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Mapping properties of characters of LCA groups
by
D. L. Armacost (Amherst, Mass.)

In this paper we shall be concerned with some questions about the
mapping behavior of characters in locally compact = Abelian (LCA)
groups. In the first section, we shall describe the classes of LOA groups
determined by requiring that the ranges of the continuous characters
satisfy certain conditions. In the second section, we shall give necessary
ard sufficient conditions for a continuous character to be an open mapping,
while in the third and last section, we shall touch upon a property of the
set of non-surjective characters of an LCA group.

A word about notation: All LCA groups under congideration are
assumed to satisty the T, separation axiom. If & is an LOA group, we
denote its character group by @& The trivial character is written as 1,
and the kernel of a continuous character y in & is denoted kery. The
LCA groups of which we make constant meéntion are the circle T, the
real numbers R, the integers Z, the cyclic groups Z(n) of order n, the
quasicyclic groups Z(p™), where p is a prime, and the additive group of
the rational numbers @, taken discrete. Precise definitions of these groups
may be found in [2]:

1. Range properties of characters. In this section we seek to classify
the LCA. groups whose non-trivial continuous characters satisfy a certain
property with respect tio their ranges. This type of problem is not new;
for example, Robertson [3] has investigated the significance of the
properties “all y % 1 in @ have range contained in the torsion subgroup
of the circle” (see [3], 8.18), and “all y % 1 in & have range contained
in Z(p™)” (see [3], 3.17). We shall make use of some of Robertson’s results
in our investigations.

In [3], 3.25, Robertson obtained a characterization of the dual of
a connected LCA. group. Our starting point will be the characterization
of connected LCA. groups by means of the simplest range property of
their characters (see Theorem 1.1). We shall then subject this property
to certain natural variations and determine the LCA groups whose
characters satisfy these new properties. We list these properties as follows:
1 — Fundamenta Mathematicae T. LXXVI
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P Bach y # 1 in @ is surjective.
P,: Hach y # 1 in & has uncountable range.

P;: Each y #1 in @ has counta:oly infinite range. .

P,: The ranges of the y #1 in CI' are algebljalca]ly isomorphie.

P,: The ranges of the y 551 in @ are identical. . _

P,: The ranges of the y in @ are totally ordered by inclusion. '
e shall now describe the LOA groups determined}by these properties.
We begin with a simple lemma.

TEmvA 1.1. Let G be a discrete Abelian group and let © # 0 be an
element of G. Then there ewists y € @ such that y(@) =1 and y has count-
able range.

Proof. Let E(G) be the minimal divisible extension of G (see [2],
A. 15). Since E(G) is a weak direct sum of groups of the form @ and Z (p®),
both of which ave isomorphic to subgroups of the circle, y can be. tal?en
as the composition of the injection from G into B(§) with a projection
of B(@) onto an appropriate direct summand. B

This lemma, easy in itself, renders the determination of the groups
with properties P, and P, almost immediate.

TerOREM 1.1. Let G be an LCA. group. The following are equivalent:

(a) Bach y #1 in G is surjective (Py).

(®) Bach y =1 in G has uncountable range (Ps).

(c) G is connected.

Proof. Obviously (2)= (b). Assume (b). If G- is not connected,
then @ contains a proper open subgroup U. Since the discrete quotient
group G/U has, by the lemma, a non-trivial character with countable
range, 50 does G, which contradicts (b). Hence (b) = (c). Finally, since T
has no connected subgroups other than {1} and itself, (¢) = (2), completing
the proof. o

Remark 1.1. We pause to diseuss the réle of the circle T' in this
theorem. Let H be an LCA group which is not totally disconnected.
Suppose that the statement “An LCA group @ is connected if and only
if every non-trivial continuous homomorphism from ¢ into H is surjective”
is true. Then we can show that H is topologically isomorphic with T.
This fact should perhaps be compared with Pontrjagin’s observation
that the circle is the only LCA group to yield a duality theorem for all
LCA groups (see, for example, [2], 25.36). ;

Remark 1.2. At this point, one might inquire about the.property

“gll y £ 1 in G have infinite range”. This is, of course, a purely group -

theoretic property, viz. “@ is torsion-free”. Thus an LCA group @ has
this property if and only if its Bohr compactification is connected, or,
a8 is much more difficult to show, if and only if & has a dense divisible
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subgroup (see [3], 5.2). Groups satisfying the preceding condition are
called densely divisible. We shall use this term in the sequel.

To expedite our discussion of the remaining properties P, through P;
we reproduce a definition of Robertson [3], 3.1.

DEFINITION 1.1. Let @ be an additively written LCA. group.
(a) If lim (n!) @ = O for every xin @, we call @ a topological torsion group.

