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On compact classes of models
by
L. Pacholski and Jan Waszkiewicz (Wroclaw)

In the recent paper [7] Omarov proved that for every compact
class K of similar relational structures the class of all direct products
of elements of K reduced by a Fréchet ideal is compact. He had sooner
_ proved [8] a similar result for some special class of operations on classes
of relational structures. The result of [8] extends an earlier result
of Makkai [5] who proved that the class of all direct products of elements
of a compact class is compact, too, as well as a result of Kogalovskii [4]
which says that every regular (*) product preserves compactness.

The main result of this paper says that for every ideal J of subsets
of a set I such that 2} is o,-universal, J-reduced products preserve
compactness of classes (Th 1). Moreover, if J is also (o, w)regular, then
for every class K, the class of all J-reduced products of elements of K is
compact (Th. 2). We also give several examples of ideals J such that ol
is w,-universal.

It turns out that the assumptions of Th. 1 an Th. 2 are necessary.
A proof of this fact and some connected results will be published in [11].

‘We shall denote by L an arbitrary countable first order language,
and by Lp the language of Boolean algebras. The sentences of L will
be denoted by a, f,y, ... (possibly with subscripts), and sets of sentences
by I', 4, ... For Lg we Wl]l use the following notation: v — for variables,
v — for terms, o — for formulas (all with convenient subseripts) and X
for sets of formulas. Relational structures of the type L will be denoted
by A, A4, ... and classes of such structures by K.

If {4:;: iel} is a family of relational structures then the direct
product of this famﬂy will be denoted by P Ai If 3 is an ideal over I,

then P AZ/J is the direct product of this famﬂy reduced by J, or simply

the J reduced product The J-reduced power of a given 4 will be de-
noted by AZ%.
2 denotes the two-element Boolean algebra. 27 is the power of 2 as

(*) This notion was introduced by A. I. Malcev in [6].
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well as the power set of I. So elements of 27 will be identified with syp-
sets of 7. Elements of 2] will be denoted by X/3 (for X CI), or simply
by X if it does not lead to a misunderstanding.
For any term t of Ly we define ev=17 for e=1, and sr=—
for ¢ = 0. Similar convention will be made for formulas of any language.
The symbol 2% will denote the set of all finite sequences of 0’s and 17,
Slightly modifying the notation of {2], we denote the set {i e I A4, a}
by K[4,o] for A= i]i’IAi. Sometimes the simpler notation K[

will be used. A sequence { = (0, &, ..., o0m) is.called an acceptable se-
quence if ¢ is a formula of Lz with at most v,, ..., vm a8 free variables,
and ay, ..., on are sentences of L. The acceptable sequence is called
partitioning it

F W oshax) for j= % and  F\/{as i < m}.

We will use the following Weinstein modification [13] (see also [3])
of the theorem of Feferman and Vanght:

¥. V. TEmoREM. For every sentence y of L there is an acceptable
partitioning sequence {o, oy, ..., an) Such that a'le)z'AtlJ Fy if and only if
23k oK )/3, .., K [an]/d].

Such a partitioning sequence will be called the F.V.-reduction of y.

We say that a set of formulas X is findtely satisfiable in A if for every
finite 2,C X, AF®ny, ..., 9mA\Z,, where wvy,..., v, are free variables
in %;. A sequence {as: i<<w) of elements of A satisfies 5 if, for every o ¢ %,
A Folay, ..., an] holds (v, ..., v, are free variables in o). A set X of
formulas is satisfiable in A if there exists a sequence <a;: 1 € w) of elements
of 4 which satisfies .

If 2 is finitely satisfiable in 4, then we say that o is consistent with 2
if Xu {0} is finitely satisfiable in A. :

A relational structure 4 is o, -universal if for every finitely satisfiable
set of formulas X of the language of 4, or, equivalently, if for every
countable relational structure B such that B = 4, B iy isomorphic to
an elementary submodel of A.

