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It is easy to determine the distinguished codes of D, and to prove that
they form an s-set. Hence X, is an #4-base of 7.

Let by= {J(m,n): (m >0)& m = a, (mod 27)}. Since b, is primitive
recursive, it iy definable. It remains to show that whenever # is an ultrg-
filter and F D X, then Stsf iy arithmetical in Rx(b,).

Thus assume that each D, belongs to F. Since

q € Ryp(by) = {i > 0:4 = a) (mod 29)} ¢ ¥
we obtain taking ¢= 2"-t¢,

2"t e, e Rp(by) =D, e F

whence 2"+ ¢, € Ry(b). We now show that 2"+ ¢, is a unique element #
of Ep(by) such that 2" < m < 2+, To see this we notice that if m e Rp(b,)
and 2" <m < 2", then M=, a,,< 2" and

{i>0: i =al, (mod 2"} e F.
m

This set must intersect with D, since they both belong to F. It follows
that a,, = e, (mod 2") and since both a,, ¢, are < 2" we obtain Gy = €,
and m = 2"-}-¢,.

The last term ¢, , of ¢, where # > 0 can therefore be defined as the
integral part of #/2"! where # is a unique-integer < 2% guch that 2"+g
€ Br(by). Since n eStsf =g, =1 it follows that Stst is arithmetical in
Rp(by) and the proof is finished.

In [3] the theorem was proved only for models which are elementarily

equivalent to the prineipal model. Tt would be interesting to verify whether

it holds for w-models of the system 4, resulting from A, by omitting
the choice axiom.
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The restricted cancellation law in a Noether lattice
. by
Jane F. Wells (Fort Wayne, Ind.)

In [2], R. P. Dilworth defined the concept of a Noethe_r la,tti?e.
The definition is based on the idea of a principal element. A eL is a prin-
cipal element if for all B, 0 eL, (B/\(O: A))A = B{i/\({1 and (BVQA): A
= B: Av0, thus a principal element is a genel.'aflma,_tlon of tl}e idea of
a principal ideal in 2 Noetherian ring. The ramifications of this concept
have been investigated in [2], [51, [6], and [7]. .

In [3], B. Gilmer considered the restricted ca.nee]l.atmn l.avr( (RCL)
in’ commutative rings. An element 4 of a Noether lattice satlsf1gs RCL
if for any B, CeL, AB= A( 0 implies B= C We.shf)w this con-
dition is closely related to the idea of a weak join principal element.
Ae@ is weak join principal if BA: A= Bv0: A. _ .

In section 1, we consider a theorem of Gilmer [§] in which he charac-
terizes a commutative ring in which every ideal satisfies _RGL. In a Noether
lattice L, we show a similar result holds When.ROL is assulped on thti
prime elements of L. Such lattices are characterized as })edekl.nd orkloca.
with maximal M in which either M*>=0 or M i8 principal mﬁh M=

ome k. . _ )
o sIllln section 2, the situation in which (L, M).is_a, locajl Noether‘ latmltlze
with maximal M such that M satisties RCL is mvestlg?.ted. With the
aid of the lattice RL, introduced by Bogart [1], these latl'fﬁmes are e‘ha%‘a,’c-
terized. In addition, we show the maximal element M in (L, M) is join

L g . .
prmc]i‘lijzilly, we consider a local Noether 1a,ttige i_n w']nch the ‘maihm;l:;
is weak join principal. We investigate the dlstrl'bgtlve case in % o
the maximal has a minimal representation as the join of two princip h‘.

The author is indebted to Professor Eugene W. J ohnson for his
helpful suggestions. _ ) )

Section 1. In this section we will characterize Noethe'r laictmes in
which every prime element satisfies the res‘gricted cancellation a:wc.lY .

Lewwa 1.11. If A satisfies ROL and AB < AQ#0 for some B, C L

then B < (. 17*
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Proof. A(Bv0)=ABVAC= AC #0, 50 by RCL for 4, Bv@=¢
and B< (. g.e.d.

DrrFINITION 1.12. Tf P i prime, the dimension of P iy the maximuny
length of a chain of distinet proper primes greater than P.

DzrFinrTion 1.13. If P is prime, P has rank v if r is the maximum
length of a chain of distinct primes less than P.

LemMA 1.14. A e L satisfies ROL if and only if AB: A = Bv0: 4 for
every BeL and 0: A < B whenever AB # 0.

