

On compact classes of models

bv

L. Pacholski and Jan Waszkiewicz (Wrocław)

In the recent paper [7] Omarov proved that for every compact class K of similar relational structures the class of all direct products of elements of K reduced by a Fréchet ideal is compact. He had sooner proved [8] a similar result for some special class of operations on classes of relational structures. The result of [8] extends an earlier result of Makkai [5] who proved that the class of all direct products of elements of a compact class is compact, too, as well as a result of Kogalovskii [4] which says that every regular (1) product preserves compactness.

The main result of this paper says that for every ideal 3 of subsets of a set I such that $2\frac{1}{3}$ is ω_1 -universal, 3-reduced products preserve compactness of classes (Th. 1). Moreover, if 3 is also (ω, ω) -regular, then for every class K, the class of all 3-reduced products of elements of K is compact (Th. 2). We also give several examples of ideals 3 such that $2\frac{I}{3}$ is ω_1 -universal.

It turns out that the assumptions of Th. 1 an Th. 2 are necessary. A proof of this fact and some connected results will be published in [11].

We shall denote by L an arbitrary countable first order language, and by L_B the language of Boolean algebras. The sentences of L will be denoted by $\alpha, \beta, \gamma, \ldots$ (possibly with subscripts), and sets of sentences by Γ, Δ, \ldots For L_B we will use the following notation: v — for variables, τ — for terms, σ — for formulas (all with convenient subscripts) and Σ for sets of formulas. Relational structures of the type L will be denoted by A, A_t, \ldots and classes of such structures by K.

If $\{A_i\colon i\in I\}$ is a family of relational structures then the direct product of this family will be denoted by $\Pr_{i\in I}A_i$. If $\mathfrak I$ is an ideal over I, then $\Pr_{i\in I}A_i/\mathfrak I$ is the direct product of this family reduced by $\mathfrak I$, or simply the $\mathfrak I$ -reduced product. The $\mathfrak I$ -reduced power of a given A will be denoted by $A_I^{\mathfrak I}$.

2 denotes the two-element Boolean algebra. 2^{I} is the power of 2 as

⁽¹⁾ This notion was introduced by A. I. Malcev in [6].

well as the power set of I. So elements of 2^I will be identified with subsets of I. Elements of 2^I_3 will be denoted by X/3 (for $X \subseteq I$), or simply by X if it does not lead to a misunderstanding.

For any term τ of L_B we define $\varepsilon\tau=\tau$ for $\varepsilon=1$, and $\varepsilon\tau=-\tau$ for $\varepsilon=0$. Similar convention will be made for formulas of any language.

The symbol 2^{∞} will denote the set of all finite sequences of 0's and 1's. Slightly modifying the notation of [2], we denote the set $\{i \in I: A_i \models \alpha\}$ by $K[A, \alpha]$ for $A = \underset{i \in I}{\mathbf{P}} A_i$. Sometimes the simpler notation $K[\alpha]$ will be used. A sequence $\zeta = \langle \sigma, \alpha_1, ..., \alpha_m \rangle$ is called an acceptable sequence if σ is a formula of L_B with at most $v_1, ..., v_m$ as free variables, and $\alpha_1, ..., \alpha_m$ are sentences of L. The acceptable sequence is called partitioning if

$$\vdash \neg (a_j \land a_k) \text{ for } j \neq k \quad \text{and} \quad \vdash \bigvee \{a_i : i \leqslant m\}.$$

We will use the following Weinstein modification [13] (see also [3]) of the theorem of Feferman and Vanght:

F. V. THEOREM. For every sentence γ of L there is an acceptable partitioning sequence $\langle \sigma, \alpha_1, ..., \alpha_m \rangle$ such that $\underset{i \in I}{\mathbf{P}} A_i / \exists \models \gamma$ if and only if $2_3^I \models \sigma[K[\alpha_1]/3, ..., K[\alpha_m]/3]$.

