f(c), 4 < ¢ << b,
such that z ¢ K. Let s,—»co and ty—oco be in [0, oo) such that f(ss) >z
and f(tz)—y. We may assume s,<<t, for each n=1,2,.. Let 4,
= f([sn, ta]) for each n = 1, 2, ... Since X is compact, there is a convergent
subsequence of {4}, whose terms we again denote by A4,, which
converges to a continuum A. Also, by the above construction which
defines 4, A CK and (thus) 2 ¢ 4. If f~(4) C[0, 7] for some 7 ¢ [0, o),
then 4 U f([a, b]) would be a subcontinuum of the arc f([0, max {5, r}]).
Hence, 4 u f([a, b]) would be an arc. However, this is impossible hecause
x,y €A~ f(la,b]) and z ¢ A implies f([a;b]) ~ 4 is not connected. We
have now shown (*) f7(4) is not contained in any closed and bounded
subinterval of [0, o). Since 4 is a subset of K, it follows from Lemms 2
that there exist points u, (n = 1,2, ...) such that #,—>oc0 as n—>oco and
flun) ¢ A. Let My=[u,_;,u,]~f(4) for each n=1,2,..., where
1= 0. From (*) infinitely many of the sets M, are nonempty and, for
what follows, we may assume without loss of generality that they are all
nonempty. Since f is one-to-one, the sets f(I,), n =1, 2, ..., are mutually

disjoint. Since 4 = U f(M,), we now have the contintum 4 expressed
n=1

as the union of a countable number of nonempty, mutually disjoint,
compact sets. This is a contradiction [4], p. 173.

Leyua 4. The set K is an arc or a point of the form f([s,, 1,]), 0< 8,
< Iy << oo

Proof. By Lemma 1 f~'(K) is a nonempty closed subset of [0, oo)
and, therefore, has a smallest member s, ¢ f}(K). By Lemma 3 we have
that if ¢ ef '(K), then [sp,t]CfXK). Thus, by Lemma 2, f~(K) has
an upper bound and, by Lemma 1, the least upper bound of f~K)
belongs to f7'(K). Let t, denote the least upper bound of f~Y(K). Then,
by Lemma 3, [s,,1%,] Cf (K) and, by ontoness of f, [s,, %] = f(K),
ie., f([s,%]) = K.

From now on we let s, and #, (s; < %,) denote the points of [0, oo)
such that K = f([sy, f,])- -

Levwa 5. Let J = [0, 89) w (fy, o). The mapping flJ (i.e., f restricied
to J) is a homeomorphism of J onto f(J).

Proof. Since f is assumed to be one-to-one and continuous, it suffices
to show that the image under f of an open subset of J is open relative
to f(J). Suppose there is an open subset U of J such that f(U) is not open
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relative to f(J). Let p < f(U) such that p is the limit of a convé‘rgem;
sequence {f(¢:)};2; such that f(t:) « f(J)—Ff(U) for each i=1,2, ... Singe
fis one-to-one and t; ¢ U for each ¢ = 1,2, ..., t;—>00 a8 1 co. Bu} then p
would belong to X, a contradiction (because f™(K) = [s, ,] and p = §i0)
some i e.J). This completes the proof 6f the lemma.:

An are component of a continuum is defined to be a maxima) arewise
connected subset of the continuum. ’

}

Lemuma 6. If Y is a metric continuum with exactly two_are components
A and H where A is an arc and H is a half-ray such thet H D A, then Y is
chainable.

Proof. The lémma is a simple consequence of a theorem due to
Bing (see Theorem 11 of [1], p. 660) which states that an hereditarily
decomposable metrie continuum is chainable if and ounly if it is both
a-triodic (for the definition, see [1], p. 653) and hereditarily unicolherent.
Verification that Y satisfies the conditions in Bing’s theorem which
imply ¥ is chainable is straightforward and the details are not included
here. However, we point out. that the following fact about subcontinua
of Y is useful in supplying these details. Let g be a homeomorphism of
[0, o) onto H; if ¢ is a subeontinuum of ¥ which is contained neither ind
nor in H (so that C is not an arc), then ( is of the form g([t, o)) for some
te[0, oco).

