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Let T be a two-sided of A which is non-zero and contained in Ry. Then
I~L=#0 for some L el%. Then, by 0O-minimality of 'L, 'Lg I Also,
for every L' el%, I'=L-I'=(LL'>C<KLA)C I.' This 1mp11es that
R; C I, whence Rz==I. Therefore Ry is a 0-minimal two-sided ideal
of Z, and is 0-simple.

As an ideal of 4, R; is the union of & family of 0-minimal left (right)
ideals of 4. Also by Proposition 1.6 of [2], since By is a 0-minimal two-
sided ideal of A. The 0-minimal left (right) ideals of Ry coincide with
the 0-minimal left (right) ideals of A contained in Rg. It follows that
Ry is the union of its 0 -minimal left ideals and the union of its 0-minimal
right ideals. Thus Rj is completely 0-simple, which proves that (ii)

- implies (iii).

Let now 4 Dhe the union of a family (Bj),.z of two-sided ideals of 4
which are completely 0-simple semirings. To prove that A is completely
0-simple, we shall show that no two semirings of the family (B,)yx can
possibly be distinet. : ‘

Let i,je K be such that R; = R;. Then R; 0, Ry 0 (since R,
and E; are 0-simple), and also B; ~ Ry = 0 so that, in particular, R;R; = 0.
Let a,b be any two non-zero elements of 4 in R; and R; respectively.
Since E; is completely 0-simple, by (iv) of Theorem 2.2 of [2], there
exists a’ e By such that aa’ £ 0. Then (a--b)a’ = ae’4-ba’ = aa’ #0
which implies that a-4b e R;. Similarly a4-b ¢ R;. Therefore a--b =0
which is impossible since (a+-b)a’ = 0. Thus there exists no i,§ ¢ K
such that R; s~ B; which completes the proof.
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A note on monics and epics in varieties of categories
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§ 1. Infroduction. This work is motivated by the question, given
any variety $ (see below) of a category C, are the monomorphisms, epi-
morphisms in B, same as those in G, to answer this question we choose
certain axioms on a category, so as to extend our study in any category
of multioperator groups [3]; and answer the question, by showing that
in such categories the monomorphisms and normal epimorphisms in any
variety is same, as in the original category. These categories have also
been studied by Sulifiski [7], Szész and Wiegandt [8], for various other
purposes. In the sequel, we are using the results of [6], [4] and [5] whenever
necessary, without reference.

§ 2. Axioms and Main results. Let C be a category equipped with the
following axioms:

Ci: C has a null object.

Cy: Every morphism a in C, admils a factorizaiion as in the diagram

A4A—2 >R
N, /S
N

L

i.e. a =, where v is a normal epimorphism and p is a monomorphism.
Cg: C has product and coproduct for any arbitrary family of objects.
Cy: The sub-objects and normal factor objects of any object form a set.
Cs: If o is a monomorphism and £ is a normal epimorphism such
that af admits image aff = vy, then a normal implies p is normal.
DEFINITION 2.1. 4 variety B is a full subeategory of G, satisfying
the following axioms:
By: If u: A—>B be a monomorphism in C and Be B> A4 ¢ B.
By: If v: A—>B be a normal epimorphism in C and A e HB=>B eB.
Byt If (4,);cr be a family of objects of B, then their product [[A; e B.
*
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We recall the concept of a variety functor [4], [5].
DeFINITION 2.2. A functor V: C—C is called a wariety functor if it
satisfies ‘

Vy: V is a normal subfunctor of Ie.

V,: V preserves normal.epimorphisms. _

V being a subfunctor of the identity functor, naturally preserves
monomorphisms.

As exhibited in [5], the varieties of the category C are in biunique
correspondence with the variety functors, and the variety functor Vg
associated with a variety $, being a normal subfunctor defines a quotient
functor Ug: G- B, cf. [1], [2], and indeed we have immediately,

ProrosSITION A. The quotient functor associated with a variety P is
a coadjoint to the inclusion functor I: $—C. ‘

Proof. We notice that for any object 4, we have a maximal normal
factor object (p4, Ug(4)) e B. Let f: A—B be a morphism with B e 3.
Then if f admits image (v, L, u), then L e $ 5o (v, L) < (p4, Ug(4)). Thus
there exists a unique 6, such that p46 = ». Then Ou: Ug(d)—>B is the
unique map 8o that pafu = f. This proves our asserbion.

CoroLLARY. If an object C is C-projective, then Uy(0) is B- projective.

The proposition though simple leads to the information:

ProrosrrioN B. The monomorphisms and normal epimorphisms in
a variely B of C, do coincide with monomorphisms and normal epimorphisms
in C, respectively. '

Proof. The monomorphisms and normal epimorphisms of G, that
are in 3, are indeed monomorphisms and normal epimorphisms in %.
Conversely if g is & monomorphism in $; let «, 8 be two maps O~ A4,
in G, such that au = fiu. Then we have the diagram

0~ 43

]ﬁ
c

Us(0)

where pc¢ is the canonical normal epimorphism; obviously since A4 ¢ 3,
Ha', s U(C)>A4, such that pea’ = o and pef = p.

Thus ap= fu=>d'y=f'u ie. o = B s0 a=B.

Next let »: 4B be a normal epimorphism in B C C, and (K, u)
= kernel » in €. Immediately (K, #) € B, so0 the sequence

K5BA0

is exact in B. Next suppose that the morphism # admit a cokernel
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(#*, C*) in C. Then we have a 0, such that »*8 = ». Also there exists
a p such that vp = »"p¢. Since (0, B) is a normal factor object of C, with-
Be® and (pc, Ug(C)) is the maximal such one, g is an equivalence; so
» = v"pce", hence & normal epimorphism, being composition of normal
epimorphisms (in view of axiom C,).

ProposITION C. (i) The terminal object of C, if any, must belong to B,

(i) If A is an initial object of C, then Ug(A) is initial in B.

Proof. Since 4 is terminal, we have a unique §: Ug(4d)-> 4, such
that p46=1 ie. 6 is a retraction and hence & normal epimorphism,
ie. A e®. (cf. [4], proof of Proposition 3.1.10).

We notice that for any object Ce B, Hb: A>CeC If § admits
image (v, L, u), then L ¢ B, thus (v, L) < (p, Ug(4)); hence H6': Tg(4)
-0, such that p,0'= 6; that this 6’ is unique satisfying p,6 =0 is
easy to check.

Added in proof. After the acceptance of this paper, it came to the author’s
attention that Liviie, Calenko and Sulgeifer, also obtained Proposition B in a different
way. However, our proof is more general in the sense that this holds for epicoreflective
subcategories. of any category, instead of varieties in ecategories with present set
of axioms. .
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