Semisimple A-semigroups and semirings

by
Mireille P. Grillet (New Orleans, La.)

In an earlier paper [2], we investigated the class of completely
0-simple semirings, i.e. 0-simple semirings which are unions of their
0-minimal left ideals and also unions of their 0-minimal right ideals.
This suggested the present approach to the study of semisimplicity for
A -semigroups and semirings, which differs from the classical approach
in that (direet) sums have been replaced by (disjoint) unions.

A (left) A-semigroup, as defined in [3], is a semigroup 8 on which
2 semiring 4 acts so that a(zty)= ax+ay, (a+b)z = azx+bx, a(bz)
= (ab)x for all a,be A and z,yeS. If 4 has a zero, we also require
that S be a semigroup with an identity element 0 and that 0w = a0 = 0
for all # 8 and a € 4. Right A4-semigroups are defined similarly. An
A-semigroup is simple in case it has no proper A-subsemigroup and
semisimple if it is the [disjoint] union of its simple A -subsemigroups.
With this definition, we obtain all expected properties of semisimple
A -semigroups; in particular semisimplicity is inherited by A-subsemi-
groups and homomorphic images. We find that the semirings A for whieh
all left 4 -semigroups and right A -semigroups are semisimple are precisely
the completely simple semirings.

If now A is a semiring with zero, we call an 4 -semigroup 0-simple
if A8 £ 0 and S has no non-trivial A -subsemigroups, 0-semisimple if it
is the union of its 0-simple .4 -subsemigroups. Then all results above
extend to O-gemisimple A -semigroups. We also obtain the following
structure theorem which is our main result: Let 4 be a semiriug with
zero. Then the following properties are equivalent: (i) 4 is 0-semisimple;
(ii) A4 is the union of a family of non-nilpotent 0-minimal left ideals and
the union of a family of non-nilpotent 0-minimal right ideals; (iii) 4 is
the union of a family of two sided ideals of A which are completely
0-simple; (iv) 4 is a completely 0-simple semiring.

. Throughout this paper, semigroups will be denoted additively (unless
otherwise specified), althrough we shall not assume them to be com-
mutative in general. Also by a semiring we mean a set together with two
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associative operations called addition and multiplication such that the
multiplication is distributive with respeet to the addition.

Let 8 be an A-semigroup. If A°is the semiring obtained by adjoining
a zero to A and S° the semigroup obtained by adjoining an identity to 8,
then we can extend the action of 4 on § to an action of A° on §° by setting:
a0 = 0 and Oz = 0 for all & e A° and 2 e 8° so that trivially 8° becomes
an A% semigroup. This remark will allow us to concentrate on the case
when 4 has a zero in most of the following study.

An A -subsemigroup of a left; (right) A-semigroup 8§ is a subsemi-
group T of 8 which admits the action of A. If 4 has a zero, we also require
that T be non-empty, or equivalently that T contain 0. We shall denote
by {A4) the smallest additive semigroup of § containing a subset 4 of S.
If 7,71 are A-subsemigroups of §, then (T4-T') is also an A -sub-
semigroup of §; if L is a left ideal of 4 and T an A-subsemigroup of §,
then L-T = {L8)> is an A-subsemigroup of 8. If z¢ 8, we call the set
Alp = {Azw v {2} the principal A-subsemigroup of S generaited by x;
observe that in general ¢ Az whence A = Ax.

Finally we call & homomorphism of an A -semigroup 8 into an A-gemi-
group 7T an additive homomorphism f of § into T such that f(az) = af ()
for all @ ¢ A and 2z € 8. Note that a homomorphism of an A -semigroup §
into an A-semigroup 7' trivially extends to a homomorphism of §°
into I°.

1. Simple A -semigroups. Let A be a semiring and & be an A -semi-
group. We say that 8 is simple if it has no proper A -subsemigroup.
If 4 is a semiring with zero, we say that 8 is 0-simple if A8 =0 and §
contains no non-trivial A-subsemigroup. Simple and 0-gimple right
A -semigroups are defined similarly.

