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Real functions having graphs connected
and dense in the plane
by
David Phillips (Athens, Ga.)
Introduction. In this paper a theorem proved by Jack Brown m 1]

is utilized to.prove theorems concerning the class of all real functions
having graphs connected and dense in the plane. Only real functions

will be considered here and the word graph will refer to the graph of

a real function.

Definitions and notation. Tf f is a point set in the plane, then the
X -projection of f is the set of all abscissas of points of f and will be de-
noted by fz. The statement that the number set 3 is ¢-dense in the
number set N means that if I is an open interval containing an element
of N, then the cardinality of I ~ (M ~ N) is that of the continuum. The
cardinality of the continuum will be denoted by ¢. The set of all real
numbers will be denoted by E. ’

Lemua 1. If the graph f has connected X -projection and intersects
every lower semi-continuous graph with X -projection a subinierval of the .
X -projection: of f, then f is connected. )

This lemma follows easily from the theorem that Jack Brown states
and proves in [1]. ‘

TEEOREM 1. If C, is a subset of B such that each of C, and B— O, is
c-dense in E, then there is a totally disconnected graph g with X - projection C,
such that if M is a point set containing g and having X-projection B, then
M is connected and dense in the plane.

Proof of Theorem 1. Suppose 0; is a subset of F such that each
of ¢, and E— 0, is c-dense in E.

Let W denote the collection to which w belongs if and only if w is
a lower semi-continuous graph with X-projection an interval. The col-
lection W has cardinality c. Let Q be a meaning of precédes such that (1)
W is well ordered with respect to @ and (2) if w is an element of the col-
lection W, then the set of all elements of W that precede w has cardinality
less -than W. . ‘
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If w is an element of W, then ws ~ C; has cardinality ¢. If w, is an

element; of W, let P, e a point of w, such that (1) the abscissa of P, is
in ¢, and (2) if w, is in W and w, precedes w,, then the X-projection
of P, is not the X-projection of P. (This construction is possible because
the seb of all elements of W preceding w, has cardinality less than the
cardinality of (w,); ~ 0y.) Let ¢’ be the point set to which P belongs if
and only if there is an element w, of W such that P is P,. No two points
of g’ have the same X-projection; therefore ¢’ is a graph. Furthermore ¢’
intersects every element of the collection W. The X-projection of g is
a subset of ;. Let g be a graph containing ¢’ and having X-projection ;.
The X-projection of g is totally disconnected. Thus g is totally discon-
nected. :

-Suppose M is a point set containing ¢ such that M= E. Then M
contains a graph f such that f contains ¢ and f, = B. Then f contains ¢’
and therefore intersects every element of W. Thus f intersects every
lower semi-continuous graph with X-projection an interval and is there-
fore dense in the plane. From Lemma 1 it follows that f is connected.
Thus f is a connected subset of M that is dense in M. Therefore, M is
connected. Obviously M is dense in the plane for the same reasons that f is.

TEEOREM 2. If C, 18 o subset of B such that each of O; and E— Cy .is
¢-dense in B and fis a graph such that Cy is o subset of the X-projection of f,
then there is a graph ¢ that is connected and dense in the plane such that the

- X-projection of f~ g contains C.

Proof of Theorem 2. Suppose (, is a subset of F such that each
of C; and B— 0, is ¢-dense in F and f is a graph such that ¢ is a subset
of the X-projection of f.

Let C, be E—C;. Then each of C, and H— (, is ¢-dense in E. Tt
follows from Theorem 1 that there is a graph ¢, with X-projection 0,
such that if M is a point set containing g, and having X-projection F,
then M is connected and dense in the plane.

Let ¢ be a graph such that (1) ¢g(#) = gy(») if # is in C, and (2) g(@)
= f(w) if # is in C,, Obviously, g, is B and g contains g, . Thus g is connected
and dense in the plane. Also, it is clear that (g ~ f)s containg €.

THEOREM 3. If f 18 a graph with X-projection B, then there exist two
graphs, h and &, each connected and dense in the plane, such that if x is
a number, then f(x) = h(z)+k(x). :

Proof of Theorem 3. Suppose f is a graph with X-projection E.
Let 0, and C, be mutually exclusive subsets of X, each ¢-dense in E,
such that C; o 0, is B. From Theorem 1 it follows that there is a simple
graph hy, such that (hy)z is C; and if M is a point set with X-projection B
and containing %, then I is connected and dense in the plane. Similarly,
there is a graph k, with X-projection €, such that if M is a point set
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having X-projection F and containing k,, then M is connected and dense
in the plane.

Tet 7 be the graph such that: (1) k()= y(z) if z is in O, and
(2) h{x) = flz)—ky(w) if 2 is in C,. Let & Dbe the graph such that:
(1) k(@) = kya) if @ is in Gy, and @) k(@) = f(a)—Ihy(x) if X is in C.
It 2 is in O, then &(2)+k(x) = h(@)+[fe)— h(2)] = f(»). If # is in C,,
then k()4 k(2) = [f(a)— kal&)]+ Fal) = f(x). Thus if # is in B, then
k(@) -+ k(2) = f(x).

THEOREM 4. If f is a graph with X-projection E then f is the point-wise
limit of a sequence fy, foy fay -, each term of which is a connected graph dense
in the plane.

Proof of Theorem 4. Let §= By, By, By, -y be a sequence -of
subsets of B such that (1) each term of g is ¢-dense in B, (2) no two terms

o0
of f intersect, and (3) UB, is B. Let a= A;, 4, 45, ..., be a sequence
p=1

n
such that for each positive integer 7, An = | B,. Then if n is a positive
=1

integer, 4, is a subset of 4,.,, and each z"of A, and B— A, is ¢-dense
ip E. If z is in B, there is a positive integer n such that if m is an integer
greater than n, then A, contains x.

From Theorem 2 it follows that for each positive integer n there is
a graph f, that is connected and dense in the plane such that (f~ fa)z
includes An. Then fi, foyfas -, iS5 & sSequence each term of which is
a connected graph dense in the plane, such that for each positive integer 7,
(f ~ fa)z contains A,. Clearly, f is the point~wise limit of the sequence
Fisforfar o

Comment. Theorems 7 and 8 -are generalizations of theorems about
Darboux functions, as stated in [2] in the sense that every real function
with a connected graph is a Darboux function but the converse is not true.
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