Such a partitioning sequence will be called the F.V.-reduction of γ . We say that a set of formulas Σ is finitely satisfiable in A if for every finite $\Sigma_0 \subseteq \Sigma$, $A \models \exists v_0, ..., v_m \land \Sigma_0$, where $v_0, ..., v_m$ are free variables in Σ_0 . A sequence $\langle a_i : i < \omega \rangle$ of elements of A satisfies Σ if, for every $\sigma \in \Sigma$, $A \models \sigma[a_0, ..., a_n]$ holds $\langle v_0, ..., v_n \rangle$ are free variables in σ . A set Σ of formulas is satisfiable in Σ if there exists a sequence Σ if Σ of elements of Σ which satisfies Σ .

If Σ is finitely satisfiable in A, then we say that σ is consistent with Σ if $\Sigma \cup \{\sigma\}$ is finitely satisfiable in A.

A relational structure A is ω_1 -universal if for every finitely satisfiable set of formulas Σ of the language of A, or, equivalently, if for every countable relational structure B such that $B \equiv A$, B is isomorphic to an elementary submodel of A.

An ideal $\mathfrak I$ of subsets of a set I is (ω, ω) -regular if I is the union of a countable subfamily of $\mathfrak I$.

If I is an ideal over I and $I_0 \subseteq I$, then by $I \cap I_0$ we denote the ideal I_0 over I_0 such that $X \in I_0$ if for some $Y \in I$ $X = Y \cap I_0$.

If K_1 and K_2 are classes of similar relational structures, then $K_1 \equiv K_2$ (K_1 and K_2 are elementarily equivalent), if for every $A \in K_1$ there exists $B \in K_2$ such that $A \equiv B$, and conversely.

If Σ is a set of sentences, then we say that Σ is satisfiable in K if there exists $A \in K$ such that $A \models \Sigma$. Σ is finitely satisfiable in K if every finite subset of Σ is satisfiable in K. A class K is called to be compact

if every set Σ of sentences which is finitely satisfiable in K, is satisfiable in K. Of course, if K_1 and K_2 are compact and every sentence α satisfiable in K_1 is satisfiable in K_2 and conversely, then $K_1 \equiv K_2$.

If I is an ideal over I and K is a class of relational structures, then we denote by $\mathfrak{I}(K)$ the class of all I-reduced products of elements of K. The symbol $\mathfrak{I}^*(K)$ will denote the class of all I-reduced powers of elements of K and P(K) will denote the class of all direct products of elements of K.

Let B be a Boolean algebra. We denote by $\mathfrak{I}(B)$ the ideal of all elements of B such that $x \in \mathfrak{I}$ if and only if $x = y \cup z$, where y is atomic and z is atomless. Let $B_0 = B$ and $B_n = B_{n-1}/\mathfrak{I}(B_{n-1})$ and let h_n be the natural homomorphism of B_{n-1} onto B_n . Let $g_1 = h_1$ and $g_n = h_n \circ g_{n-1}$. We put $\mathfrak{I}_n(B) = g_n^{-1}(0)$.

With every Boolean algebra we can connect the triple $\langle a,b,c\rangle$ with $a\leqslant \omega, b\leqslant \omega, c\leqslant 1$, where $a=\sup\{n\colon B_n \text{ is non-trivial}\}$ and if $a<\omega$, then $b=\sup\{n\colon B_a \text{ has at least } n \text{ atoms}\}$ and c=0 for B_a atomic, c=1 if B_a contains an atomless element. For $a=\omega$ we put b=c=0. Eršov proved that $\langle a,b,c\rangle$ depends on the elementary type of B only. Moreover, there exists a 1-1 correspondence between elementary types of Boolean algebras and triples $\langle a,b,c\rangle$ (for $a\leqslant \omega,b\leqslant \omega,c\leqslant 1$). (For proof and details see [1].) We say that a Boolean algebra B is of the $type\ \langle a,b,c\rangle$ (in symbols $Th(B)=\langle a,b,c\rangle$) if $\langle a,b,c\rangle$ is connected with B in the described way.

