[34]
35]
361
37
[38]

39]

W.W. Comfort and 8. Negrepontis

E. Hewitt, 4 remark on density characters, Bull. Amer. Math. Soc. 52 (1946),
pp. 641-643.

. J. K eisler, Ideals with prescribed degree of goodness, Annals of Math. 81 (1965),
pp. 112-116.

— and A. Tarski, From accessible to inaccessible cardinals, Fund. Math. 52 (1962),
pp. 225-308.

K. Kunen, Inaccessibility properties of cardinals, Doctoral Dissertation, Stanford
University, 1968.

—— Some applications of iterated wltrapowers in sei theory, Annals of Math. Logic
1 (1970), pp. 179-227.

— TUlirafilters and independent seis, to appear.

E. Marczewski, Séparabilité et multiplication cartésienne des espaces topologiques,
Fund. Math. 34 (1947), pp. 127-143.

W. Marek, On families of sets, Bull. Acad. Polon. Sci., Sér. sci. math., astr. et
phys. 12 (1964), pp. 443-448.

S. Mazur, On coniinuous mappings in product spaces, Tund. Math. 39 (1952),
pp. 229-238.

D. Monk and D. Scott, Additions to some results of Erdés and Tarski, Fund.
Math. 53 (1964), pp. 335-343.

A. Mostowski, Constructible sets with applications, Studies in Logic and the
Foundations of Mathematics, Amsterdam 1969.

N. Noble ard M. Ulmer, Facforing functions on Cartesian products, Trans. Amer.
Math. Soc. 163 (1972), pp. 329-340. ;

I. I. Parovitenko, The branching hypothesis and the correlation between local
weight and power to topological spaces, Soviet Math. Doklady 8 (1967), pp. 589-591.
E. 8. Pondiczery, Power problems in absiract spaces, Duke Math. J. 11 (1944),
pp. 835-837.

B. Pospikil, Remark on bicompact spaces, Annals of Math. 38 (1937), pp. 845-846.
K. A. Ross and- A. H. Stone, Products of separable spaces, American Math.
Monthly 71 (1964), pp. 398—403.

M. E. Rudin, Partial orders on the types in fN, Trans. Amer, Math. Soc. 155 (1971),
pp. 353-362.

N. A. Shanin, 4 theorem from the general theory of sets, Comptes Rendus (Do-
klady) Acad. Sci. URRS 53 (1946); pp. 399-400. :

— On intersection of open subsets in the. product of topological spaces, Comptes
Rendus (Doklady) Acad. Sci. URRS 53 (1946), pp. 499-501.

R. M. Solovay and 8. Tennenbaum, Jterated Cohen extensions and Souslin’s
problem, to appear.

E. 8zpilrajn, Remargue sur les produils Cartésiens d’espaces topologiques, Comptes
Rendus (Doklady) Acad. Sci. URRS 31 (1941), pp. 525-527.

A. Tarski, Sur les classes d’ensembles closes par rapport & cerlaines opérations
élémentaires, Fund. Math. 16 (1930), pp. 181-304. .

— Idedle in vollstindingen Mengenkérpern I, Fund. Math. 32 (1939), pp. 45-63.

WESLEYAN UNIVERSITY, Middletown, Connecticut

and

MCGILL UNIVERSITY, Montréal, Canada and ATHENS UNIVERSITY, Athens, Greece

ERegu par la Rédaction le 1. 6. 1971

icm

Menger’s Theorem for topological spaces
by
William J. Gilbert (Waterloo, Ont.)*

§ 1. Introduction. Menger’s Theorem [1] for graphs has been generalized
by Nébeling [3] to locally connected compact metric spaces. In this paper
we generalize Menger’s Theorem to Hausdorff topological spaces with
no other global conditions on the space, but with loeal conditions on the
two subsets involved. ’

TeEEOREM 1.1. Let A and B be disjoint open subsets of o Hausdorff
topological space X. Suppose that the mamimal number of disjoint arcs
from A to B is finite. Then this number is equal to the minimal number of
points that have o be removed from X to separate A and B into different
arc components.

‘When we restrict X to be a graph, our proof of Theorem 1.1 reduces
essentially to Ore’s proof of Menger’s Theorem [4], Chapter 12.