The proof of the next lemma is easy and is omitted.

IeMMA 7. For any 34,1, f([t, co)) = f([t, o)) U K.

LeMya 8. The continuum F([to+1, 00)) is either (1) an are if K is
a point or (2) a chainable continuum with exactly two arc components if K is
an are, the two arc components being the arc K and the half-vay f([t,-+1, o0)).

Proof. Note that, by Lemma 5, fllfo+1, o0) is a homeomorphism
of [f+1, co) onto f([{,4+1, o)) so that f(lt+1, o)) is a half-ray. By
Lemma 4, K is an arc or a point. If K were a single point, then by Lemma 7,
F{lt+1, o)) would be an are (& one-point compactification of a half-ray
must be an are), Next we assume: K is an ave, Suppose there is an arc
aCf([f+1, oo)) from a point of fllto+1, 9)) to a point of K. Since
anEZ@G#anf(ll41, o) and a is connected, it follows from
Lemma 7 that an f([t,-+1, o)) @ f([ty+1, s]) for any s > t,-+1. Hence,
there is a sequence {t, 32, in [%o+1, o0) such that flts) ea for each
#n=1,2,.. and th>o0 a5 n->co, I now follows (noting also that if
J(8), f{t) ea with #,4+1 < s <1< oo, then f([s,#]) C a) that aD f([r, o))
for some r > ,+1; but then f([r, oo)) would be g subcontinuum of the
arc a and, therefore, would be an arc. However, by Lemma 7 we see thatb
J(r, o)) = f({r, o)) U K. Thus, since each point of K is a noncut point
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of f(_[r, oc)), we have uncountably many noncut points of f([r, ©0)),
a contradiction to f{[r, o)) being an arc. This proves that there is no
arc contained in f([#,+1, o0)) from a point of f([{,41, o)) to a point
of K. Therefore, f([{,4+1, o)) and K are maximal arcwise connected
subsets of f([t,-+1, co)). By Lemma 7 we have now proved (assuming K is an
arc) that f([4,+1, oo)) has exactly two arc components, namely the
arc K and the half-ray f([f{,+1, o0)). The chainability of F([t+1, o))
follows from Lemma 6 above. This completes the proof of the lemma.

3. The Structure Theorem. In this section we give necessary and suf-
ficient conditions in order that a continuum be a one-to-one continuous
image of [0, 'o0). These conditions are in terms of pieces of the continuum
and how they intersect. In addition to using results in the previous
section, we also use two results of the author stated below. We include
the statements of these results not just for completeness but primarily
because they are necessary for understanding the information that the
Structure Theorem gives.

TEEOREM 1 OF [6]. If @ chainable continuwm has exactly two are
components, then one of them is an arc and the other is a half-ray.

THEOREM 6 OF [7]. 4 metric continuum Y is an arcwise connected
inverse limit of circles with onto bonding maps if and only if either ¥ is
acirele or ¥ = A © O where A is an are, O is a chainable continuum with
exactly two arc components, and 4 ~ C is exactly the two noncut poinis of A
which are also opposite end points of C (in the sense of Bing [1], p. 661).

We also use the next lemma, which follows easily from results on
pages 660 and 661 of [1] (some of the proof is done in part of the proof

of Theorem 6 of [7]).-

Levma 9. If € is a chainable continuum with exactly two arc compo-
nents, namely an arc I and a half-ray H, then two points of C are opposite
end points of C (in the sense of Bing [1], p. 661) if and only if

(1) one of them is the noncut point of H and

(2) the other is either of the noncut points of I if HD T or, if £p I,
the noneut point of I not in H.