Proof. Assume A satisfies ROL. (AB: A)A < AB. If AB = 0 then
AB: AL Bv0: A. It AB # 0 then by Lemma 1.11, AB: A < BV0: 4.
Hence AB: A= BV0: A. Furthermore, if AB 5= 0 then (0: A)A < AB
and by Lemma 1.11, 0: 4 < B. ,

Conversely, agsume AB: 4 = Bv0: 4 and AB 5 0 implies 0: 4 < B,
HAB=AC #0,then AB: A =Bv0: A= Band AC: A= Ov0: 4=¢
80 B=0C. g.e.d. ' ’

Lmwea 1.15. If P ds o prime in L and A e L satisfies ROL, then [4]
satisfies ROL in L,. ‘ ‘

Proof. Let [B]eLy,. [A][B]: [A]=[AB: A]=[Bv0: A]=[B]v
Vv[0]: [A]. If [A][B] 0], then 4B 0 in L and by Lemma 1.14,
f): A < B, so [0]: [4]1 < [B]. Hence by Lemma 1.14, [A] satisfies ROL
in Ly. g.e.d.

Tmnwma 1.16. If (L, M) is a local Noether lattice and M satisfi
then rank M < 1. ’ satisfies RCL,

Proof. There exist principals H;, vy By such that M = E,vE,v..
---V.By and this is & minimal representation of M as the join of prineipals.
MHn — YERY . VEY). TE MY = O then M is the only prime of L
and rank M =0. It M™+" £ 0, then M*= BPv...v I by ROL. By [4],
there exists a polynomial (z) with rational coefficients such that the
gergnrie:f jn;)a,fl 1}2) g:i-—f—oi‘azﬁi lt[(~1<a.1]1;1f p(n) is the number of elements in
solyaomial end Boae 3,1;3_]; ) ﬁg ltfrq(.a;r-(:_lr'.y n implies p (#) is a constant

COROLLARY 1.17. If P is a prime in I, isfi
rane P wn L and P satisfies RCL, then

Proof. I, is alocal Noether lattice
satisfies RCL. Hence, by
[P], rank P < 1. qe.d.

o C;?j}alf‘%mm L18. If (.p , li'[) is & local Noether lattice with ROL on primes
o =0, then L is either special primary or M = 0,
Proof. Tf M*= 0 then the theorem holds so

M = E;V...vE, be a minimal representation of M ag
where Hy< M* for each 4. Since M 2 0, UE; +

in which the maximal element [P]
Lemma 1.16, rank [P] < 1. Since rank P = rank

assume M? s+ 0. Let
the join of principals
0 for some j. Rank
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M= 0= dimZL implies M is the only prime of . Therefore E; is
M-primary and there exists an integer k such that M* < B; and M*— < 1.
If k=1 then M is principal and the theorem holds. If % > 1, then M*
= M*AE; = (M¥: By)B;. By < M* implies M* < ME; + 0 and by RCL,
M* 1< B;. This contradicts the choice of k. Therefore B; = M* and
since By <t M k= 1. q.e.d.

TaeorEM 1.19. If (L, M) is a local Noether lattice with ROL on primes
and rank M =1, then L is regular local altitude one.

Proof. Since rank M = 1, M is not a minimal prime of 0. Let P < i
n
be prime, then P is a minimal prime of 0. Let 0= A @Q; be a normal

i=1
decomposition of 0 as the meet of primary elements, where V@: P;
and P = P;. There exist integers %(1),...,%(n) such that PX9 <@,

n
Pk(l)(/{_P,ltc(i)) < 0< PpELFL Tf prO+L =+ 0, then /\Plg(i) <P and Png
i=2 =2

for some j,j # 1. Since rank M = 1, P; = P contradicting the normality
of the decomposition. Therefore P+ = 0 and P is the unique minimel
prime of 0. Hence L has only two primes, M and P, with P"=0 for
some 7. Since M <t P, we. may choose a principal X such that X < M,
X< M?and X < P. X is M primary. XM + 0 since X <P and M <P
50 ag in the proof of Theorem 1.18, M = X. However L is local so
every nonzero element of L is a power of X = M. Hence P = 0 and L is
regular local altitude one. g.e.d. )

Lemva 1.20. If L is a Noether lattice with RCL on primes and
P< P < I, P and P’ prime, then 0p = P = 0p. Furthermore, if P is
an associated prime of 0, then rank P = 0. )

Proof. Ly is local with RCL on primes and rank [P’]= 1. There-
fore Ly is regular local altitude one and [0] is prime in L. Since
[P] s [P} and [P] is prime in Lp., [P]=[0]. Thus P = 0,. However
P < P implies 0p < 0p < P 80 Op = 0p= P. Furthermore, we have
shown if rank P = 0, then P is not an associated prime of 0. g.e.d.