An ideal 3 of ‘subsets of a set I is (@, w)
of a countable subfamily of 3.

If 3 is an ideal over I and I, €1, then by 3] I, we denote the ideal
Jy over I, such that X ¢ 3, if for some ¥ 3 X=3Y nfo.

I K, and K, are classes of similar relational structures, then K, = K,
(K, and K, are elementarily equivalent), if for every 4 ¢« K, there exists
B <K, such that 4 = B, and conversely.

It T'is a set of sentences, then we say that 2 is satisfiable in K if
t?leire exists 4 e K s.uch that AF 2. X ig Jinitely savisfiable in K if every
finite subset of X is satisfiable in K. A class X is ealled to be compact

-regular if I is the union
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if every set X of sentences which is finitely satisfiable in K, is satisfiable
in K. Of course, if K; and K, are compact and every sentence a satisfiable
in X, is satisfiable in K, and conversely, then K, = K,.

If 3 is an ideal over I and X is a class of relational structures, then
we denote by J(K) the class of all J-reduced products of elements of K.
The symbol I*(K) will denote the class of all J-reduced powers of ele-
ments of K and P(K) will denote the class of all direct products of
elements of K.

Let B be a Boolean algebra. We denote by 3(B) the ideal of all ele-
ments of B such that z €J if and only if =y U ¢, where y is atomic
and z is atomless. Let By= B and B, = B,_,/i(B,_,) and let %, be the
natural homomorphism of B, ; onto B,. Let g, =k, and g,= h, - /.
We put 3.(B) = ¢;1(0).

With every Boolean algebra we can connect the triple {a, b, ¢>
with ¢ < 0, b < o, ¢ <1, where a = sup{n: B, is non-trivial} and if a < w,
then b= sup{n: B, has at least » atoms} and ¢ = 0 for B, atomie, ¢ =1
if Bg contfains an atomless element. For ¢ = w we put b= ¢= 0. Ersov
proved that {a, b, ¢)> depends on the elementary type of B only. Moreover,
there exists a 1-1 correspondence between elementary types of Boolean
algebras and triples <a, b, ¢) (for a < w, b < w, ¢ <1). (For proof and
details see [1].) We say that a Boolean algebra B is of the type (a,b,c>
(in symbols Th(B)=<a, b, ¢)) if <a, b, c> is connected with B in the
deseribed way.

TaeoREM 1. If K is a compact class of similar relational structures
and 2% is w,-wniversal, then J(K) is compact.

Let I'= {ys: j < w} be a given set of sentences of L. For every j we
consider the partitioning aceeptable sequence &; = <oy, a;, ..., Oy, the
F.V.-reduction of y,. .

‘We put

-AO = {0017 ey aOma} ] An = {ﬁf\am‘: ﬂ € An—l? l< Wln} and A(Tl) = UAn-

n<o

For A(I') we have:

(1) if a, B € Ay, then either Facsp or F](anp);

(i) if a e dn, f e 4,y then FB—>a or F{anf);

(iii) for every y, eI there exists the partitioning F.V.-reduction {
of y, such that { = <o, ay, ..., ax)> and for every f e A, there is a j< %k
such that Ffeay;

{iv) A(T') is closed with respect to conjunctions;

(v) 4(I') can be ordered in the type o in such a way that from
Fag—a; follows ¢ < 4.

In the sequel, whenever consider a numbering of elements of A(I),
we assume that it folfils (v).
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By Z(I') we will denote the smallest set of formulas of Ly such thas.

(3) if <o, as,.., o) is the F.V.-reduction of some y eI, then
,‘7[’”7'1]771: ...-,?J;k/'vk] € E(I’) .

() it £k 1 A{gey: j <k}, then () {g05: j <k} =0e Z().

Lemma 1. If 2% is w,-universal and T" is finitely satisfiable in J(K)
then X(I') is satisfiable in 25.

