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Concerning certain minimal cover refineable spaces (1)
by '
U. J. Christian (Gaithersburg)

The concept of minimal cover refineable spaces was first used by
R. Arens and J. Dugundji. This paper extends their results to show both
additional properties which imply minimal cover refineability and addi-
tional properties which are implied by minimal cover refineability.

In the course of the research for this paper, some properties of dense
subspaces of certain minimal cover refineable spaces were noted. In
particular, it was noted that every Nagata space containg a dense metriz-
able subspace.

1. Introduction. The property of minimal cover refineability will be
seen to be a very weak property — one of the basic topological building
blocks. It is hoped that this paper will encourage other mathematicians
to attempt to link this basic concept with additional basic concepts in
new and significant ways.

This paper is divided into three sections. This firgt section will define
minimal cover refineability and identify some spaces which possess this
property. A space which does not possess this property is also described.

~ Section 2 is primarily concerned with dense subspaces of certain
minimal covel neable spaces, and, in particular, with dense metrizable
subspaces. Of ticular interest is the result that each Nagata space
contains a de metrizable subspace. This section also discusses a re-
lation betwee.. w.o weight of a space and Souslin’s number,

Section 3 gives properties that force subsets of minimal cover
refineable spaces to be minimal cover refineable.

In this paper, “space” means “a T, topological space”, the word
“cover” means “open cover,” and a refinement is assumed to be composed
of the same kind of elements (i.e., open or closed) and cover the same
set as the collection which is refined.

(*) Thie paper is based upon the author’s doctoral dissertation at the University
of Houston, written under the direction of D. R. Traylor.
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The statement that K is a minimal cover of the point set M meang
that K is an open cover of M and if ¢ is an element of K, then {h: h e
and h # ¢} is not a cover of M.

The statement that a point set M is minimal cover refineable means
that if K is an open cover of M, then there is a refinement of K which
is 2 minimal cover of M. )

Examples of minimal cover 1‘efineable spaces are metacompact
spaces (as proved by Arens and Dugundji [4]) and F,-screenable spaces
(ct [35)). , .

TaeoREM 1.1. In an ¥,-compact space, the following are equivalent:
(a) Lindeldf, (b) metalindeldf, (c) paralindeldf, (4) hypolindeldf, (e) screen-
able, (£) metacompact, (g) F,-screenable, (h) paracompact, (i) hypocompact,
(3) o-(any prior), (k) minimal cover refineable.

G. Aquaro has shown that (b) implies (a) [3]. (His argument seems
unduly tedious. It need only be noted that if ¢'is an open cover of a gpace 8,
then the collection {gy: pe8,gp= (J{h: heC and h~p = @}} has
a minimal subeover.) By Morita [30], (a) implies (i). The balance of the
argument should be obvious.

By Theorem 1.1, the countable ordinals with the order topology,
commonly denoted by [0, Q) is an example of a space which is not minimal
cover refineable. )

2. Separability and related concepts. This section will be concerned
with dense subsets of semi-stratifiable spaces and, in particular, with
dense metrizable subspaces.

Several papers of the last decade have dealt with dense metrizable
subspaces of Moore spaces. In [36], J. N. Younglove established that
each complete Moore space containg a dense metrizable subspace. B. Fitz-
patrick showed a Moore space that has no dense metrizable subspace
in [14] and gave additional conditions for dense metrizable subspaces
of Moore spaces. In [15], B. Fitzpatrick proved that a mnormal Moore
space which is not a counterexample of type D has a dense metrizable
subspace. In [32], C. W. Proctor showed that if & normal locally connected
Moore space has a base with the property that the space is collectionwise
normal with respect to each discrete subset that is contained in the
boundary of some base element, then the space contains a dense metriz-
able subspace.

The research into the conditions in which a semi-stratifiable space
has a dense metrizable subspace was undertaken at the suggestion of
D. R. Traylor. '
. Two papers that have theorems dealing with dense subspaces are in
the bibliography [2], [10].

The statement that a space S is semi-stratifiable means that there
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is a function @ from the product of the collection of closed sets of § with
the natural numbers into the collection of open sets in 8 such that (i)
ﬁ(;(A_,n)=A for each closed set 4 and (i) G(A;,n) C G4y, n)

i=1
whenever 4, C 4,.

A number of papers have dealt with stratifiable and semi-
stratifiable spaces. Material on these spaces may be found in [7], [9], [11],
[12], [171, [21], [31]. Arhangel'ski calls stratifiable spaces laced and
discusses them in [5].

The statement that a cardinal m is §,-regular means that the cardinal
is not the sum of countably many cardinals, each less than m.