As & consequence of the results in this section stated above, we have
the following:

Leynid 10. If ¥ 4s an arcwise connected inverse limit of circles with
onto bonding maps, then Y is a one-to-one continuous image of [0, oo).
Therefore; if X is not a circle, the image of zero under an arbitrary one-to-one
continuous mapping of [0, oo) onto ¥ is the one and only point of ¥ whose
complement in Y is arcwise connected.
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. Proof. If Y is a circle, then ¥ is obviously a one-to-one continuoug
image of [0, oo). For the rest of this proof we assume that ¥ is not a circle,
We first show that ¥ is a one-to-one continuous image of [0, oo). The

continuum ¥ = A U ¢ where 4 and ¢ have the properties indicated in

- Theorem 6 of [7]. By Theorem 1 of [6] one of the arc components of e,
denoted here by I, is an arc and the other, denoted by H, is a half-ray,
Let % denote the noncut point of H. Note that, by Lemma 9, 4 ~ T ig
precisely one of the noncut points of 7 and 4 ~ H = {h}. We now describe
4 one-to-one continuous mapping f of [0, sc) onto ¥ as follows. Let f on
[0, 1] be a homeomorphism onto I such that f(0) is the noncut point of T
not in 4 ~ ¢ and f(1) is the noncut point of I in 4 ~ (. Let fon1,2]
be a homeomorphism onto 4 with F(2) = h. Finally, let f on [2, o) be
& homeomorphism of [2, oo) onto H. This completes the description of f
and shows that ¥ is a one-to-one continuous image of [0, co). Now clearly
¥—{f(0)} is arcwise connected. We show that the complement in ¥ of
any pf)int other than f(0) is not arewise connected. Let ¢ > 0.and suppose
Fhefre 18 an arc y from f(0) to f(¢-+1) such that f(¢) ¢ y. Since y ~f([0,t+1])
is not connected, y v F([0,1+1]) . contains a circle. Since every proper
subcontinuum of an inverse limi of circles must be chainable (use 2.8
and 2.11 of [2]), it follows that ¥ is a circle, a contradiction. This com-
pletes the proof of Lemma 10.

Now we state and prove one of the two main results of this paper.

STRUC“:[“URE THEOREM. Let M be a metric continuum. Then M is a one-
to-one continuous image of [0, o) if and only if M= a U X where a is
an arc or a point, X'is an arcwise connected inverse limit of circles with onto
bonding maps, and a~ 3 i5 g single point of X which is a noncwut point
of a and which, if X is not a circle, is the unique point of Z whose complement
in X is arcwise connected. : A

Proof. Assume that M is s one-
undfar & mapping f. Let s, and 1, play the same role heré as in the previous
section. Let a be the ar¢ or point J([0, s]) and let X = F([sy, 09)). Note
that a » X is the one point F(s,) which is a noneut point of a. Also note that

{*) 2= f(lty, t,+1]) (41, o))
and ‘
(**) Flltay 4+-11) A f([ty +1, o0)) = ), flto+1)3 .

By Lemma 8, f([#,+1, o)) is a chainable continuum which is either an

are or has exactly two are components. Tf f(lto+1, o)) is an are, then

Flto) and f{#,-4-1) are the noncut points of f([t,4-1, o). Hence by (*)
. 03 T . ) -

and (**), X is a eircle. Now assume f([tﬂ-{—l, o)) is not an are. Then X is

to-one continuous image of [0, oo
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the union of the are f([f,, #,--1]) and the chainable continuum f([#,+1, o))
which has exactly two arc components, namely f([s,, t,]) and f([#,-+1, oo)).
By (*), fllts, to+11) ~ k-1, o)) is the two noncut points of the
are f([;, {,-+11]) which are, by Lemma 9, opposite end points of f([,41, co)).
Therefore, by Theorem 6 of [7], X is an arcwise connected inverse limit
of circles with onfo bonding maps. It follows from Lemma 10 that f(s,)
is the unique point of X whose complement in X is arcwise connected.

Conversely, assume I = o v ¥ where o and X satisfy the conditions
in the statement of the theorem. If ¢ is & point, then M = X and, there-
fore, Lemma 10 applies giving that M is a one-to-one continuous image
of [0, oc). For the rest of the proof we assume o is not just a point; thus,
there is a homeomorphism % of [0,1] onto @, such that k(1) is the point
in a~ X By Lemma 10, X2 is a one-to-one continuous image of [1, oo)
under a mapping ¢. If ' is a circle, we may assume without loss of gener-
ality that g was chosen so that g(1) = h(1). If X is not a circle, then by
Lemma 10 g(1) must be h(1), the unique point of X whose complement
in ¥ is arcwise connected. Let f: [0, co)—M be h on [0, 1] and g on [1, co);
then f is a one-to-one continuous mapping of [0, o) onto M. This com-
pletes the proof of the theorem.