THEOREM 1. If K is a compact class of similar relational structures and $2\frac{1}{3}$ is ω_1 -universal, then $\Im(K)$ is compact.

Let $I = \{ \gamma_j \colon j < \omega \}$ be a given set of sentences of L. For every j we consider the partitioning acceptable sequence $\xi_j = \langle \sigma_j, a_{j_1}, ..., a_{j,m_j} \rangle$, the F.V.-reduction of γ_j .

We put

$$A_0=\{a_{01},\,\ldots,\,a_{0m_0}\}\;,\;\;A_n=\{\beta\wedge a_{ni}\colon\,\beta\;\epsilon\;A_{n-1},\;l\leqslant m_n\}\;\;\text{and}\quad \varDelta(\varGamma)=\bigcup_{n<\omega}A_n.$$

For $\Delta(\Gamma)$ we have:

- (i) if $\alpha, \beta \in A_n$, then either $\vdash \alpha \leftrightarrow \beta$ or $\vdash \neg (\alpha \land \beta)$;
- (ii) if $\alpha \in A_n$, $\beta \in A_{n+1}$, then $\beta \to \alpha$ or $\beta \to \alpha$ or $\beta \to \alpha$
- (iii) for every $\gamma_n \in \Gamma$ there exists the partitioning F.V.-reduction ζ of γ_n such that $\zeta = \langle \sigma, \alpha_1, ..., \alpha_k \rangle$ and for every $\beta \in A_n$ there is a $j \leq k$ such that $\vdash \beta \leftrightarrow \alpha_j$;
 - (iv) $\Delta(\Gamma)$ is closed with respect to conjunctions;
- (v) $\Delta(I)$ can be ordered in the type ω in such a way that from $\vdash \alpha_i \rightarrow \alpha_j$ follows $i \leq j$.

In the sequel, whenever consider a numbering of elements of $\Delta(\Gamma)$, we assume that it fulfils (v).

By $\Sigma(\Gamma)$ we will denote the smallest set of formulas of L_B such that:

(j) if $\langle \sigma, a_{j_1}, ..., a_{j_k} \rangle$ is the F.V.-reduction of some $\gamma \in \Gamma$, then $\sigma[v_{j_1}/v_1, ..., v_{j_k}/v_k] \in \Sigma(\Gamma)$.

(jj) if $K \models \neg \land \{\varepsilon_j a_j : j \leqslant k\}$, then $\cap \{\varepsilon_j v_j : j \leqslant k\} = 0 \in \Sigma(\Gamma)$.

LEMMA 1. If 2^I_3 is ω_1 -universal and Γ is finitely satisfiable in $\mathfrak{I}(K)$, then $\Sigma(\Gamma)$ is satisfiable in 2^I_3 .

Proof. By the ω_1 -universality of 2^I_J it suffices to prove the assertion for any finite $\Sigma \subseteq \Sigma(\Gamma)$. Such Σ is the sum of finite sets Σ_1 and Σ_2 of formulas of type (j) and (jj) respectively. By a suitable extension of Σ_1 we can assume that every variable from Σ_2 is free in Σ_1 . But for every $\sigma_j \in \Sigma_1$ there exists the F.V.-reduction $\langle \sigma_j, a_{j1}, ..., a_{jk} \rangle$ of some $\gamma \in \Gamma$. Since Γ is finitely satisfiable in $\mathfrak{I}(K)$, so there is in $\mathfrak{I}(K)$ a model A of Λ of $\{\gamma_j : \sigma_j \in \Sigma_1\}$. So we take $K[A, a_i]/\mathfrak{I}$ as the elements of $2^I_\mathfrak{I}$ fulfilling Σ_1 . The satisfaction of Σ_2 is obvious.