N-+00

(b) Let p be a prime. If limp”s = 0 for every = in &, we call & & topo-
n—o0
logical p-group.
Remark 1.3. In [1], II, 1, Braconnier gives a definition of a “groupe
primaire associé & l’entier premier p”. Tt can be shown that this definition
is -equivalent to Definition 1.1 (b).

THEOREM 1.2. Let G be an LOA group. The following are equivalent:

(a) Bach y # 1 in G has countably infinite range (Ps).

(b) G =2 DX Gy, where D is a weak direct sum of countably many
copies of @, taken discrete, and G, is a topological torsion group.

Proof. Assume (a). Then certainly & is torsion-free and @ is totally
disconnected. It follows from [3], 8.27, that @ has the form R"x D x G,
where D is a direct sum of copies of @, taken discrete, and @, is a totally
disconnected group consisting entirely of compact elements. It is clear
that » = 0 here, and it follows from [3], 3.15, that &, is a topological
torsion group. Finally, it is clear that D is the direct sum of at most
countably many copies of ¢, so that (a) = (b). The converse implication
follows again from [3], 3.15, so that the proof is complete.

Remark 1.4. Suppose that property P, is changed to read “Bach
y #1 in & has proper infinite range”. The same argument as in the
theorem above shows that a group G with this property is of the form
given above, except that D is a direct sum of x copies of @, where g is
a cardinal number strictly less than the power of the continuum. Thus,
if we assume the continuum hypothesis, we conclude that the new
property is equivalent to Pj.

We are now ready to discuss P,, P,, and P,. The determination
of the groups satisfying these properties is probably more onerous than
conceptually difficult, and the results are most likely not unexpected.

TuroreM 1.3. Let G be an LCA group. The following are equivalent:
(a) The ranges of the y £ 1 in G are algebraically isomorphic (P,).
(b) The ranges of the y =1 in G are identical (P5).
(¢) @ is one of the following types of groups:

(1) A connected group.

(2) A densely divisible topological p-group.
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(3) A group every element of which has order p, where p is_ a gom’me
(see [1], Théoréme 2, p. 41, or [2], 25.29, for a complete description of
these groups). .
Proof. First assume that @ is discrete and satisfies (a). We claim
that @ is a torsion group. For if # in @ has infinite order, we could extend
the isomorphism from the cyclic group generated by « onto Z to a hon.10~
morphism from @ into Q.. This would give rise to a character of & w%th
torsion-free range. But since every discrete group has characters with
range contained in the torsion subgroup of the circle, ga) could not hold
if @ were not a torsion group. Thus, since & is a torsion group, we can
write it as a weak direct sum of its p-components (see [2], A.3). If (a) holds,
then @ must coincide with one of these p-components. Hence every
character of & must have range contained in a subgroup of the Aform
Z(p®) C T. We further deduce from (a) that either every y = 1 in ¢ has
range Z(p) or else every y 1 in G has range Z(p™).
Now let & be a general LOA group satisfying (a). Of course, G could
be connected. If not, then @ has a proper open subgroup U, and the

discrete group G/U also satisfies (a).. Thus we conclude from the first'

N o
paragraph that either every y # 1 in (@/U), and hence every y #1 in G,

has range Z{p), or else every y # 1 in (6/?), and henceA every y 1 in @,
has range Z(p™). In the former case, every element of @, and hence every
element of @, has order p. In the latter case, we conclude from [3], 3.17
and 5.2, that G is a densely divisible topological p - group. Hence (a) = (c).
On the other hand, it is clear that (c)=>(b)=-(a), which completes
the proof.

TeEOREM 1.4. Let @ be an LCA group. The following are equivalent:

(a) The ranges of the conmtinuous characters of G are totally ordered
by inclusion (Pg).

(b) G/C is a topological p-group, where O is the identity component
of G, and p is a fixed prime.

Proof. Assume (b). A character in G either annihilates ¢ or it does
not. If y(0) s+ 1 then y(@) = T. Otherwise, y may be thought of as
a character of the topological p-group G/C, so that the range of y is a sub-
get of Z(p™) by [3], 3.17. Since the subgroups of Z(p™) are totally ordered
by inclusion, it is clear that (a) holds for @, so that (b) = (a).

Conversely, suppose that (a) holds for the discrete group &. We
conclude, just as in the proof of the previous theorem, that @ is a torsion
group coineciding with one of its p-components. Thus every character
of @ has its range contained in Z(p*). If & is totally disconnected, then
we conclude from [2], 7.7, that kery is open in & for each y in & Thus,
if (a) holds for a totally disconnected group &, and if y is in @, then each
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character of the discrete group Gfkery has range contained in Z(p™)
for some prime p. We can conclude from this that every character of @
has its range contained in the same group Z(p*). Finally, if @ is a general
group satisfying (a), we conclude from the preceding discussion that each
character of the totally disconnected group G/C has range contained in
a fixed subgroup Z(p™) of T, so that @/C is a topological p-group, by [3],
3.17. Hence (a)= (b), which completes the proof.