Proof. By the o,-universality of 27 it suffices to prove the assertion
for any finite X'C X(I'). Such X is the sum of finite sets Z) and Z, of
formulas of type (j) and (jj) respectively. By a suitable extension of X,
we can assume that every variable from 2, is free in 2. But for every
oje Z; there exists the F.V.-reduction (oj, ap, .., au) of. some y el
Sinee I' is finitely satistiable in J(K), so there is in J(K) a model A4 of
Adys o7 Zi}. So we take K[4, a]/3 as the elements of 2f fulfilling .
The satisfaction of X, is obvious.

H

Lemma 2. For every sequence {bn: n<< w) of elements of 2% there is
a sequence (Bn: m < w) of elements of 2% such that b= Baf3, and if
Y {exbr: k< n}= 0, then

MAeBi: k<n}=@  for every {eg, v, £,_4> € 2%,

Proof. A more general statement was proved in [9] (as a part of
the proof of Theorem 1). We adapt this argnumentation to our case. We
will determine B, by induction. Let By, ..., B,_, be determined. We put
ble)=0 it 25k M exbe= 0 and b(e) = I otherwise.

k<n
Let us choose an arbitrary B ¢b,/3 and define

B,,(e)——j gByn e, B, A (B,Ab(s, ..., 1y D)) (IND (g0 ey Eesy 0)).

We put By = | {Bale): & e27).
The verification of the fact that B, fulfil the assertion of the lemma
is & matter of an easy computation.

Proof of Theorem 1. Let I" be a set of sentences of L finitely

satisfiable in J(K). Let ¢B,: n<w) be a sequence of subsets of I fulfilling
Lemmas 1 and 2. For every ¢ ¢l we define ’ ‘

Bi={ase A(I): ieBy}.

Let us suppose that @; has no model in K. Then some finite subset @;
of @; has no model In X, so Kk A®;. Let n,= max{n: o, € B3}
Then Kk 77 A {esa5: j < my} for EVery ee2™ such that & = 1 for o; € @,

) Then, by the definition of X(I), M {em5: § < me} = 0 (for & as above)
is an element of X(I). .
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By Lemma 1 and 2 we have:

O=J{N &B;s: ¢2™ and ¢ =1 for ae®;} =) {B;: aje D},
i<mo

what contradicts the fact that 4 belongs to the right-hand side (by the
definition of @;). *

‘So every @; has a model 4;¢ K. Consider the structure 4 — PI.Ap
We shall prove that B, = K[A4, az]. )

It is obvious that if ¢ € By, then ay ¢ @; and 4; k ay. So B, C K[A, a,].

Now let ¢ ¢ B,. By the properties of A(I") there is a ﬂartitioning
sequence of elements of A(I'), say {&315 -y @70, Such that a, is an
element of this sequence. By an argument analogous to those used in
the proof of the consistency of @; we can obtain that By, «ecy By, is form
a partition of I. So ¢ is an element of some By, such that B,, ~ B, =0,
and A F om. Since Fan—>Tlas, we have that {¢K [4, a,] whence
follows B, = K[4, ay]. -

Now we can complete the proof of the theorem, by showing that
}?;_A,/J Ey for every y e I. By the definition of 4(I"), for some F.V.-re-
1€

duction { = (o, fy, ..., B> of y we have ¢ e Z(I") and fi= a,,. By the
definition of X(I), Lemma 1 and Lemma 2, 2%k o[B,/d, very Bu 31,
Since By, = K[A4, a,]), 50 by the F.V.-theorem .PIAf/J Ey.

ie. .

THEOREM 2. If 2% is w,-universal and 3 is (w s o)-regular, then for
every class K of similar relational structures 3(K) is compact.

Proof. Let I' be finitely satisfiable in J(K) and let I,, vy In, ... De
& partition of I such that I, e 3 for every n. Let 4(I") be ordered in such
a way that property (v) of A(I") holds, and let (By: n<w) bea sequence
of subsets of I determined by Lemmas 1 and 2.