The following definitions were taken from [23]:

If m is a cardinal, the point set N is said to be strongly m-separable
provided that there exists an H such that (1) HC N C H and (2) either
H is countable or its cardinality is less than m.

If m is the cardinality of & point set ¥ and WV is strongly m-separable,
then N is said fio be semi-separable.

‘The following theorem was proved after discovering that semi-
stratifiable spaces are minimal cover refineable. The argument used
illustrates how a minimal cover refinement of an open cover for a semi-
stratifiable space was built.

TarorEM 2.1. Every semi-stratifiable space S contains a dense
o-discrete point set. Further, if m is the cardinality of 8, then if (1) m
is an so-regular cardinal and 8 4s m-compact, (2) n<m and 8 is
n-compact, or (3) m < %y, then 8 is semi-separable and hereditarily sirongly
m-separable.

Proof. Let & Te a function from the product of the collection of
closed subsets of § with the natural numbers into the collection of open

sets in § such that (i) (M) G(4, n) = 4 for each closed set 4; (i) G(4,,n)

n=1
C G(4.,n) whenever A,C . A4,. Well-order the points of §. For each
integer m > 0, do the following: For each point p of S, there is an integer

1>0 such that p ¢ G(S\@(p, m), I). Associate I with p.

For cach integer ¢ > 0, let W; = {p: ¢ is associated with p}.

Sinece 8 is well-ordered, there is a first element in the subcollection Wy,
say Py (assuming, of course, that W, is not empty). Let 0Oy
= @GPy, m).

Let Py, be the first point of the well-ordered collection W, which
is not a point of Oy,. Let O = G(Pyy, m) ~G(N\Oy, 1).

After each initial segment, let P,, be the first point of the well-
ordered collection W, which is not a point of any of the O already

constructed. Let Oy, = G(Py,, m) ~ G(S\|J Oy, 1).

f<a
15*
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For each integer ¢ > 1, let P; be the first point of the well-ordereq
collection W; which was not covered by any of the Oy, j < i, already
i
constructed. Let O, = G(P,, m) ~ pl G(S\hké/liohﬂ7 )

8

After each initial segment, let P, be the first point of the well-ordered
collection W; which is not a point of any of the Oy, J < 4, already con-
structed. Let )

T
O =GPy, m) ) GO\( U Oh/s v Oiﬁ):j) .
=1 h;i f<a )

Let Qn = {Py, Pisy Py, wry Pigy ooy Py, ..} Note that @y, is discrete
since {Oy, Oty Oz oory O1gy ooy Oy, o} covers S.

Let p « S and R any open set containing p. There is an integer I > 0
such that p ¢ G(S\R, I). Therefore, R ~Q; # @. Hence, the collection

{Q:} is the dense o-discrete point set required.

The collection {Q} demonstrates that if the hypothesis is met, § is
strongly m-separable and, thus, semi-separable. It will now be shown that
8 is hereditarily strongly m-separable. Let N be any subset of §. Use
the construction above to generate Qu(N)= {Pu(dN), Pu(N), Py(N),..
vy Pro(d)y oy Py(W), ...} for each integer m > 0 except that the points
of N are well-ordered instead of § and, so, the elements of {W} contain
only points of N. Note that for each integer m > 0, the collection Qn(V)
can be decomposed into countably many discrete - collections; i.e.,
{Puld), Pio(N), Pyy(N), ..., Pig(N), b APul(N), Pu(N), ...}, {Pa(I),
Pyp(N), ..}, ... Thus N is strongly 1 -separable.

An example of a space which is compact but not semi-separable is
the space [0, Q). Separability does not imply the property of hereditary

separability nor ;- compactness even in a Moore space; McAuley provided
an example of such a space [27].

A space is collectionwise Hausdorff it every discrete subset can he

covered by a collection of disjoint open sets such that no two points of
the discrete subset are contained in an element of the collection.

THEOREM 2.2. Bvery collectionmwise Hausdorff normal semi-stratifiable
space contains a dense paracompact subspace.

Proof. Let § be a space satisfying the hypothesis and let {Q.} be
a countahle collection of discrete point sets such that U {9} = 8. For
each integer i >0, let O; be a collection of disjoint open sets which
covers ?i and refines €, an arbitrary open cover of U {Q4}. Let H; and K,
be disjoint open sets confaining Q; and S\0}, respectively. Let O
=1{g: g'cO0¢ and g =g’ ~H;}. The collection {03} contains countably

many diserete collections of open sets. This demonstrates that U {@4} is
strongly sereenable and, thus, paracompact.
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The statement that a space S is basically metacompact means that

. if B is a basis for 8, then every open cover of § has a refinement consisting

of elements of B which is point-finite. The statement that a space is
basically minimal cover refineable means that if B is a basis for the space,
then every open cover of the space has a refinement consisting of ele-
ments of B which is a minimal cover of the space.