The (0-) minimal left ideals L of A (such that AL = 0) are important
examples of (0-)simple 4 -semigroups; in particular A itself is (0-)simple
if and only if it is a left (0-)simple semiring (i.e. 4 contains no non-trivial
left ideals (and A2 s 0)). _

Clearly § is a simple A-semigroup if and only if &° is a 0-simple
A°-semigroup. However, the coneepts of simple 4 - semigroup and 0 - simple
A’-gemigroup are in general different in the sense that a 0-gsimple
A°-semigroup is not always obtained by adjoining an identity to some
simple A-semigroup. An interesting case when all A°’-gemigroups. are
obtained by adjoining an identity to some A -semigroup is as follows:

PROPOSITION 1. Let A be a left simple semiring. Then, for any 0-simple
AP-semigroup 8, §— {0} is a simple A-semigroup.

Proof. We first show that §* = §— {0} admits the action of A,
Le. that for all ac 4 and ¢ 8*, az # 0 in §. Suppose that az—= 0 for
some a € A and @ e 8*. Then the set of all b e A such that bz = 0 is & non-

icm

©

Semisimple A -semigroups and semirings 111,

empty left ideal of A4 ; therefore it coincides with A so that Az = 0. Then
the set of all ¥ € S such that A% = 0 is different from zero since it contains z
and it also is clearly an A°-subsemigroup of §; this set must coincide
with 8, since § is 0-simple. Therefore we get a contradiction since
this would implies A°8 = 0. It follows that aze8* for all ae A and
xzeS*

To show that §* is closed under addition, observe first that, if 2 ¢ 8%,
then A% is an A°-subsemigroup of § which is different from zero by the
above; thus A’ = 8. Let now ¥,z ¢ §%; then there exist a,be A such
that y = az and 2= bx. Since a+b e A, it follows that y-}-2z = ar+bx
= (a+b)x e 8*. This proves that 8* is closed under addition. It is then
clear that §* is a simple 4 -semigroup, which corpletes the proof.

The following results give elementary properties of 0-simple A - semi-
groups. They obviously also apply to simple A4 -semigroups via the ad-
junction of an identity.

PRrOPOSITION 2. Let 8 be a 0-simple A-semigroup. Then Az= 8 for
all non-zero elements x of 8.

Proof. Assume that § is a 0-simple A-semigroup and let z be any
non-zero element of S. If Az = 0, then the set N of all elements y eS8
such that Ay = 0 would be an A-subsemigroup of 8 which is different
from zero; since § is 0-simple, this would imply & = §, which is impos-
sible since AN = 0 and A8 # 0. Therefore Az == 0 and, since Az is clearly
an A-subsemigroup of S, we conclude that Az = §.

Lmwvma 3. Let § be a 0-simple A -semigroup and f be a homomorphism
of 8 onto an A-semigroup T. Then T is either reduced to zero or 0-simple.

Proof. Let f be a homomorphism of a 0-simple A -semigroup 8
onto an A-semigroup I’ 3£ 0. Then first, since AS # 0, the A -subsemi-
group A - § generated by A8 must be equal to §; this implies that T = f(S)
=f(4-8) = A-f(8) = A.T s 0. Therefore AT s 0. Also, for every A-sub-
semigroup T" of T, the set §' = {w ¢ 8; f(x) e T'} is clearly an A -sub-
semigroup of §; since § is 0-simple, 8’ is a trivial A -subsemigroup of S;
it follows that 7" is a trivial A4 -subsemigroup of 7. Therefore 7 is 0-simple.