We define @; = {as: ¢ € B,}. As previously we can show that every
finite subset of @; has a model. But now it does not imply that @ has
a model in K. )

We put m{i)=% if ¢ eIy and k(z’):gg(%{j: 4 € B;}. Tinally let

A Fay,. For 4= _PIA¢ we will write K; for K[4, o).

As soon as we show that K/J = ByfJ, the proof of theorem will be
completed in the identical way as the proof of Theorem 1.

Let ¢ ¢ K;— B;. Then Ak ajA a,- By the properties of A(I) we
have two possibilities: ’

a) Fayy—>oa, and then By CB;, and e B; (contradiction);

b) Fay>ayy, then jm(i) and ie UZ. So

8<g
E;—B; C | J{I;: s<<j}led

10 — Fundamenta Mathematicae T. LXXVI
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Let i ¢ B;—K;. Then A; F gyA Taygy. I j < m(d), then j < %(4) and,
- since 4 € By, B;D Byyy. So Fayy—>oy (contradiction). If j > m(7), then
ieB—~K;ClJ{I: s<j}ed.
This finishes the proof of the equality ByfI = K,/J.
As a conseqience of our Theorem 2 and Theorem 2 of [9] we obtain
COROLLARY 1. For every Boolean algebra B there is an ideal I of sub-
sets of a set I such that 25 = B and for every class K of similar relational
structures 3(K) is compact.
ProroSITION 1. Every atomless Boolean algebra is w,-universal.

Proof. Let X be a finitely satisfiable set of formulas of Lz. First of
all we shall prove that one can assume that

yen) € 8} v

N oegty 7 00 (&,

o= {egWy O ... 0 50n = 02 &g,

(1)

{egy M .. seny € 2°— 8}

for some §; C2%. )

By a theorem of Skolem [12] we may assume that every element of
Z i3 in a conjunctive normal form. Also we may assume that every ele-
ment of X iy of the form

(2) AV gz = 0): i <n: <},

where each 7;; is a meet of variables and their complements and every 7,

is 0 or 1. In fact, every atomic formula and the negation of every atomic
formula in the theory of Boolean algebras is equivalent to a Bodlean
combination of formulas of the form v=0 and v #0. Moreover, i
v={{r j<n}, then v=0if and only if Af{r;=0:j<n}andz0
if and only if \/ {r; # 0: j <Cn}. Of course, every formula in 5 which is
of the form (2) can be replaced in X by a finite set of formulas

Vingley=0): i<n}: j< m}.
Now let
X = {\/ {nulry = 0): i g} < a)}
be the set of formulas finitely satisfiable in B, and let X = IT G i <idn}

n<wo
(]] denotes the Cartesian product of topological spaces with the product
topology). Let for n<

Xu={reX: Bt iy, o m N\ {ayg: G< Y},

where iree‘v?.riables of A{pys: §< n} are among v, ..., vp. Since X is
finitely satisfiable, X, is a non-empty closed set and since X is compact,
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there is an element @ () X,. It is a matter of simple ealeulation to check

w<lo
that for e[| Xa,

n<o

2= {’71‘(%,7‘ =0): ;= 1,;,j < o}

is finitely satisfiable in B. If, for some 7,7 =0 and 7 = 0 do not oceur
in 2 we may add 7= 0 or 7 %2 0 to 2 without a loss of finite satisfiability.
(If e.g. = 0 is not consistent with X then elearly « =2 0 is), what finishes
the proof of the fact that we can assume that X is of the form (1). The
proof of the fact, that any finitely satisfiable in B set of formulas of the
form (1) is satisfiable in B, is easy.