LEMMA 2. For every sequence $\langle b_n : n < \omega \rangle$ of elements of 2^I_3 there is a sequence $\langle B_n : n < \omega \rangle$ of elements of 2^I_3 such that $b_n = B_n/3$, and if $\bigcap \{ \epsilon_k b_k : k < n \} = 0$, then

$$\bigcap \{\varepsilon_k B_k : k < n\} = \emptyset \quad \text{for every } \langle \varepsilon_0, \dots, \varepsilon_{n-1} \rangle \in 2^{\infty}.$$

Proof. A more general statement was proved in [9] (as a part of the proof of Theorem 1). We adapt this argumentation to our case. We will determine B_n by induction. Let $B_0, ..., B_{n-1}$ be determined. We put $b(\varepsilon) = \emptyset$ if $2\frac{I}{5} \models \bigcap_{k \le n} \varepsilon_k b_k = 0$ and $b(\varepsilon) = I$ otherwise.

Let us choose an arbitrary $B_n' \in b_n/3$ and define

$$B_{n}(\varepsilon) = \varepsilon_{0}B_{0} \cap ... \cap \varepsilon_{n-1}B_{n-1} \cap \left(B'_{n} \cap b\left(\varepsilon_{0}, \, ..., \, \varepsilon_{n-1}, \, 1\right)\right) \cup \left(I \setminus b\left(\varepsilon_{0}, \, ..., \, \varepsilon_{n-1}, \, 0\right)\right).$$

We put $B_n = \bigcup \{B_n(\varepsilon) : \varepsilon \in 2^n\}$.

The verification of the fact that B_n fulfil the assertion of the lemma is a matter of an easy computation.

Proof of Theorem 1. Let Γ be a set of sentences of L finitely satisfiable in $\mathfrak{I}(K)$. Let $\langle B_n : n < \omega \rangle$ be a sequence of subsets of I fulfilling Lemmas 1 and 2. For every $i \in I$ we define

$$\Phi_i = \{a_n \in \Delta(\Gamma) : i \in B_n\}.$$

Let us suppose that Φ_i has no model in K. Then some finite subset Φ_i' of Φ_i has no model in K, so $K \models \neg \land \Phi_i'$. Let $n_0 = \max\{n: \alpha_n \in \Phi_i'\}$. Then $K \models \neg \land \{\varepsilon_j \alpha_j: j \leqslant n_0\}$ for every $\varepsilon \in 2^{n_0}$ such that $\varepsilon_j = 1$ for $\alpha_j \in \Phi_i'$.

Then, by the definition of $\Sigma(\Gamma)$, $\bigcap \{\varepsilon_i v_j : j \leq n_0\} = 0$ (for ε as above) is an element of $\Sigma(\Gamma)$.

By Lemma 1 and 2 we have:

$$\emptyset = \bigcup \left\{ \bigcap_{j \leqslant n_0} \varepsilon_j B_j \colon \varepsilon \in 2^{n_0} \text{ and } \varepsilon_j = 1 \text{ for } \alpha_j \in \Phi_i' \right\} = \bigcap \left\{ B_j \colon \alpha_j \in \Phi_i' \right\},$$

what contradicts the fact that i belongs to the right-hand side (by the definition of Φ_i').

So every Φ_i has a model $A_i \in K$. Consider the structure $A = \underset{i \in I}{\mathbf{P}} A_i$. We shall prove that $B_n = K[A, \alpha_n]$.

It is obvious that if $i \in B_n$, then $a_n \in \Phi_i$ and $A_i \models a_n$. So $B_n \subseteq K[A, a_n]$. Now let $i \notin B_n$. By the properties of $\Delta(\Gamma)$ there is a partitioning sequence of elements of $\Delta(\Gamma)$, say $\langle a_{i_1}, ..., a_{i_{i_k}} \rangle$, such that a_n is an element of this sequence. By an argument analogous to those used in the proof of the consistency of Φ_i we can obtain that $B_{i_1}, ..., B_{i_k}$ is form a partition of I. So i is an element of some B_m such that $B_m \cap B_n = \emptyset$, and $A_i \models a_m$. Since $\vdash a_m \rightarrow \neg a_n$, we have that $i \notin K[A, a_n]$ whence follows $B_n = K[A, a_n]$.