LeMMA 1.21. If 0p = P, then P = 0 or P* = 0. Furthermore if Pr=0
for some prime P and some integer k then P = 0 or P is the only prime in L.
Proof. 0'< P? 50 0p < (P?)p < P. Therefore (P?)p =P.Pisa minim:il
prime of P* so let P?= PAQ,A...AQn be mormal decomposition of P

P(\Q) < P. It P*=0, the result holds. If P*#0 then /\1 Q< P
i=1 g

contradicting the normality of the decomposition.

Now assume P*— 0 for some prime P and some integer k. Si{me
P ig the unique minimal prime of 0 and by Lemma 1.20, 0 has no im-
bedded primes, 0 is P-primary. Suppose P is not maximal and hence
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the only prime of I, then there exists a prime M such that P < M. I, i
regular local altitude one by Theorem 1.19. Hence [0] = [P] and 0y = P,

Since 0 iy P-primary 0y = 0. Therefore P = 0. Hence either P is maxima] '

and minimal or 0 is prime. g.e.d.

Lemwa 1.22, If L s o Noether lattice with RCL on primes and if for
every nonzero prime P of L, no power of P is 0, then L is Dedekind.

Proof. If 0 is prime is I, let- P be a prime such that 0 < P. Since
rank P <1, P is maximal. Lp is regular local altitude one by Theorem 1.19
and hence linear. Therefore, by [6], every element of L is a product of
primes. 0 is prime, so L is Dedekind.

It 0 is not prime in I, let P be any prime of L. P < P’ where P’ is
prime, implies [0]=[P] in Lp and 0p = P by Lemma 1.20. Therefore
P =0 or P*= 0, both of which are contradictions. Hence P is maximal.

n
Furthermore, by the same reasoning, P is minimal. Let 0 = A Qi be
=1
2 normal decomposition of 0 as the meet of primaries, where 1V Q; = P;.
Since any prime of L is maximal and minimal, {P;, ...; Py} is the set of
all primes of L. For each i, there exists a positive integer n(¢) such that
%

%
P9 < Q. Therefore, since PyvP; = I, for i B 0=\ PO = [1 Py

=1 =1
and LoL/PMeq.. @ L/Puw, (L/P?}(”)Pi ~ p,/[Pi]"(i)ﬁLpi since [P]™?
=[0] in Lp -Lp, is local with RCL on primes and rank [P]= 0, so by
Theorem 1.18, Lp, is special primary or [P,]? = 0. Hence L is the direct
sum of speeial primary lattices and local lattices in which the
maximal squares to 0. If k>1, then (P, I, vy D)(PHO-L P L Py
= (0, Py, ..., Pr)= (P}, I,..., I)(0, P,, ..., Py) # 0, but (PPO-1 P, ..., Py)
7 (0, Py, ..., P). Henee, L does not satisfy RCL on primes which is a
contradiction. Therefore k=1 and I is special primary or local with

M? =0, but this is impossible by hypothesis. Therefore, 0 is prime and
L is Dedekind. q.e.d.

TerorEM 1.23. If L is a Noether lattice with ROL on primes, then
L is one of the following
(i) local awith mazimal M and M* = 0,
(31) special primary,
(iii) Dedekind.

Proof. If P* 2 0,. for every nonzero prime P and every integer F,
then by ‘Lemma, 1.22'L is Dedekind and 0 ig prime. If there exists a prime P
and an integer k, such that P*= 0 then by Lemma 121, P=0 or Pis

the only prime in L. If P =0, then L is Dedekind. Tf P # 0 then L is

local with RCL on primes and by Theorem 1.18, L is special primary
or P2=10. q.e.d. ‘
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Section 2. In this section we consider a local Noether lattice (L, M)
in which the maximal element M satisfies RCL. Rank M is less than

" or equal to one by Lemma 1.16. If rank M ig 0, then I is special primary

or M*= 0.If 0 is prime in T then L is Dedeking. Thus, the only remaining
case is rank M =1 and 0 is not prime in L. Throughout this section we
will consider this situation.

Levma 2.11. If (L, M) is a local Noether lattice in which M satisfies
ROL and ramk M =1, then M is not a prime of 0.

Proof. Since rank M =1, M- M" 5 0 for every integer n. Hence
by Lemma 1.14, 0: M < M™ for every n. By the Intersection Theorem,
[2], this implies 0: M = 0. q.e.d.

Levmma 2.12. If (L, M) is a local Noether lattice in which M satisfies
RCL and M™ 0, for each n, then if M® is principal for some k, M is
principal.