Remark. The Structure Theorem above characterizes metric continua
which are one-to-one continuous images of [0, co) in terms of a certain
“decomposition property”. In view of Theorem 6 of [7], this characteri-
zation can be reformulated without mentioning inverse limits as follows:
A metric continuum M is a one-to-one continuous image of [0, oo) if and
only if M can be written in the form aw € u A where «a is an arc or
a point, C is a chainable econtinnum with at most two are components,
A is an are, 4 ~ 0 is exactly the two noncut points of 4 which are also
opposite end points of ¢, and a~ (0 U 4) is a single point of O which is
a noneut point of a and which, if ¢ is not an are (i.e., ¢ U 4 is not a circle),
is the noncut point not in 4 ~ € of the are component of ¢ which is an arc.

‘We mention the following characterization of the arcwise connected

-inverse limits of eircles with onto bonding maps which is a consequence

of some of the results and techniques above. o

COROLLARY. A continuum M is an arcwise cownected inverse limit
of circles with onto bonding maps if and only if M is a one-to-one continu-
ous image of [0, co) under a mapping f such that f(0) = limf(t,) where

n—o0
fn—>00 as n->co,

Proof. Assume M is an arcwise connected inverse limit of circles
with onto bonding maps. Then, by Lemma 10, there exists a one-to-one
continnous function f mapping [0, o) onto M. Suppose f(0) 5= Hmf (i)

- n—>Q
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with #,-> oo as n—>oo, Letting s, and #, play the same role here as in the
previous section, we let Z = ([0, %+1]) v f([%+2, o)) (note that 7 i
a continuum). Then

Z—f([ts+3, ) = ([0, 80))  F({to, to+11) © F([ta+2, tg+3))

so that Z is a triod [1], p. 653, a contradiction to the fact that M must
be a-triodic (use 2.8 and 2.11 of [2]). This proves the first half of the
Corollary. Conversely, assume the continuum M is a one-to-one continy-
ous.image of [0, oo) under a mapping f such that f(0) = limf(t,) where

N—>00

ty—co a8 n—>oco, Then M = av X where ¢ and 2 satisfy the conditions

in the Structure Theorem. But in the proof of the Structure Theorem -

(and using the same notation here) X' was defined to be f([s,, o0)). Since
the conditions assumed about f(0) say f(0) € f([s,, £,]) and since f is one-
to-one, s, = 0. Hence, f([0, o)) = X, i.e,, M= Z. Therefore, M is an
arcwise connected inverse limit of circles with onto bonding maps. This
completes the proof of the Corollary.

4. The Embedding Theorem. In this section we prove that if a continuum
M is a one-to-one continuous image of [0, co), then M can be embedded
in the plane. First we discuss briefly the main difficulty to overcome for
such an embedding.

From the previous section we have M = au X where ¢ and 3 have
the properties indicated in the Structure Theorem. By a Corollary in [7]
£ can be embedded in the plane. In 3- space, X may look like the object
in Figure 2. When such a X is embedded in the plane, it may be
embedded so as to look like the object in Figure 3. Hence, if M were
the object in Figure 4, there would be no room with the embedding
of X as indicated in Figure 3 to put « in the plane. If, however, X were
embedded in the plane as in Figure 5, then a could be put in the plane
50 28 to obtain a continuum homeomorphic to M. With this in mind we
see that the apparent obstruction to embedding M in the plane is the
“peculiar” embeddings of ¥ in the plane, these being essentially a conse-
quence of different ways in which a given - chainable continuum with
exactly two arc components can be embedded in the plane. In p&fticular,
such a chainable continuum can be embedded in the plane in such a way
that some of its points are not arcwise accessible from -its complement
(in the plane).

The next lemmsa gives a specialized embedding in the plane of
a chainable continuum with exactly two arc components. The lemma
enables us to overcome the difficulty indicated above. The essential idea
of its proof is to put the continnum in the plane,

with the arc component
which is an arc being a convex segment, and th

en to pick the half-ray
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up in 3-space like a spring coil and flatten it out in a plane containing
the convex segment so that it lies above the convex segment.