Now we can complete the proof of the theorem, by showing that $\underset{i \in I}{\mathbf{P}} A_i / \exists \models \gamma$ for every $\gamma \in \Gamma$. By the definition of $\Delta(\Gamma)$, for some F.V.-reduction $\zeta = \langle \sigma, \beta_1, ..., \beta_k \rangle$ of γ we have $\sigma \in \Sigma(\Gamma)$ and $\beta_i = a_{n_i}$. By the definition of $\Sigma(\Gamma)$, Lemma 1 and Lemma 2, $2^I_{\overline{\jmath}} \models \sigma[B_{n_i} / \overline{\jmath}, ..., B_{n_k} / \overline{\jmath}]$. Since $B_{n_i} = K[A, \alpha_{n_i}]$, so by the F.V.-theorem $\underset{i \in I}{\mathbf{P}} A_i / \overline{\jmath} \models \gamma$.

THEOREM 2. If $2^I_{\mathfrak{J}}$ is ω_1 -universal and \mathfrak{J} is (ω, ω) -regular, then for every class K of similar relational structures $\mathfrak{I}(K)$ is compact.

Proof. Let Γ be finitely satisfiable in $\mathfrak{I}(K)$ and let I_0, \ldots, I_n, \ldots be a partition of I such that $I_n \in \mathfrak{I}$ for every n. Let $\Delta(\Gamma)$ be ordered in such a way that property (v) of $\Delta(\Gamma)$ holds, and let $\langle B_n : n < \omega \rangle$ be a sequence of subsets of I determined by Lemmas 1 and 2.

We define $\Phi_i = \{a_n: i \in B_n\}$. As previously we can show that every finite subset of Φ_i has a model. But now it does not imply that Φ has a model in K.

We put m(i) = k if $i \in I_k$ and $k(i) = \max_{j < m(i)} \{j : i \in B_j\}$. Finally let $A_i \models a_{k(i)}$. For $A = \underset{i \in I}{\mathbf{P}} A_i$ we will write K_i for $K[A, a_i]$.

As soon as we show that $K_i|_{J} = B_i/J$, the proof of theorem will be completed in the identical way as the proof of Theorem 1.

Let $i \in K_j - B_j$. Then $A_i \models a_j \wedge a_{k(i)}$. By the properties of $\Delta(I)$ we have two possibilities:

a) $\vdash \alpha_{k(i)} \rightarrow \alpha_j$, and then $B_{k(i)} \subseteq B_j$, and $i \in B_j$ (contradiction);

b)
$$\vdash \alpha_j \rightarrow \alpha_{k(i)}$$
, then $j \geqslant m(i)$ and $i \in \bigcup_{s < j} I_s$. So

$$K_j - B_j \subseteq \bigcup \{I_s: s < j\} \in \mathfrak{I}.$$

10 - Fundamenta Mathematicae T. LXXVI

Let $i \in B_j - K_j$. Then $A_i \models \alpha_j \land \neg \alpha_{k(i)}$. If $j \leqslant m(i)$, then $j \leqslant k(i)$ and, since $i \in B_j$, $B_j \supset B_{k(j)}$. So $+ a_{k(j)} \rightarrow a_j$ (contradiction). If j > m(i), then $i \in B_j - K_j \subset \bigcup \{I_s: s < j\} \in \mathcal{I}.$

This finishes the proof of the equality $B_j/\Im = K_j/\Im$.

As a consequence of our Theorem 2 and Theorem 2 of [9] we obtain

COROLLARY 1. For every Boolean algebra B there is an ideal I of subsets of a set I such that $2^{I}_{3} \equiv B$ and for every class K of similar relational structures $\Im(K)$ is compact.

Proposition 1. Every atomless Boolean algebra is ω_1 -universal.