Proof. By induction, it suffices to show that M*-! ig principal. Let
A, B L. Cleatly Av(B: M*) < (AM*'vB): M. X M* < AM*1yvB
implies XM* << AM*VBM and X < (AM*VBM): M*= AvBM: M*

=AV(BM: M): M*'= Av(Mv0: M): M*'= AvB: M* ! since M* is

prinecipal and 0: M = 0. Hence, (A M* v B): M¥ 1= AyBM* gnd M+
is join principal. Clearly (A: M*'AB)M*' < ANBM*, If X < A
ABM*, then XM < (AABM*Y)M < AMABMY— (AM: M*AB)M*
= ((4v0: M): M*AB)M* = (4: M*AB)M*. T¢ (A: M*IAB)M* % 0
then by RCL, X < (4: MF'AB)M*™. If (A: M*AB)M* =0, then
(4: M*AB)M* << 0: M=0 and (AANBM*YM =0 so AABM:1
<0: M =0. In either case, ANBM*™' = (4: M*AB)M*, g.e.d.

LeMMmA 2.13. If (L, M) is a local Noether lattice in which M satisfies
ROL and rank M = 1, then if there is a principal B such that B < P, for
every prime P which is an associated prime of 0, 0 is prime and L is reqular
local aliitude ome.

Proof. B < P, for each prime P of 0 implies that ¥ is M-primary
since the only primes of I are M and the minimal primes of 0. Choose j
so that M' < B, M'™* < E, then M'=(M’: E)E. It M’ E, then
M ME 0 and M™' < B. This is a contradiction. Hence M= ¥,
and by Lemma 2.12, M is principal. Since rank M =1, M* 0, for
every k. Therefore since every nonzero element of L is a power of M,
0 is prime. q.e.d. .

CoroLLARY 2.14. If R is a local Noetherian ring in which the mavimal
ideal M satisfies RCL, then R is N

(i) a ring with trivial multiplication,
(ii) special primary,
(iii)- regular local altitude one.
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Proof. Since in a local Noether lattice, F is principal if and only
if B is join irreducible, every principal element of L(R) is a principal

ideal. So, if rank M = 0, Theorem 1.18 implies M>= 0 or R is special -

n
primary. If rank M =1, then M { | J P; where Py, ..., P, ave the as-
i=1

sociated primes of 0 by [8], so there is an element a R such that a ¢ P, ;
for each 4. Thus by Lemma 2.13, L(R) is regular local altitude one.

In general Corollary 2.14, is not true. A counterexample iy the
lattice RL,/XY. If R is a field and X and Y indeterminates over R, then
RL, is the sublattice of the lattice of ideals of R[X, Y] consisting precisely
of the ideals (X), (¥) and all finite joins of power products of these
ideals, [1]. For. simplicity of notation, we will write X to denote the
principal ideal (X). RL,/XY is the sublattice of RL, of elements which
are greater than or equal to XY. Every element of this lattice is of the
form X*y¥"vXY, where k,n>0. If k,u>1, then

(XFVIVXT)XVY): (XVY) = (XHy T vXY): (XvY)
= (XY XT): TA (XY YLV XY): Y
= (X Y)A(TPvEX) = XV TV XY,
n=0,%k>1,

(XEVIT)(XVT): (XvY) = (X XT): (XVT)
= (X*VY)AX = X*vXY.

Hence, Xv ¥ satisfies RCL in RL,/XY. However RL,/XY is not of one of

the types listed in Corollary 2.14. Tt can be shown in a similar manner

that X,v...vX, satisties RCL in RL,/\/ X, X;. We will show that these
i#j )

are the only Noether lattices, other than those mentioned in Theorem

1.23, in which the maximal element satisfies RCL.

Lemwa 2.15. If (L, M) is a local Noether lattice where M — EVEF is
a minimal representation of M. as the Join of principals, M* 5 0 and M
satisfies RCOL, then L~RL,/XY,