CoROLLARY 1.1. Let @ be a totally disconnected LCA group. The following
are equivalent:

(a) The ranges of the continuous characters of G are totally ordered
by inclusion.

(b) @ is a topological p-group.

2. Open characters. We might ask whether Theorem 1.1 has a com-
panion at the other end of the spectrum, namely, is it true that @ is totally
disconnected if and only if no y in & is surjective? It is easy to see that
this is false, as an examination of the group B with the discrete topology
readily shows. With sufficient restrictions we could obtain a statement
of the desired sort. For example, it is easy to see that if ¢ is ¢-compact,
then G is totally disconnected if and only if no y in @ is surjective. Simil-
arly, an arbitrary LCA group G is totally disconnected if and only if there
are sufficiently many non-surjective y in & to separate the points of G-

To proceed in a different way, however, let us seek a mapping
property P of the non-trivial characters of a group @ such that & is con-
nected if and only if all y = 1 in & have property P, while @ is totally
disconnected if and only if no y in @ has property P. To see how to select
P let us begin with the following result.

ProrosrrioN 2.1. Let @ be an LCA group. Then G is connected if and
only if each y #1 in G is an open mapping.

Proof. If @ is connected, it is o-compact [2], 9.14. It then follows
from [2], 5.29, that each y = 1 in &, being surjective, must be an open
mapping. Conversely, since an open character must be surjective,
a group G all of whose continuous eharacters are open must be connected,
by Theorem 1.1. .

‘We are now in a position to prove that an LCA group is totally
disconnected if and only if none of its continuous characters is an open
mapping. This will follow as a corollary of the following more general result.

THEOREM 2.1. Lef G be LOA and let y be in &. The following are
equivalent:

(a) y i an open mapping. )

(b) ¥(C) = {1}, where C is the identity component of G.

(c) y is not @ compact element of G.
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Proof. Assume (a). It then follows from [2], 7. 12, that ¢(0) is dense
in the identity component of T, so that y(0) # {1}. Hence (a) = (b)
If (b) holds, then y, restricted to O, is an open mapping from ¢ onto T
by Proposition 2.1. It follows from this that y is an open mapping from G
onto T, so that (b) = (a). The equivalence (b) <= (c) is shown in [2],
24.17, thus completing the proof.

We can now state the companion to Proposition 2.1. This is a direct
consequence of the theorem. )

COROLLARY 2.1. Let @ be LCA. Then G is totally disconnected if and
only if no y in @ is an open mapping.

CoROLLARY 2.2. Let @ be LCA. Then G is not totally disconnected if
and only if there are sufficiently many open characters in G to separate
the points of G.

Proof. If & has any open characters at all, it follows from Corol-
lary 2.1 that @ is not totally disconnected. Conversely, if & is not totally
disconnected, & contains non-compact elements. It is not hard to see
that every element of @ can be written as a product of non-compact
elements of @ Hence every y in & can be written as the product of open
characters, whence it follows that the reare sufficiently many open charac-
ters of & to separate the points of G.

We conclude this section with another corollary of The01em 2.1
which we shall use in the next section.

COROLLARY 2.3. Let G be LCA and let v be in G. Then y is open if and
only if kery is not open in G.

Proof. If y is an open mapping, then it is obvious that kery is not
open in @. Conversely, if kery is not open in @, then its annihilator in
@ is not compact. But this annihilator is just the closed monothetic sub-
group of & generated by y, so that y is not a compact element of . It
follows from Theorem 2.1 that y is an open mapping.

3. Non-surjective characters. In this section we consider the following
question: When does the set of non-surjective characters y in & form
a subgroup of G2 If G is o-compact, we answer the question affirmatively,
since in that case every non-surjective character has countable range.
But the answer is in general negative. In fact, it is not hard to see that
the discrete circle possesses mon-surjective characters whose product is
surjective. We shall answer the question in the following way.

TrrorEM 3.1. Let & be LCA and let N denote the set of non-surjective y
in @ The Sfollowing are equivalent:

(a) N is a subgroup of G.

(b} N is a closed subgroup of @.

(c) Every surjective y in & is open.
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Proof. Assume (a). Suppose that some surjective y in @ is not open.
Then kery is open in @ by Corollary 2.3, so that @/kery is topologically
isomorphic with the discrete circle. Since, as we have mentioned, the
discrete circle possesses non-surjective characters whose product is sur-
jective, we can find non-surjective characters of @ whose product is
surjective, which violates (a). Thus (a) = (c). From (c¢) we conclude that &
consists precisely of the non-open characters of @, that is, N consists
of the compact elements of @. Since this set is a closed subgroup of &
[2], 9.10, we conclude that (c) = (b). Since it is obvious that (b) = (a) )
the proof is complete.
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