Proof. Let Σ be a finitely satisfiable set of formulas of L_B . First of all we shall prove that one can assume that

(1)
$$\Sigma_{0} = \{\varepsilon_{0}v_{0} \cap ... \cap \varepsilon_{n}v_{n} = 0 : \langle \varepsilon_{0}, , \varepsilon_{n} \rangle \in S_{1}\} \cup \{\varepsilon_{0}v_{0} \cap ... \cap \varepsilon_{n}v_{n} \neq 0 : \langle \varepsilon_{0}, , \varepsilon_{n} \rangle \in 2^{\infty} - S_{1}\}$$

for some $S_1 \subset 2^{\infty}$.

By a theorem of Skolem [12] we may assume that every element of Σ is in a conjunctive normal form. Also we may assume that every element of Σ is of the form

where each τ_{ij} is a meet of variables and their complements and every η_{ij} is 0 or 1. In fact, every atomic formula and the negation of every atomic formula in the theory of Boolean algebras is equivalent to a Boolean combination of formulas of the form $\tau = 0$ and $\tau \neq 0$. Moreover, if $\tau = \bigcup \{\tau_j : j \leqslant n\}, \text{ then } \tau = 0 \text{ if and only if } \bigwedge \{\tau_j = 0 : j \leqslant n\} \text{ and } \tau \neq 0$ if and only if $\bigvee \{\tau_j \neq 0 : j \leqslant n\}$. Of course, every formula in Σ which is of the form (2) can be replaced in Σ by a finite set of formulas

$$\left\{ \bigvee \left\{ \eta_{ij}(\tau_{ij} = 0) \colon i \leqslant n \right\} \colon j < m \right\}.$$

Now let

$$\Sigma = \{ \bigvee \{ \eta_{ij}(\tau_{ij} = 0) \colon i \leqslant i_j \} \colon j < \omega \}$$

be the set of formulas finitely satisfiable in B, and let $X = \prod \{i: i \leqslant i_n\}$ (\prod denotes the Cartesian product of topological spaces with the product topology). Let for $n < \omega$

$$X_n = \{x \in X \colon B \models \exists v_0 \dots \exists v_m \land \{\varphi_{x_i,j} \colon j < n\}\},\,$$

where free variables of $\bigwedge \{ \varphi_{x_j, j} \colon j < n \}$ are among $v_0, ..., v_m$. Since Σ is finitely satisfiable, X_n is a non-empty closed set and since X is compact,

there is an element $x \in \bigcap X_n$. It is a matter of simple calculation to check that for $x \in \bigcap X_n$,

$$\Sigma_1 = \{ \eta_j(\tau_{x_j,j} = 0) \colon \eta_j = \eta_{x_j,j}, j < \omega \}$$

is finitely satisfiable in B. If, for some $\tau, \tau = 0$ and $\tau \neq 0$ do not occur in Σ we may add $\tau = 0$ or $\tau \neq 0$ to Σ without a loss of finite satisfiability. (If e.g. $\tau = 0$ is not consistent with Σ then clearly $\tau \neq 0$ is), what finishes the proof of the fact that we can assume that Σ is of the form (1). The proof of the fact, that any finitely satisfiable in B set of formulas of the form (1) is satisfiable in B, is easy.

Proposition 2. If a Boolean algebra 2^{I}_{5} is atomic, then it is ω_{1} -universal. Proof. We assume that 2^I_{π} is infinite. Let Σ be a finitely satisfiable set of formulas of L_B . Using arguments similar to that in the proof of Proposition 1 we may assume that every formula in Σ is of the form $a_i(\tau_i)$ or $\beta_i(\tau_i)$, where $a_i(x)$ means that x has exactly i atoms and $\beta_i(x)$ means that x has at least i atoms (cf. [10]). Let $\gamma(x)$ be an infinite formula saving that x has infinitely many atoms. We add $\gamma(\tau)$ to Σ if for every $i < \omega$ $\beta_i(\tau)$ is consistent with Σ . If for some $i < \omega$ $\beta_i(\tau)$ is not consistent with Σ , we add $\neg \beta_i(\tau)$ to Σ . In such a way we can obtain a set Σ_1 of formulas such that (i) for every α in Σ_1 there is a formula β in Σ_1 such that $\beta \vdash \beta \rightarrow \alpha$, (ii) Σ_1 finitely satisfiable, and (iii) for every term τ , $\gamma(\tau) \in \Sigma_1$ or for some $i < \omega$ $\alpha_i(\tau) \in \Sigma_1$.