Proof. First, notice that rank M = 1, for if rank M = 0, then T is
special primary and M is principal by Theorem 1.18 contradicting BvF
is a minimal representation of M as the join of principals. Also 0 is not
prime, for then by Lemma 213, I is prinecipal. If B < P, P a prime
with P+ M, then P = PA(BVF)=EV(PAF)=Ev(P: F)F = By PF
‘since F< P. So P<EVMP and by the Intersection Theorem P = E.
Similarl};:; if fﬁtP’, for some prime P’, then P'—=F. Lemma 2.13
implies & and F are prime. M® = (B*vF)M = 0, so M°— B° F? and
EF < EPVF*. Hence EF: F= Ey0: 7 g)(Eng?’): F= EE:EFVVF- aSO
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E<E?: FVF and E = EA(F*: FVE) = F?: FVEAF = > FyEBF < E
FyME. Hence, B < B*: ¥ < B. Similarly, F = F* F and EF < BPAF?
= (B F)F* < BF* < MEF. So BF = 0 and BAF — (B: ) F=EF =0
is normal decomposition for 0. Now, if ¢ is principal in T, then by
Lemma 2.13, 0 < B or 0 <F. If 0 < BAF, then ¢ = 0. Assume ( < B,
0 < F. Choose & so that ¢ < B*, 0 < B**, then € = Op F* — (C: B*)E".
It C: B = F\V...vFy, where Fy is principal for each i, then ¢ = E*Fv...
VE*F,, but in a local lattice, principals are join irreducible, so
¢ = F; B, for some j. If F; < F, then ¢ < EAF and C = 0. It < E
then € < E*!, contrary to the choice of %. Hence F; < B and F; < F,
so Fy=1I by Lemma 2.13 and €= E*. Furthermore, E" - E" for
j>0 by the Intersection Theorem. Therefore {0,1,E, B2 ... YL R
is the complete set of principals of L. If E"VF' = E*VF™ k> n and
m>1, then B" < E*VI™ and B"= B\ (E*VE™) = By (E"\F™) — B,
and n=k. If m = 0 and j > 0 then F < B and F < B which is a contra-
diction. Hence j = 0, B" = E* and # = k. Hence, every element of I has
a unique representation as the join of principals and I is clearly iso-
morphic to RL,/XY. q.e.d.

TaBoREM 2.16. If (L, M) s a local Noether lattice in which M satisfies
ROL, M?> 0 and M = E,v..VEx, k> 2, is a minimal representation
of M as the join of principals, then if Py= E\N..VE;V...vEx, wherede-
notes omission, {Py, ..., Py, M} is the set of primes of L, B;B; = 0 for i + j.
Furthermore, L is a distributive lattice and is isomorphic to RLy/\/ X X;.

iE]

Proof. Since M is not prinecipal, rank M =1 and 0 is not prime.
If k= 2, the result follows by Lemma 2.15. Assume the theorem is true
for > 2 and M = BE,V...VE,,, i3 2 minimal representation of M as
the join of principal elements. In L/H;, the maximal 3 is the join of %
principals and this is a minimal representation for M. If A, B e L/E;,
and Ao M= Bo M+ E; then AMVE;=BMVE; Hence, (BVA)M
<BMVE; and (BVA)M = (BVA)MA(BMvVE;)= BMV(BVA)MA E;,
by modularity, = BMV(BvVA)M: FE)E:; < BMvME;, since E;< M,
Ei<(BVA)M. Hence, (BVA)M < (BVE)M =BM +0 and (Bv4)<B.
So 4 < B. Similary, B < A and RCL holds in Z/E;. In L/E,, P, ..., Py,
are prime, B, < Py, for i =2, ..., k+1, so Py, ..., Py, are prime in L.
By considering L/E,, P, is also prime in L. Therefore, P, ..., Py, are
prime in I. . .

+1
Now in L/B;, \ P;= By, so \ Pi= PinBi= (Pi: Bi)By= PiEs.

b i=1
M:=Ev..VE,,, ius in Lemma 2.15, so M®=PivE; and P.E,
< PIVE:. Hence, P, <P EvE and P, =(P}: EVE)AP, =P

E,vP,F, and P, = P%: E,, by the Intersection Theorem. Hence, P, B; < P
and PEE, < P¥+Y, for &> 1. Suppose @ is P,-primary. Choose %, such
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that PP @, PE<Q. T k>1, then PIE < PFY' <@ and PFgQ,
E, < P,, contradicting € is P,-primary. Hence, k=0 and the only
element of I which is primary for P, is P;. .

It Py, ..., Ppy, axe the only primes of L W*hlch are less. than M, then
0= PiA...APy,,. Suppose P* is prime in I, P. * Pi, fo:f i=1, .., k+1,
and P* # M. If P* < P;, then rank M =1 implies P = P;, contrary
to the choice of P*. Furthermore, if B; < P¥, for some ¢, ¢ =1, ..., k41,
then P* is prime in L/F;. By the induction hypothesis, P, s Py 2 Py
M are the only primes of L/B; and P* = P;, for some j # 4 or P* = M.
This is a contradiction. Henee B;<t P*, for i=1, ..., k—|-1 Let‘ P*
= F,v...vFn be a representation of P* as the join of prlnglpa,ls. Since
P* < P;, there is an F;, such that, F; < Py, say 17.11 4_131- It > 2, FNE;-
is principal in L/E; which by inductiop is distributive .and 1s0]f(1(-)rph1c
to RLyf\/ XiX;. Hence, F;VE;=B})VvE; where n(i) and j(i) are
integers,#sjince these are the only principals of L/E:. If j(i) 1, then
F, < P, which is a contradiction. Hence, j(i¢) =1 for ¢ =2, ..., k41 and
F, < B,vE;, for i=2,..,k+1. Since k> 2, F, < B VE, < Py,,, and
F<BVE <Py, y < EVE P,y o, B, < BV, < Py, s0 F,
< PAhPr =B So Fi=FAB = (Fy: B)B = (T\v..vT)E,
where T, is principal for each i. By join irreducibility of principals in
a local lattice, F; = T,E,. F, = T,F, < P*, E, < P*, so since P* is prime,