An obvious consequence of this result is the following:

ProPOSITION 4. Let f be a homomorphism of an A-semigroup 8 indo
an. A-semigroup T. If 8’ is a 0-simple A-subsemigroup of 8, then either
F(8)=0 or f(8') is a O-simple A-subsemigroup of T. )

COoROLLARY 5. Let L be a O-simple A -subsemigroup of A, and S be
an A-semigroup. Then for every element x of S, either Lw = 0 or Lz 148
a 0-simple A -subsemigroup of S. '

Proof. Let ¢ 8. Then a homomorphism f of L onto Lz is defined
by: f(a) = ax for all a e L. The result follows, by Lemma 3.

8 — Fundamenta Mathematicae T. LXXVI
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2. Semisimple A-semigroups. We recall that & semigroup § (with
identity 0) is a (0-)disjoint union of a family (8,);c; of subsemigroups
(with identity) in case | 8; = § and the intersection of any two elements

’ iel .
of the family (8,);c7 18 empty (reduced to the identity).
Let 4 be a semiring (with zero) and § be an A-semigroup. We say

that 8 is (0-)semisimple if § is the (0-)disjoint union of a family of

(0-)simple A4 -subsemigroups.

The next theorem gives equivalent definitions of (0-)semisimple
A -semigroups. ‘

THEOREM 6. Let 4 be o semiring (with zero) and S be an A -semigroup.
Then the following properties are equivalent: -

(i) 8 is (0-)semisimple;

(ii) 8 is the union of a family of (0-)simple A -subsemigroups of S;

(iii) For every (non-zero) element & of 8, the principal A -subsemigroup
of 8 generated by x is (0-)simple; )

(iv) AS =8 and Ax is (0-)simple for every (non-zero) element x of S.

Proof. We need only consider the case when A is & semiring with
zero. Trivially (i) implies (ii).

. Assume that (ii) holds so that § is the union of a family (8,);c; of
0-simple A -subsemigroups of §. Then, for every non-zero element z
of 8, & e §; for some j e I, whence A's is a non-zero 4 -subsemigroup of Sy;
sinee 8j is 0-simple, it follows that §;= Az so that 4'z is 0-simple.
Thus (iii) holds.

To show that (iii) implies (iv), let # be any non-zero element of §.
If Az =0, then the set N of all elements y of 8 such that Ay =0 is
& non-zero 4 -subsemigroup of §; since N n A'x % 0 and Az is 0-gimple,
Az C N. This implies that 4(A%)= 0 which contradicts the fact that
A’z is 0-simple. Therefore Az 0 and again by 0-simplicity of A'a,
Az = A'z. In particular Az is O-simple. Also § = | | A% = | J Az = A8

xeS zeS
which shows that (iv) holds.
Finally if (iv) helds, then first § = 48 implies that § = U 4a.

xed
Also for every non-zero element « of 8, Ag is 0-simple; it follows that

the intersection of any two different Aw’s is Teduced to zero. Therefore
8 is the 0-disjoint union of the family of all different A’s, which shows
that (i) holds.

Ajn important property of (0-) semisimple A-semigroups that we
have incidentaly proved in the proof of Theorem 6 is that Az = Az
for all w e 8, # 3 0. In particular z ¢ Az for all z < § 80 that there exists
aeA with ax = 2. .

. Our next result shows that semisimplicity is a property inherited
by A-subsemigroups and homomorphic images.
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PROPOSITION 7. Let 8 be a (0-)semisimple A-semigroup. Then each
A -subsemigroup of 8 and each homomorphic image of 8 are also (0-) semisimple.

Proof. Again it is enough to prove the result in the case when & is
0-semisimple. Assume that 8 is the union of a family (8,),.; of 0-simple
A -subsemigroups of S.

