

On a problem of Tamano

bv

Henry Potoczny (Dayton, Ohio)

Introduction. In [1], Tamano asked whether or not a space which is the closure-preserving union of compact sets has to be paracompact. We give a partial answer to this question with the following theorem. Let X be a space, and let $\mathfrak{F} = \{F(\alpha) | \ \alpha \in I\}$ be a closure-preserving family of compact closed sets whose union is X. Suppose that for each $x \in X$, there is a countable subfamily $\mathfrak{F}(x)$ of \mathfrak{F} such that $x \in \text{int} \bigcup \{F | F \in \mathfrak{F}(x)\}$. Then X is the disjoint union of open and closed σ -compact subsets.

LEMMA 1. Let X be a space, and $\mathfrak{F} = \{F(a) | a \in \Gamma\}$ a closure-preserving family of compact closed sets whose union is X. Suppose that, for each $x \in X$, there is a countable subfamily $\mathfrak{F}(x)$ of \mathfrak{F} such that $x \in \text{int } \bigcup \{F | F \in \mathfrak{F}(X)\}$. Then for each compact set K there is a countable subfamily, $\mathfrak{F}(K)$, of \mathfrak{F} such that $K \subset \text{int } \bigcup \{F | F \in \mathfrak{F}(K)\}$.

Proof. The family $\{ \text{int } \bigcup \{F | F \in \mathfrak{F}(x)\} | x \in K \}$ is an open cover of K, and hence has a finite subcover, say, $\{ \text{int } \bigcup \{F | F \in \mathfrak{F}(x_i)\} | i = 1, 2, ..., n \}$, for some points $x_1, x_2, ..., x_n \in K$.

Then $\mathfrak{F}(K) = \bigcup \{\mathfrak{F}(x_i) | i = 1, 2, ..., n\}$ is a countable subfamily of \mathfrak{F} , and $K \subset \operatorname{int} \bigcup \{F | F \in \mathfrak{F}(K)\}$.

THEOREM 1. Let X be a space, and $\mathfrak{F} = \{F(\alpha) | \alpha \in \Gamma\}$ a closure-preserving family of compact closed sets whose union is X. If for each $x \in X$ there is a countable subfamily $\mathfrak{F}(x)$ of \mathfrak{F} such that $x \in \text{int} \bigcup \{F | F \in \mathfrak{F}(x)\}$, then X is the disjoint union of open and closed σ -compact subsets.

Proof. For each $\alpha \in \Gamma$, $F(\alpha)$ is compact, whence, by Lemma 1, there is a countable subfamily $\Gamma(\alpha)$ of Γ such that $F(\alpha) \subset \operatorname{int} \bigcup \{F(\beta) | \beta \in \Gamma(\alpha)\}$. Let $\Gamma(0) = \{\alpha\}$.

Let $\Gamma(0) = \{a\}$. Let $\Gamma(1) = \{\beta \in \Gamma | \beta \in \Gamma(\gamma), \text{ for some } \gamma \in \Gamma(0)\} = \Gamma(\alpha)$.

Let $\Gamma(2) = \{ \beta \in \Gamma | \beta \in \Gamma(\gamma), \text{ for some } \gamma \in \Gamma(1) \}.$

Inductively, let $\Gamma(i+1) = \{\beta \in \Gamma | \beta \in \Gamma(\gamma), \text{ for some } \gamma \in \Gamma(i)\}.$

Let $\hat{\Gamma}(a) = \bigcup \{ \Gamma(i) | i = 0, 1, 2, ... \}.$

Let $G(\alpha) = \bigcup \{F(\beta) | \beta \in \widehat{\Gamma}(\alpha)\}.$

It is easy to see that $G(\alpha)$ is closed and σ -compact. Also, $G(\alpha)$ is open. To see this, we let $x \in G(\alpha)$, and find an open set about x that lies

inside $G(\alpha)$. Now $x \in G(\alpha) = \bigcup \{F(\beta) | \beta \in \widehat{\Gamma}(\alpha)\}$ means that there is a $\beta(x) \in \widehat{\Gamma}(\alpha)$ such that $x \in F(\beta(x))$. Since $\beta(x) \in \widehat{\Gamma}(\alpha) = \bigcup \{\Gamma(i) | i = 0, 1, ...\}$, there is a natural number $i(\beta(x))$ such that $\beta(x) \in \Gamma(i(\beta(x)))$.