T, < P* and F, < MP*. Arrange ¥y, ..., Fm, so that Fy,..,F, have
+1
the property, F; < P; for some j and F,,,,, .., Fn < /\ P;. By the above

=1
argument, if j <p, then F;< MP*. Hence, P*< MP*VF, ,V..VFy,
k1 o gs
and P*=F, ,V..VFn < A\ P; < Py, for each i. This is a contradiction.
i

=1 k+1
Therefore, { M, Py, ..., Py} is the set of primes of I and A\ P;= P;E;= 0,
. =1

for each j.

Furthermore, if € is principal in I, ¢ £ I, then ¢ = 0 implies ¢ < Py,
for some j. Suppose € < Py, then as in the preceding argument, ¢ < Pj,
forj=2, ..., k+1, and € < F,. Choose n, such that ¢ < B} and C < B,
then 0= ('E}, where (' is principal. If ¢’ -« I, then since ¢’ # 0,
O’ < Py, for some j and (" < Ej. j # 1, since ¢ < BP. If j >1, then
C = C'F} < E;E, = 0, contradieting ¢ 5= 0. Hence (' = I and ¢ = B
Therefore, L is distributive. If B} = E"*7, j >0, then E"= 0 and M"
= BV..vE}V..VEL, = PP M #0. By RCL, M™'= P which is
a contradiction. Thus, {0, I, By, .., B, B!, .., i, ,i an integer} is
the complete set of principals of I and no two of these principals are
equal. If BiOv.. v B — JL‘;”‘"‘)v._.VI!?k"‘f‘l+ Y, then in L/E,, B, vEXy...
VEREY = ByVEPOVL VERET). By induction, (i) — m(i), for
i =2, ..., k+1. By considering L/E,, n(1) = m(1). Hence, every element
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of L has a unique representation as the

: join of principals and clearly I is
isomorphic to BRI, ,/\/X;X,. q.e.d. v
1%

TEROREM 2.17. If (L, M) is a local Noether latt;
RCL, then L is one of the following

(i) M=o,

(ii) special primary,

ce in which M satisfies

(ili) regular local altitude one,
(iv) BLa/\/ X:X;, for some integer n.
. 1]

Proof. By Lemma 1.16, rank M < 1. If rank M — 0, then the result
follows by Theorem 1.18. If rank M =1 and 0 is not prime, then L is
RL,/\/X:;X; by Theorem 2.16. q.e.d.

i

TrEOREM 2.18. If (L, M) is a local Noether lattice in which M s
RCL, then M is join principal.

Proof. If M*= 0, then (AVBM): M= M= A: MVB, if A = M.
If A= M, then (AVBM): M=TI=A: MvB, and M is join prineipal.
If L is special-primary or regular local altitude one, then M is principal
and hence, join principal. By Theorem 2.17, the only remaining possibility
is that I be isomorphic to RL./\/ X;X;. We shall show that the maximal
in this lattice is join principal.;l&7

First, we show XvY is join principal in RL,/XY. The elements of
RL,/XY are of one of the following forms, X*v XY, where k > 1, ¥y XY,
where k> 1, or X*vY¥"vXY, where k,n > 1.

We omit this part of the proof since it is almost identical to the
induction step proof. So, assume that the maximal in RL, .|\ X:X; is

. i#7
join principal and consider RI,/\/ X:X;. For simplicity of notation, we
iy
will denote \/ X, X; by 0* and RLn/z)* by L*. Also we note that 0%: X;= P;,
s
fori=1 ,..TT%. Furthermore in L*, the multiplication is defined by 4 - B
= ABv0*.