First let 8" be an A -subsemigroup of 8. Let J = {j eJ; §5n § 5 0}.
Then, since §; is 0-simple for all j eJ, §;C 8 for all j e J. Also S5~ 8§’ = 0
for all i e IN\J. It follows that 8’ = |J8; (=0 if J= @), which shows

€J
that 8’ is 0-semisimple. '

Let now f be a homomorphism of § onto an A -semigroup T. Then
clearly T'= | ] f(84); also by Proposition 4, f{8:) is either rednced to zero

i€l
or 0-simple for all i e I. Tt follows that T is the union of the non-zero
F(8:’s which are 0-simple and thus 7' is 0-semisimple.

3. Semisimple semirings. A semiring A (with zero) is left (0-)semisimple
if it is (0-)semisimple as a left A-semigroup. Right (0-)semisimple
semirings are defined similarly.

Contrary to what happens for semisimple rings with minimum con-
dition in the classical sense, the concepts of left (0-)semisimple semiring
and right (0-)semisimple semiring are different, as it is well known that
a semiring may be the union of its minimal left ideals without being the
union of its minimal right ideals. We say that a semiring is (0-)semisimple
in case it is Doth left (0-)semisimple and right (0-)semisimple.

An important property of left (right) (0-)semisimple semirings is
the following:

TuBOREM 8. Let A be a left (0-)semisimple semiring (with zero). Then
any left A-semigroup 8 such that AS = 8§ is (0-)semisimple. A similar
result holds when A is right (0-)semisimple.

Proof. Let A Dbe a left 0-semisimple semiring and § be an A -semi-
group such that AS = 8. Then, for every non-zero element # of 8, there
exist aed and y 8 such that ay= 2. Since A is left 0-semisimple,
a Delongs to some 0-simple A-subsemigroup I of 4. Then by Corol-
lary 5, Ly is a 0-simple A -subsemigroup of 8 which contains z. Since
each of its elements belongs to some 0-simple A -subsemigroup, & is
0-semisimple. The result concerning right 0-semisimple semirings is
proved similarly. )

It is easy to describe semisimple semirings. Indeed a semiring is
semisimple if and only if it is the union of its minimal left ideals an the
union of its minimal right ideals. In view of Theorem 2.2 of [2], this
means exactly the following:

THEOREM 9. A semiring is semisimple if and only if it is completely
simple.

g%
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: roceed to investigate the struetu‘re? .of 0-semls:u€np1e semi-
rings?v%r: O;all‘)t with some results on lleft: 0-sem13;nt1.ple Semiltgso Whl(‘,lh
we shall need Iater together with the similar properties for rig - gemi-

i semirings.
E(,lmpllE?RoJPOSI'L‘I(%N 10. Let A be a left 0-semisi')?zple semiMng: Then A®= A
and each 0-minimal left ideal of A is a 0-simple A-.se')mgroup.

Proof. That A= A results trivially from .(w) of. Theorem 6
Tet T be a 0-minimal left ideal of 4. To show that Lis & 0 —mm_‘ple_ A -semi-
group, we need only check that AL 0. Su%ce L # 0, there exists s‘(')me
non-zero element @ of L. Then Az # 0 by (iv) of Theorem 6 and, since

it follows that AL 5 0.
4 gIﬁ;y semiring A with zero, /&, = {a ¢ 4; Ao = 0} an.d A= .{]a.e A4;
ad = 0} are clearly two sided ideals of .A; they are called right annihilator
of A and left annihilator of A respectively. N

ProrosrrioN 11. Let A be a left 0-semisimple semiring. Then #,=0
and #; is the wnion of all nilpotent 0-minimal left ideals of A.

Proof. Again by (iv) of Theorem 6, Az 0 »fo,r €Very non-zero
element @ of A4; thus #4,= 0. To show the second part 0"E the. gtatement,
let first I be a 0-minimal left ideal of A which is contained in ;. Then
LA =0 and in particular I* = 0. Therefore L is nilpotver.lt. .N'QW agsume
that L is a 0-minimal left ideal of A such that I? = 0 (which is eqmvalgnt
to I* = 0 for some n >1). Since A is left 0-semisimple, 4 s the union
of a family (L;);c; of 0-minimal left ideals of 4. If LL; # 0 .for some ¢ € I,
then L-LEy= L; so that Ly= L-Li= <I?L;)= 0 which is 1mposs1b1§.
Therefore LL; = 0 for all ¢¢I and it follows that L4 = 0, Whencg Lis

eontained in #;. Thus #;, which as a left ideal of A is clearly a union of
0-minimal left ideals of A, must be the union of all. nilpotent 0-minimal
left ideals of A.