CoROLLARY 1.2 (Menger's Theorem). Let A and B be disjoint sets of
vertices of a finite or infinite graph X. Suppose that there is no edge with
one vertex in A and the other in B. Then the mazimal number of disjoint
ares from A to B is equal to the minimal number of vertices that have o be
removed from X to separate A and B into different components.

Sections 2 and 3 are devoted to proving Theorem 1.1. In seetion 4
we show, by example, that some of the conditions of Theorem 1.1 and
Nobeling’s result cannot be weakened. Finally in section 5 we discuss
the case where the maximal number of arcs is infinite.

The author wishes to thank Michael Mather for his helpful comments
and Mary Ellen Rudin for Example 5.1.

§ 2. Definitions. Let 4 and B be subsets of a topological space X.
Let I = [0, 1] be the closed unit interval and I = (0,1) be the open unit
interval. An are A from A to B in X is an injective map i: I-+X such
that 4(0) e 4 and A(1) « B. The family of ares {4} is said to be disjoint if

Iy~ d) =0
for all arcs Aq, A in the family with ¢ 5 ..

* Supported in part by a National Research Council Grant.
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LEvMA 2.1. Let A and u be two arcs in a Hausdorff space X and let
w=sup{tel| A(t) e u(I)}.
Then A(w) e u(I). _ _
Proof. The spaces A(I) and u(I) are compact subsets of a Hausdorff
space X and hence are closed. Now .
A(w) € A(I) ~ p(I) = MI) ~ p(I) .
Hence A(w) e u(I). ‘

Leb Ay y <oy Ay be a family of arcs in X. An arc u from p(0) to u(1) is '

called a cross arc with respect to A, ..., A, if for 1 < ¢ < n, the intergection
w(I) n A(I) is a finite number of disjoint closed arcs of the form u[s, s']
= A, %] where p(s)= 2;(¥') # u(s’) = 4,(9).

PROPOSITION 2.2. Let u be a cross arc from A to B with respect to the
n disjoint arcs Ay ..., An from A to B. Then there exist n+1 disjoint arcs
from A to B.

Proof. It can be proved in a similar way to [4], Theorem 12.1.1
that the symmetric difference of u(I) and A(I)w ...w Ax(I) consists
of n-+1 disjoint ares from A to B together with a finite number of closed
eircuits,

Denote by A(4, B) the maximal number of disjoint arcs from 4
to B in X and by I'(4; B) the minimal number of points that have to
be removed from X—(4 v B) to separate A and B into different are
components.

§ 3. Menger’s Theorem.

Proof of Theorem 1.1. Let A(A,B)=n and A,..,As be
& maximal set of disjoint ares from A to B in X. It is clear that A (4., B)
< I'(4, B) because at least one point must be removed from each of the
ares in order to separate 4 and B.

For each 1, let % be the supremum of ¢ in I such that, A,(¢) is in 4 or
that there exists a cross arc from 4 to 1,(i) with respect to A, ..., Au.
Since 4 is open, Ai(%) is not in 4. By Propogition 2.2 there is no cross
arc from A to B and, since B is open, Ay(#;) is not in B.

‘We will now prove that

n
Y=X-UJ Ay{ts)
i=1
separates A and B into different arc components. Suppose that there

%s an arc from 4 to B in Y. Then by Proposition 2.2 there is an arc »
in ¥ from

n n
Ao UM0, %) to Bo U, 1]
= i=1

which is disjoint from i,, vy A
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From the definitions of #, it follows that there is no cross arc in X
from A to »(1); hence »(0) is not in A. Let »(0) = A(r) where 1 < c << n
and 0 < r<<t,. Again from the definition of ¢, there is a cross are g in X
from A to 2,(s) with respect to 1, ..., s, Where 0 <r< s <t,.

If 4 and » are disjoint then, the arc g followed by the arc A,(f),
s> t>=r and then followed by the arc v, is a eross arc from A4 to »(1).

If » and » are not disjoint let

w=sup{t e I| »(t) e u(I)}.
By Lemma 2.1 »(w) is in p(I). Hence the arc u from A to »(w) followed
by » from »(w) to »(1) is a cross arc from A to »(1). This contradicts the
definition of the ¢;, so that Y separates A and B into different arc com-
ponents. Hence A(4,B)>I'(4,B) which completes the proof of
Theorem 1.1.