Now we shall define a sequence $\langle x_i : i < \omega \rangle$ satisfying Σ_1 in 2^I_{J} . For i=0 we have (i) for some $i<\omega$, $\alpha_i(v_0)\in \Sigma_1$ and $\gamma(-v_0)\in \Sigma_1$, or (ii) for some $i < \omega$, $\alpha_i(-v_0) \in \Sigma_1$ and $\gamma(v_0) \in \Sigma$, or (iii) $\gamma(-v_0) \in \Sigma$ and $\gamma(v_0) \in \Sigma$. In the last case we select a sequence $\{Y_i: i \in \omega\}$ such that Y_i/J is an atom , in $2^I_{\mathfrak{J}}$ and $Y_i \cap Y_j = \emptyset$ for $i \neq j$. Of course, $\bigcup Y_i / \mathfrak{J}$ has infinitely many atoms. We put $X_0 = \bigcup Y_{2i}$. If $X_0, ..., X_{n-1}$ are defined, we define X_n in a similar way restricting the computation to the sets $\varepsilon_0 X_0 \cap ... \cap \varepsilon_{n-1} X_{n-1}$.

Corollary 2. If $Th(2^I_3) = \langle 0, m, n \rangle$ for some $m \leq \omega$, n < 2, then 2_3^I is ω_1 -universal.

Proof. We devide I into two sets I_0 , I_1 such that $2\frac{I_0}{J_0}$ is atomless and $2^{I_1}_{J_1}$ is atomic, where $J_0 = J \setminus I_0$, $J_1 = J \setminus I_1$.

An example which shows that the assumption $Th(2^{I}_{3}) = \langle 0, m, n \rangle$ is necessary will be given in [11].

Corollary 3. For every ideal 3 if $Th(2^I_{\mathfrak{I}}) = \langle 0, m, n \rangle$ for $m \leqslant \omega$, n < 2, then I preserves compactness. Moreover, if I is (ω, ω) -regular, then for every class K, I(K) is compact.

As an immediate consequence of Corollary 2 and Theorem 4 of [10] we obtain

COROLLARY 4. If $\operatorname{Th}(2^I_3) = \langle 0, n, m \rangle$ and $\mathfrak I$ is (ω, ω) -regular, then for every relational structure A, the reduced power $A^I_{\mathfrak I}$ is ω_1 -universal.

Theorem 3. If a Boolean algebra 2^I_3 is atomless, then for every compact class K of relational structures $\mathfrak{I}(K) \equiv P(\mathfrak{I}^*(K))$.

Proof. The proof will be devided into several steps.

a) Every sentence which is true in some structure belonging to $\mathfrak{I}(K)$, is true in some structure belonging to $P(\mathfrak{I}^*(K))$.

Let $A = \underset{i \in I}{\mathbf{P}} A_i / \mathbb{I}$ and $A \models a$. By the F.V.-theorem we have

$$2_{\mathfrak{J}}^{I} \models \sigma(K[A, \theta_{1}], ..., K[A, \theta_{n}])$$

for some partitioning acceptable sequence $\langle \sigma, \theta_1, ..., \theta_n \rangle$. Let

$$S_1 = \{k \leqslant n \colon K[A, \theta_k] \notin \mathfrak{I}\}\$$

and

$$S_2 = \{k \leqslant n \colon K[A, \theta_k] \in \mathfrak{I}\}.$$

For $k \in S_1$ we select a structure $A'_k \in \{A_i: i \in k[A, \theta_k]\}$. Let

$$I_k = egin{cases} I & ext{if} & k \in S_1 \ \emptyset & ext{if} & k \in S_2 \ . \end{cases}$$

It is easy to check that

$$(2_{\mathfrak{J}}^{I})^{S_{1}} \models \sigma(I_{1}, ..., I_{k}),$$

hence by the F.V.-theorem we have $\underset{k \in S_1}{\mathbf{P}}((A_k')_{\overline{\mathbf{J}}}) \models \alpha$ and, of course, $\underset{k \in S_1}{\mathbf{P}}((A_k')_{\overline{\mathbf{J}}})$ belongs to $P(\overline{\mathbf{J}}^*(K))$.