If now A is a 0-semisimple gemiring, then by Proposition 11 and the
dual result, #, = # = 0 so that the following is immediate:

CorOLLARY 12. Let A be a 0-semisimple semiring. Then all 0 - minimal
left ideals of A and all 0-minimal right ideals of A are non-nilpotent.

‘We now give our main result which characterizes 0-semisimple
semirings.

THEOREM 13. Let A be a semiring with sero. Then the following properties
are equivalent: .

(iy A is 0-semisimple;

(i) 4 is the union of a family of non-nilpotent 0-minimal left ideals
and ihe union of a family of non-nilpotent 0-minimal right ideals;

(iif) A is the union of a family of two-sided ideals of A which are com-
pletely 0-simple semirings;

(iv) A is a completely 0-simple semiring.
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Note that “union” may be replaced by “disjoint wnion” in the
statements of (ii) and (iii).

Proof. Trivially (iv) implies (i). In view of Corollary 12, (i) implies (ii).
Therefore we need only show that (ii) implies (iif) and (iii) implies (iv).

Assume first that (ii) holds. Then 4. is clearly 0-semisimple, whence
by Corollary 12, all 0-minimal Ieft ideals of 4 are pon-nilpotent. Define
& binary relation = op the set I" of all 0-minima]l left ideals of A in the
following way: if L,1’ T,

L=1if and only it LI’ £ 0 .

Note that, since L' is a O0-minimal left ideal, L =1' if and only if
L-I'=I'. The relation == is an equivalence relation on I indeed first
I =0 forall Lel implies that = ig reflexive; also if LL' = 0 for some
L,L eI, then L-I' = L' so that (LL'LL"y = L" % 0, whence I'L # 0 and
= is symmetric; finally, if ZL' % 0 and L'L"”" = 0 for some L, L', L"” €T,
then L-L" = (LL"y = (LI'L"y = (L'L'">= L' " = L", whence LL" # 0
which shows that = is transitive.

We now choose a complete system of representatives (Lp)pex of =,
denote by I the equivalence class of Lx, and by Rj the union of all
0-minimal left ideals of 4 which are equivalent to Lz. Clearly 4 is the
union of the family (Ry);.z. Note also that a 0-minimal Teft ideal I of 4
is contained in Ry if and only if it is equivalent to Lz modulo =: by defi-
nition of Ry, if L e Iy, then T C Ey; furthermore, if I C Ry, then there
exists some I’ e« I' such that L ~L’ # 0 so that by 0-minimality of L
and L'y L=1L"=L~L; thus Lel%.

We proceed to show that, for every % e K, Ry is a two-sided ideal
of 4 which is completely 0-simple.

To show that Ry is closed under addition, let a, b e R;. Then there
exist some L, I’ « I'; such that a L and b e I'. As a non-zero ideal of A4,
<L+L'> is the union of a family (Lj)jes of 0-minimal left ideals of A.
Then for every j edJ, I s~ 0, whence Li({L+L"y) 5 0, since it containg .
It follows that either I;L % 0 or L;L" £ 0 which means that either
Lj=L or I;=1'. In both cases, since L,I' ¢ Iy, we obtain L;=I;
§0 that IL; C Ry. Therefore <L+L'> C By, and in particular a-b e Ry.
Thus Ry is closed under addition.