Proof of Corollary 1.2. Let X be any finite or infinite graph.
Give all the edges the same length and put the weak topology on X.
For the set of vertices A define A* to be the union of 4 with all-the open
edges with one vertex in 4. Define B* similarly. Then A* and B are
disjoint open subsets of X. Corollary 1.2 now follows by applying
Theorem 1.1 to A* and B* and noting that in this case the given con-
struction for finding the points of X to be removed from each arc will
always lead to a vertex of the graph. '

§ 4. Counterexamples. We show that in Theorem 1.1 the condition
that X be Hausdorff cannot be dropped and that in Nobeling’s case [3],
when A and B are closed, neither the condition of loéally connectedness
nor the condition of compactness can be 'dropped.

ExaMPIE 4.1. Let X consist of two copies of [—1,1] identified at
all points except 0. Let A =[—1,0) and B= (0, 1]. Then X is T, but
not Hausdorff and A(4, B) =1 while I'(4, B) = 2.

ExaMpre 4.2. Let

X=Ix{0}uvIx{l}v U{l}xI ,

=1\

c c

Example 4.2 Example 4.3
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be a subset of the plane R? and let A = (0,0), B= (1,0) and ¢ = (0, 1).
Then X is not compact and A(4,B)=1 while I'(4,B)=2. Also
A(4, 0)=1 while I'(4, C) = %,.

ExAMPLE 4.3. Add the line {0}x I to Example 4.2. This is now
compact but not locally connected and A(4, €)= 2 while I'(4, C) = y,.

§ 5. Infinite number of arcs. It is always true that 4(4,B) < I'(4, B).
If X is a graph and 4(4, B) is an infinite cardinal we can fjnd a separating
set by removing all the vertices in X—(4 v B) of a maximal disjoint
set of arcs from A to B. Since there are only a finite number of vertices
on each arc A(4,B)=TI(4, B).

If X is a topological space and A(4, B) is at least the cardinality
of the continuum, & separating set can be obtained by removing all the
points in X— (4 u B) of a maximal disjoint set of arcs from 4 to B.
Then A(4,B)=I'(4, B).

When A (4, B) =8, Menger's Theorem for topological spaces is false
28 the following example due to Mary Ellen Rudin shows.

Examrie 5.1. Let X be the subset of the plane R? shown in the
diagram which consists of the product of the Cantor set with the closed
unit interval [—1, 1] together with the open set A below the ordinate -1
and the open set B above the ordinate 4-1. Then /A(4, B) =%, while
I'(A, B) has the cardinality of the continuum.

This follows from the fact that there exists an arc from A4 to B along
the inferval corresponding to any given point of the Cantor set. Any
point of the Cantor set has a triadic expansion that uses only 0’s and 2’s.
and an are can be constructed starting at the lowest vertex of A and

Example 5.1

Example 5.2
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turning left or right at the nth junction depending on whether there
is & 0 or 2 in the nth place of the triadic expansion.

This example is not locally connected but can be made so by shrinking
each closed interval [—1,1] to a point.

For finite 4 (4, B) we have shown that there exists a subset V of X
which separates 4 and B, and a set of disjoint ares W from 4 to B such
that each point of V lies on exhctly one of these ares and each arc containg

~ exactly one point of V. Rrdss [2], p. 292 has asked whether this result

holds for graphs when A (A, B) is infinite. The following example shows
that the result is false for topological spaces, even when A(4,B)
=I'(4,B). .

ExaMPLE 5.2. Let X be constructed as follows. Take a unit interval I
and two points P and ¢ outside I. Join P to all the irrational points of T
and @ to all the rational points of I. Let 4 and B be neighbourhoods of P
and @ respectively.

Then A(4,B)= ['(4,B)=rx,. But suppose V is a separating set
for 4 and B and that W is a set of disjoint arcs from A4 to B such that
each arc confains exactly one point of V. Then, because the rationals
and irrationals are dense in one another any arc of W can be removed
and replaced by an infinite set of disjoint ares. Each of these new arcs
contain & point of the separating set V so that there exists a point of ¥
which did not lie on any of the original arcs of .
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