- b) By a theorem of Omarov [8] the class $\mathfrak{I}^*(K)$ is compact and by a theorem of Makkai [5] $P(\mathfrak{I}^*(K))$ is compact, too. Hence, by a) for every relational structure A in $\mathfrak{I}(K)$ there is a relational structure B in $P(\mathfrak{I}^*(K))$ such that $A \equiv B$.
- c) Now we shall prove that every relational structure from $P(\mathfrak{I}^*(K))$ is elementarily equivalent to some structure in $\mathfrak{I}(K)$. By Corollary 2 it is enough to show that for every sentence a which is true in some element of $P(\mathfrak{I}^*(K))$ there is a relational structure in $\mathfrak{I}(K)$ in which a is true.

Let $\mathbf{P}_{i\in J}((A_i)_{\overline{J}}^{\overline{I}}) \models \alpha$. By Theorem 6.6 of Feferman and Vanght (see [2], p. 83), for some finite $J_0 \subseteq J$ we have $\mathbf{P}_{i\in J_0}((A_i)_{\overline{J}}^{\overline{I}}) \models \alpha$. Let $\langle I_i \colon i \in J_0 \rangle$ be a partition of I into sets outside I. Then $(A_i)_{\overline{J}}^{\overline{I}} = (A_i)_{\overline{J}_i}$, where $J_i = J \upharpoonright I_i$. Consequently, if $B = \mathbf{P}_{i\in J_0}((A_i)_{\overline{J}_i}^{\overline{I}})$, then $B \models \alpha$. On the other hand, B is a structure from J(K).

References

- Ю. Л. Ершов, Разрешимость элементарной теории дистрибутивных структур с относительными дополнениями и теории фильтров, Алгебра и Логика III, 3 (1964), pp. 17–38.
- [2] S. Feferman and R. L. Vanght, The first order properties of products of algebraic systems, Fund. Math. 47 (1959), pp. 57-103.
- [3] F. Galvin, Horn sentences, Ann. of Math. Logic 1 (1970), pp. 389-422.
- [4] С. Р. Когаловский, Об алгебраических конструкциях сохраняющих компактность, Сибирский Математический Журнал XVIII (1967), pp. 1202-1205.
- [5] M. Makkai, A compactness result concerning direct products, Fund. Math. 57 (1965), p. 313-325.
- [6] А. И. Мальцев, Регулярные произведения, Известия АН СССР 23 (1959), pp. 489-502.
- [7] А. И. Омаров, Об одном свойстве фильтров Фреше, Известия А. Н. Казахской ССР 3 (1970), pp. 66-68.
- [8] О компактных классах моделей, Алгебра и Логика VI, 2 (1967), pp. 49-60.
- [9] L. Pacholski, On countably compact reduced products II, Bull. Acad. Polon. Sci., Ser. math., astr. et phys. 18 (1970), pp. 1-3.
- [10] On countably compact reduced products III, Colloquium Math. 23 (to appear).
- [11] On countably universal Boolean algebras and compact classes of models (to appear).
- [12] T. Skolem, Untersuchungen über die Axiome des Klassenkalküls und über die "Produktations und Summationsprobleme" welche gewissen Klassen von Aussagen betreffen, Skrifter utgit av Videnskapsselskapet i Kristiania, I. Klasse no. 3, Oslo 1919.
- 13] J. M. Weinstein, First order properties preserved by direct product, Ph. D. thesis, University of Wisconsin, Madison, Wis., 1965.

Reçu par la Rédaction le 14. 6. 1971