If XMy, yXEWyo* e L* and k(4)>2 for i=1,..,m, then
(ZEOV. VMY 0%): M = (XEO=1y PYA oA (XE™ ™Y Pr)A Py iAo AP
= XW-1y_y Hm-1ygF, :

Let 4,BeL* If X; < AAB, for any i, then since the maximal of
L*|X; is join principal, (4 « MVB): M = AvB: M in L*/X;, and hence,
in I*. Rearange the X;, so that 4 = X™y...vX%™y0* and B = Xy
Vv XED 0¥,

First, assume (i), k() > 2. We have two cases, m <j and j < m.
Assume m < j.

atisfies
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(AMVB): M = (XFOH V.. v XEmHy 0ty X0V v XF0): M
— (XL |y e LEmY y TRy Ly XDy 0%): M

— Xinin(n(i)ﬂ,k(l)}ﬂ Vi VX?;Lin{Mm)+1,k(m))—l VX%:-’L;FI)_I V... V_X‘l;(i)—l VO*.
AVB: M= XMy yXEmyo*y X0y, v XEo=1 ' ,
— X1y |y FEmam.km -1y XmEn—ty Ly XED-1y 0¥,
Assume j < M.
(AMVB): M
- Xinin(n(nﬂ,k(l)) VoV _Xl;ﬁll{n(i)'i-l,k(i)}v X;}gil‘l)'kl VoV X%m)ﬂ vo*: M
= X7 infr()+LEW-1y, VXx]pin{n(J‘)H.k(l)}—l ngpsriii-l) V... ngim) vo*.
AVB: M= Xfli“{w)’k“)““\_/... ] lenin{n(v‘),k(i)—l}v X?ﬂf') R, X%m) VO*.

Hence, in either case, (AMvVB): M= AvB: M.

‘We will outline the cases which remain. However, we omit the proofs
sinee they are lengthy, but straight-forward, computations.

(@) k(i) = 2,fori=1, ...,J, and n(i) = 1 for at least one ¢, 1 < 2 < m.

(b) n(@) = 1,fori=1, ..., m,and k(i) = 1, for at least one ¢, 1 < s < j.
Say A= Xy . vIM™y0* and B = X;V..vX,vXEEDy. . v XDy 0¥
by rearranging the X; if necessary., In this case, we consider three pos-
sibilities, m < ¢ <Jj, ¢<m <, and ¢<j<m.

(e) Assume A = X vy_ . vX¥™y0* where n(i)>1, and B
= X¥mily  vXF¥0v0*. We consider two alternatives for B, either
E(j)= 2, for j=m+1,...,q, or k(j) =1, for some j.

These are all the posibilities for 4 and B in L*. Therefore X,V...v.X,
satisfies (AMVB): M= AvB: M, for any A, BeL" and hence, is join
principal. g.e.d. :

Section 3. An element M is weak join principal (WJP) if AM: M
= Av0: M for every A L. An element M, which satisties RCL, in ad-
dition to heing weak join principal, has the property that A.M # 0
implies 0: M <C 4. Theorem 2.18 shows that this additional condition
on & weak join principal maximal element of a local Noether lattice
insures that the maximal is, in fact, join principal. However a weak join
principal maximal need not satisfy RCL and it also need not be join
pripeipal. A lattice which illustrates this is RL,/X ¥*v X?Y. The maximal
of this lattice X'v Y fails to satisfy X2V X*Y: XvY = XV X°Y 50 by
Lemma 2.11, XvY does not satisfy RCOL in ERL,/XY*y X*Y. Furthermore
X v isnot join principal since (X o (Xv ¥))v Y% (XVY) = (X2vX Y VY?):
(XvY)=XVvY but X¥(¥*: (XvY))= XVvYL It is a straight forward
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computation to verify that Xv Y is weak join principal in RL/X>Vyv ¥ve
Furthermore the maximal in RI, pal In KL/ X*Yv XY,

: /XY, RL/XYvX RIL, Ty
RL/X*YvXY*vX' and RL,/X*Y VXI‘ZVX"V/ b whe;'e g -a]ziyzvfa;y;e
shown to be weak join prineipal. In the following theoren; w; S];OW that
these are all the distributive local_ lattices with a maximal which ig thé
join of two principals in which the maximal is weak join prineipal.
TaroREM 3.11. If (L, M) is a distributive local No
M= XVY is a minimal representation of

H

ether lattice in which

- v I ¢ A as the join of principals and
M is weak join principal, then L is one of the following RL,/XY, RL,/XY X,
RLz[XYVXf VYY", RLJXY*vX*Y, RL/XTv XYy X, RLITTy XYy
vX'vY®, where j,n = 2. '

Proof. M= (X*vY?% M, so M XPvYPv0: M and XY < X2V
vY?v0: M. By distributivity, XY <X XYY, or XY <0: M.
HXY << X% then Y < XV0: X and Y < X implies ¥ < 0: X and XY = 0.
Similarly, if XY < ¥ then XY =0. If XY <0: M, then X*¥ — XT°
= 0. Furthermore, M®= X*v¥* and M* = X*yY*, for k>3, s0 as in
Lemma 1.17, rank M < 1. The proof is divided into two main cases,
rank M =0 and rank M = 1.