Fig. 2 Fig. 3
[23
Tig. 4 Fig. 5

LeMya 11. If C is a chainable continuuwm with exactly two are com.-
ponents, then C can be embedded in the plane in such o way that the arc
component of O which.is an arc lies on the Y-axis and each point of the are
component of O which is a half-ray has a stricily positive first coordinate.
Proof. Let I denote. the arc component of ¢ which is an are and
let H denote the are component of ¢ which is a half-ray. A theorem of
Bing [1] shows that we can consider ¢ as being in the plane; thus,
for any two ares in the plane there is g homeomorphism of the
onfo itself taking one of the arcs onto the other (
P. 176), we can consider € as in the
We now consider ¢ =7 u H ag
whose third coordinates arve zer
second coordinate equal to zero
(0,1] and define g: 0— R by

since
plane
see, for example, [3],
plane with I being a convex segment.
lying in the set of points in 3-space R?
0 such that each point of I also hag its
. Let & be a homeomorphism of H onto

(2, 0, 0),
(my o, h((m; Y, 0)»7

if (2,94,0)el,
if (#,9,0)eH.

g((w: Y, 0)) =
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Tt is easy to verify that g is a homeomorphism 01.11;0 g(0). Note that each
point of I remains fixed under g and that each point of g(H )- has a strietly
positive third coordinate. This completes the proof (a simple homeo-
morphism can be applied to {(z, 0, 2): # and 2 are real numbers} to put
everything in the plane as promised).

Now we prove the Embedding T]%eorem.

EMBEDDING TIE[EOR.EM If M is a continwwm which is & one-to-one
continuous image of [0, oo), then M can be embedded in the plane.

Proof. The continuum M = ¢ v £ where a and X have the pro-
perties indicated in the Structure Theorem. Furthermore, X' is a circle
or ¥= A U (¢ where 4 and C have the properties indicated in Theorem 6
of [7]. It X is a cirele, then M is a circle if o is a point a,nd? if ais an are,
M is a circle with a sticker; hence, M is embeddable in the plane. Now
assume ¢ has exactly two arc components. Using Lemma 11, let ' be
an embedding of C in the plane by a homeomorphism %: C— G’ such
that the are component of ¢ which is an arc lies on the y-axis from (0, a)
to (0, b) and each point of the arc component H of ¢’ which is a half-ray
has a strictly positive first coordinate. Let p and ¢ denote the opposite
end points of ¢ which make up the set 4 ~ 0 (see Theorem 6 of [7]).
Then, by Lemms 9, one of k(p) and h(g) is the noncut point of H, say
h(p), and the other, h(q), is (0, a) or (0, b), say (0, a). Let A’ be aun arc
in the plane from A(p) to h{g) such that A'~ 0" = {h(p), h(g)} (such
a choice for A’ is possible because H lies entirely to the right of the y-axis;
furthermore, it may even be assumed, though it is not important here,
that each point of A’ different from (0, a) has a strictly positive first
coordinate). If a is & point, then 4’ w ¢ i3 homeomorphic to M. Assume
a is not a point. Since inf{{(w— 0+ (y— b2 (z, y) € A’} = 7 > 0, there
18 & {nondegenerate) are o intersecting C’ u A’ in exactly the point (0, b)
(such an o is easily seen to exist by simply taking o' to be a convex
segment of diameter less than 4 such that each point of o' different from
(0, b) is of the form (, b) with 2 < 0). It is easy to see that o’ v O’ w A’
is homeomorphic to M, completing the proof that M is embeddable in
the plane. : .

Remark. In [7] the author noted that several different results in
the literature (some of them algebraic) imply independently that an
arcwise connected inverse limit of circles with onto' bonding maps is
embeddable in the plane. As demonstrated in the proof of the Embedding
Theorem, Lemmsa 11 allows us to give a more self-contained and de-
seriptive proof of this fact. It also allows us to-choose a particularly nice
embedding (compare Figures 3 and 3).
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