PROPOSITION 2. If @ Boolean algebra 23 is atomic, then it is oy -universal,

Proof. We assume that 2 is infinite. Let X be a finitely satisfiable
set of formulas of L. Using arguments similar to that in the proof of
Proposition 1 we may assume that every formula in X is of the form
ai{r;) or fBi(r;), where ai(x) means that z has exaectly ¢ atoms and Bi(x)
means that z has at least ¢ atoms (ef. [10]). Let »(x) be an infinite formula
saying that # has infinitely many atoms. We add y(r) to X if for every
i< w Pi(v) is consistent with Z. If for some i < w Bi(7) is not consistent
with 2, we add "ifi(7) to 2. In such a way we can obtain a set 2 of
formulas such that (i) for every a in X there is a formula g in %, such
that § +f—q, (ii) X, finitely satisfiable, and (iii) for every term 7, (1) € X}
or for some i< w ai(7) e X,.

Now we shall define a sequence (@ i<w) satisfying X in 2%, For
i=0 we have (i) for some i<C o, a(n,) ¢ Z; and y(—1g) ¢ 1, or (ii) for
some ¢ << @, ay—y) € X; and p(n,) € =, or (iil) y(—2,) € £ and y(vy) e 2.
In the last case we select a sequence {¥;: ¢ € 0} such that ¥¢/3 is an atom
in 2f and ¥i~ ¥;=@ for i 4. Of course, | J¥:fJ has infinitely many

i<w
atoms. We put X, = [J¥,,. If X,.., X, , are defined, we define X,
<o
in a similar way restricting the computation to the sets g, Xy ...~ I, SR

CoROLIARY 2. If Th(2]) =<0, m,n) for some m < w, n<2, then
2% is w;-universal.

Proof. We devide I into two sets L{, I, such that 2§g is atomless
and 2% is atomic, where 3= 3 I;,3, = 3] I,. .

An example which shows that the assumption Th(2%) = <0, m, n)
is necessary will be given in [11].

CoROLLARY 3. For every ideal 3 if Th(2]) = <0, m,nd for m.< o,
n <2, then J preserves compactness. Moreover, if 3 is (w, w)-regular, then

- Jor every class K, I(K) is compact.

As an immediate consequence of Corollary 2 and Theorem 4 of [10]
we obtain
10%
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COROLLARY 4. If Th(2]) = <0,n,m) and I is (o, ®)-regular, then
for every relational structure A, the reduced power A% is w,-universal,

THEOREM 3. If a Boolean algebra 2} is atomless, then for every compact
cdass K of relational structures 3(K) = P(3"(I)).

Proof. The proof will be devided into several steps.
a) Every sentence which is true in some strueture belonging to I(E),
is true in some structure belonging to P(3*(K)).

Let 4 = P 443 and A F a. By the F.V.-theorem we have
iel
2fko(K[4, 6], ..., K[4, 6,))
for some partitioning acceptable sequence <o, 8, ..., 0,>. Liet

8, =Th<n: K[4,0¢3)
and
Sy={k<n: K[4, 6;]3}.

For ke 8, we seleet a structure A; e« {4s: iek[4, 6;]}. Let

I, — I it kef,
O if ke8,.
It is easy to check that
(2§)S1 Fo(ly, .., In),

hence by the F.V.-theorem we have RI; (4p)f) Fa and, of course,
€51

sz ((47)3) Dbelongs to P(3*(K)).

€1

b} By a theorem of Omarov [8] the class T*(K) is compact and by ‘
a thgorem of Makkai [5] P(3*(K)) is compact, too. Hence, by a) for every
relational structure 4 in 3(K) there is a relational structure B in P(J*(K))
such that 4 = B.
) ¢) Now we shall prove that every relational structure from P(J*(K))
is elementarily equivalent to some structure in J(K). By Corollary 2 it
is enmigh to show that for every sentence a which is true in some element
of P(3*(K)) there is a relational structure in 3 (K) in which « is true.

Let i]?J((Af)é) F o. By Theorem 6.6 of Feferman and Vanght (see [2],
D- 83), for some finite J,CJ we have P (403 k. Leb <Ii: i edy be

tedy

& partition of I‘ into sets outside 7. Then (i) = (4i)s, where ;=3[ 1.
Consequently, if B = tE’J‘,((Ag);ﬁ), then B a On the other hand, B is
a strueture from J(K). '
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