Case 1. Since rank M = 0, M is the only prime of L. First, assume
XY =0. X< Y, but ¥™ = 0, for some integer n, 8o choose j, such that,
X' < Yand X' < ¥, thenj > 2. Since M7 < ¥, M = MIA Y = (M7: Y¥)Y.
Now Y < M? for then M < XvM?* and M < X, contradicting XvY
is a minimal base for M. Therefore, ¥ <t M7, since ¥ <t M? and M’ < MY.
M is weak join principal, so M7~ < ¥ v0: M. X1 < 0: M, since X' < ¥,
50 X/ = 0. In the same way, choose 7, such that ¥*< X, ¥« X,
then Y"*=0 and n> 2. Define 0*={I,0,X, X2 ..., X"\ ¥, 77 ..
woy Y"1}, Clearly, any principal in L is an element of C* since I is
distributive and XY = 0. If X% ¥?¢ (¥ then X*= ¥?< Y implies
k>j, contradicting X* e (*. Hence, the elements of C* are distinct.
Since these elements are distinet and L is distributive, joins of these
elements are unique. For, if X*v¥* = XPv¥% 1<h, p <j—1, 1<k,
g < n, then X < ¥ implies X* < X? and similarly, X? < X* and p = h.
Similarly, ¢ = k. Hence, j, #n > 2 and L is isomorphic to RL,/X'v ¥"vXY.

Now assume that XY 0, then X*¥Y = X¥>= 0. There exist n
and j both greater than one, 5o that X/ = 0, X1 ¥, ¥"= 0, ¥"* ¢ X.
C*={0,I,X,X%...,X",Y,¥?.., ¥*, XY} is the set of all principal
elements of L. As in the preceding argument, these principals are distinet
and their joins are unique. Therefore, L is isomorphic to RL/X*Yv
VXYV Xy Y,

Cage 2. Assume rank M = 1. Since I is distributive the only possible
primes of L are 0, X, ¥ and Xv Y. 0 is not prime, for then M satisties
RCL and is principal by Lemma 2.13, contradicting M = Xv ¥ is a minimal
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representation of M. Case 2 is divided into three subcases, (a) X and ¥
are prime, (b) X is prime and ¥ is not prime, (¢) Y is prime and X is
not prime.

(a) Assume X and ¥ are prime. If XY = 0, then XA Y = (X: ¥)¥

= X¥ =0 and M is not a prime of 0. Therefore, M satisfies RCL and '

hence L is isomorphic to RL,/XY.

If XY #0, then XY = X¥*=0. If k> 2, then X¥*> = 0 X" < X2
and X < X%, ¥* < X, so the only X-primary element of L is X. Similarly,
Y is the only Y-primary element of L. Hence, 0 = XA YAQuy, where
Qm is M-primary and is necessary to the decomposition since XY == 0.
Let Qu= M3 XAYAM*=X*YvXY*=0 and since M is maximal,
M? is primary for M. Tf ¢* = {0, I, X¥, X* ¥’} where i and j are positive
integers, then every principal of L is in C* and the elements of C* are
distinet. By distributivity, joins of these elements are unique and I is
isomorphic to RL,/X2Yv XY

(b) Assume X is prime and Y is not prime. Every principal of I is
apower of X or ¥ or equal to X Y. Since Y is not prime, X* < ¥ for some k.
Choose k, such that, X* < ¥ and X*~'< ¥, then %> 2, since X < Y.
M* <Y, so MF=(M* Y)Y. Y < M? implies ¥ <t M* and since M is
weak join principal, M*'< ¥v0: M, since M"< MY. X* 14 ¥, so
X 1< 0: M and X* = 0.

First, suppose that X¥ =0. ¢* = {0,I, X, X% ..., X%, ¥,¥2 ..}
is the set of all principals of I and elements of * are all digtinct. Further-
more, the joins of these principals are unique by distributivity. Hence,
L is isomorphic to RL/X*vXY.

Now, agsume XY # 0, then X¥*= XY =0. ¢*={0,1, X, X2, ...
ey XL XY, Y, V7, ..} is the complete set of principals of L. Y7 = xr,
since ¥ X, a prime. ¥7 ¢ ¥ for n + §, since Y is not nilpotent. XY
# X" since ¥ < X. XY 2 X/, because if X¥ = X then X — 0 and if
XY =X, for j>1, then ¥v0: X = X~'v0: X and XY + 0 implies
Y < X' < X, which is a contradiction. Hence the elements of O* are
distinct. As before, the joins of elements of ¢* are unique and hence,
L is isomorphie to RL/X*YvXY:vX* and &> 2.

(e) If ¥ is prime and X is not prime, then as in (b), L is isomorphic
to RLJ/XYVY" or RL/X*YvXY*y X", where n'z= 2. q.e.d.

1
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