Clearly, as a union of left ideals of A, Ry is a multiplicative left ideal
of 4. Also, for every L eI%, LA is the union of the family (LL')zcp.
Since LL'= 0 if L' ¢ I}, and LI"CL-L"=L" if L" eI}, it is clear
that LA C Ry. It follows that ErA, which is the union of the family
(LA)p ey, is also contained in Ry. This shows that By is a multiplieative
right ideal of A, and therefore a two-sided ideal of A.

To show that Ry is a O-simple semiring, it is enough by Propo-
sition 1.5 of [2] to prove that Ry is a 0-minimal two-sided ideal of A.
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Let T be a two-sided of A which is non-zero and contained in Ry. Then
I~L=#0 for some L el%. Then, by 0O-minimality of 'L, 'Lg I Also,
for every L' el%, I'=L-I'=(LL'>C<KLA)C I.' This 1mp11es that
R; C I, whence Rz==I. Therefore Ry is a 0-minimal two-sided ideal
of Z, and is 0-simple.

As an ideal of 4, R; is the union of & family of 0-minimal left (right)
ideals of 4. Also by Proposition 1.6 of [2], since By is a 0-minimal two-
sided ideal of A. The 0-minimal left (right) ideals of Ry coincide with
the 0-minimal left (right) ideals of A contained in Rg. It follows that
Ry is the union of its 0 -minimal left ideals and the union of its 0-minimal
right ideals. Thus Rj is completely 0-simple, which proves that (ii)

- implies (iii).

Let now 4 Dhe the union of a family (Bj),.z of two-sided ideals of 4
which are completely 0-simple semirings. To prove that A is completely
0-simple, we shall show that no two semirings of the family (B,)yx can
possibly be distinet. : ‘

Let i,je K be such that R; = R;. Then R; 0, Ry 0 (since R,
and E; are 0-simple), and also B; ~ Ry = 0 so that, in particular, R;R; = 0.
Let a,b be any two non-zero elements of 4 in R; and R; respectively.
Since E; is completely 0-simple, by (iv) of Theorem 2.2 of [2], there
exists a’ e By such that aa’ £ 0. Then (a--b)a’ = ae’4-ba’ = aa’ #0
which implies that a-4b e R;. Similarly a4-b ¢ R;. Therefore a--b =0
which is impossible since (a+-b)a’ = 0. Thus there exists no i,§ ¢ K
such that R; s~ B; which completes the proof.
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A note on monics and epics in varieties of categories
by’
S. A. Hugq (Canberra, Australia)

In memory of Professor Hanna Neumann

§ 1. Infroduction. This work is motivated by the question, given
any variety $ (see below) of a category C, are the monomorphisms, epi-
morphisms in B, same as those in G, to answer this question we choose
certain axioms on a category, so as to extend our study in any category
of multioperator groups [3]; and answer the question, by showing that
in such categories the monomorphisms and normal epimorphisms in any
variety is same, as in the original category. These categories have also
been studied by Sulifiski [7], Szész and Wiegandt [8], for various other
purposes. In the sequel, we are using the results of [6], [4] and [5] whenever
necessary, without reference.

§ 2. Axioms and Main results. Let C be a category equipped with the
following axioms:

Ci: C has a null object.

Cy: Every morphism a in C, admils a factorizaiion as in the diagram

A4A—2 >R
N, /S
N

L

i.e. a =, where v is a normal epimorphism and p is a monomorphism.
Cg: C has product and coproduct for any arbitrary family of objects.
Cy: The sub-objects and normal factor objects of any object form a set.
Cs: If o is a monomorphism and £ is a normal epimorphism such
that af admits image aff = vy, then a normal implies p is normal.
DEFINITION 2.1. 4 variety B is a full subeategory of G, satisfying
the following axioms:
By: If u: A—>B be a monomorphism in C and Be B> A4 ¢ B.
By: If v: A—>B be a normal epimorphism in C and A e HB=>B eB.
Byt If (4,);cr be a family of objects of B, then their product [[A; e B.
*
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