Now recall that for an index γ to appear in a set $\Gamma(i+1)$, it is necessary and sufficient that γ belong to $\Gamma(\beta)$ for some $\beta \in \Gamma(i)$. Since $\beta(x) \in \Gamma(i(\beta(x)))$, every index $\gamma \in \Gamma(\beta(x))$ qualifies for membership in $\Gamma(i(\beta(x))+1)$. Thus $\bigcup \{F(\gamma)| \ \gamma \in \Gamma(\beta(x))\} \subset \bigcup \{F(\gamma)| \ \gamma \in \Gamma(i(\beta(x))+1)\}$ and this latter set is in turn a subset of $\bigcup \{F(\gamma)| \ \gamma \in \widehat{\Gamma}(\alpha)\}$. But we also know that $x \in F(\beta(x))$, which is a subset of int $\bigcup \{F(\gamma)| \ \gamma \in \Gamma(\beta(x))\}$.

Thus $x \in \operatorname{int} \bigcup \{F(\gamma) | \gamma \in \Gamma(\beta(x))\} \subset \bigcup \{F(\gamma) | \gamma \in \widehat{\Gamma}(\alpha)\} = G(\alpha)$, and

G(a) is seen to be open.

Note further that the family $\{G(a)|\ \alpha\in \Gamma\}$ is closure-preserving. This is a straightforward result following from the fact that each set G(a) is the union of members of a closure-preserving family of compact closed sets.

Now suppose the index set Γ to be well-ordered. For each $\alpha \in \Gamma$, let $V(\alpha) = G(\alpha) - \bigcup \{G(\beta) | \beta < \alpha\}$. Then the following facts about the family $\{V(\alpha) | \alpha \in \Gamma\}$ are easily verified: each set $V(\alpha)$ is open, closed and σ -compact; the members of $\{V(\alpha) | \alpha \in \Gamma\}$ are pairwise disjoint.

COROLLARY 1. If, in addition to the hypotheses of Theorem 1, X is required to be T_3 , then X is paracompact.

Proof. A T_3 , σ -compact space is paracompact, whence X is the disjoint union of open paracompact subspaces, whence is itself paracompact.

Note that if X is not required to be T_3 , X may fail to be paracompact. To see this, let X be any countable connected T_2 space; $X = \{x(i) | i \in Z^+\}$. For each positive integer j, let $X(j) = \{x(i) | i \leq j\}$. Then the family $\{X(j)\}$ is a countable closure-preserving family of compact sets whose union is X, but X is not paracompact, nor even normal or regular.

COROLLARY 2. Let X be a space, and $\mathfrak{F} = \{F(a) | a \in \Gamma\}$ a closure-preserving family of compact closed sets whose union is X. If the family \mathfrak{F} is either point-countable or star-countable, then X is the disjoint union of open and closed σ -compact subsets.

Proof. Both cases are special cases of Theorem 1. In the event that the family F is star-countable, the result can be obtained without well-ordering the index set.

Various other modification of Theorem 1 are also possible. If in Theorem 1 the members of $\mathfrak F$ are required only to be closed and σ -compact, the same result follows. If they are required to be closed and Lindelöf, then X is the pairwise disjoint union of open and closed Lindelöf subspaces.

COROLLARY 3. Let $X = \bigcup \{F(a) | a \in \Gamma\}$, where each F(a) is open, each $\overline{F(a)}$ is compact or σ -compact, and the family $\{F(a) | a \in \Gamma\}$ is closure-preserving. Then X is the disjoint union of open and closed σ -compact subspaces.

Proof. The family $\{\overline{F(a)} | a \in \Gamma\}$ satisfies the hypotheses of Theorem 1. COROLLARY 4. Let X be locally compact, T_2 . If every open cover of X has an open closure-preserving refinement, then X is the disjoint union of open and closed σ -compact subspaces.

Proof. Cover X with open sets whose closures are compact. Let $\mathfrak W$ be a closure-preserving open refinement which covers X. Then the family $\{\overline{W} | W \in \mathfrak W\}$ satisfies the hypotheses of Corollary 3, and the conclusion follows.

Note that any space X as described in Corollary 3 is locally compact, or locally σ -compact, but not every locally compact space will admit such an open cover. An easy example is the space of countable ordinals with the usual topology.

Reference

 H. Tamano, A characterization of paracompactness, Fund. Math. 72 (1971), pp. 189-201.

UNIVERSITY OF DAYTON Dayton, Ohio

Reçu par la Rédaction le 4. 12. 1970