The hypothesis of the following theorem is almost strong enough to
give a dense metrizable subspace. )

THROREM 2.3. Bvery metacompact semi-metrizable space contains a dense

“basically metacompact (and, thus, basically minimal cover refineable) sub-

space with a point-regular basis.

Proof. Let 8 be a space satisfying the hypothesis. Since a semi-
metrizable space is semi-stratifiable, there is a countable collection,
{@4}, of discrete point sets such that | ) {@:} = 8. For each integer i >,
let O; be a point-finite open cover of @; which refines the collection
{gp: D €Q¢ and gy = S\(Qi\pi)}{ Let O; = 0,. For each integer i > 1, let

0;={g: 9’ €0s; and g =g\ @s}. Clearly, {g: i > 0,g ¢ 0} is a point-
j=1

7
finite cover of |J{@:}. Every subcollection of {g: i> 0,9’ ¢ 0}, p @i,
and p egC g’} covering | J{@:} containg a point-finite cover of | J {Qs}.
Then |J{@ is basically metacompact. By Arens and Dugundji [4],
U {@:} is basically minimal cover refineable.

It will now be shown that || {Q:} has a point-regular basis. Since § is

first countable, let {h,:} be a countable basis for each point p of 8. Let
7

Oyy=1g:9' <00 <g’ ~Qss g =g ~[) hys}. For each point p of U {Qs;

there is an integer J >0, such that if j >J, only one element of the

collection {g: ©> 0,9 ¢Oj} contaings p. Therefore, the - collection

{9: 3,5 >0, g€ 03} is a point-regular basis for |J {@:}

The proof of the following theorem is a combination of the techniques
developed to prove Theorems 2.2 and 2.3 and is not shown since the
argument is so similar to that used for those two theorems.

TaEOREM 2.4. Bvery collectionwise Hausdorff semi-metrizable space
contains a dense basically metacompact (and, thus, basically minimal cover
refineable) subspace with a point-regular basis.

The following theorem has been argued in the proof for Theorems 2.3

- and 2.4,

TrEoREM 2.5. If a semi-stratifiable space is either collectionwise Haus-
dorff or metacompact, it contains a dense basically metacompact (and, thus,
basically minimal cover refineable) subspace.

THEOREM 2.6. Bvery collectionwise Hausdorff normal semi-metrizable
Space contains a dense metrizable subspace.
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Proof. By the arguments used to establish Theorems 2.2 angd 2.4,

the space contains a dense paracompact subspace with a Point-regulay -

basis. By Alexandroff [1], this dense subspace is metrizable.

Since a Nagata space is a first countable stratifiable space [9], the
following theorem is true: .

TeEOREM 2.7. Bvery Nagata space conlains o dense metrizable
subspace.

A definition of weight may be found in [13]; a definition for density
(or character density) may be found in [8].

The Souslin number of a space is the upper bound of the cardinal
numbers m such that there exists in the space a collection of m not empty
disjoint open subsets.

The following theorem may prove useful in investigating the weight
of a space. The theorem is an application of Theorem 2.1.

TI-EE}ORE.]&I. 2.8. If m is an N,-regular cardinal and m i the density of
a semi-stratifioble space S, then there is a discrete point set in § with
cordinality m. .

The reader should convince himself that the following theorem is true:

' THeEOREM 2.9. Every hereditarily separable hereditarily minimal cover
refineable space is & hereditary Lindelof space.

COROLLA.R‘Y 2.10. A necessary and sufficient condition that o hereditarily
sep'amble manimal - cover refineable space be hereditarily minimal cover
refineable is that the space be perfectly normal.

. TH_?EOREM 2.11. For every collectionwise Hausdorff Moore space, the
weight is equal to the Souslin number. ) ’

- Proof. Let § be a Moore space, {8} a sequence which is g development
for 8, anfl B a collection of m many open sets which is a basis for S
yhere m is the weight of the space. Only the case where m > , is con-’
sldex.'ef.l. For each integer i > 0, let G be a refinement of a;v?vhich is
a mmal cover of S and let P; be a collection containing one and only
one Pom.t from each element of @ which is in no other element of &,
.Smee {G}} is also a development of 8, the cardinality of {g: { > 0, ¢ ¢ Gt}
is n(zt.less than m. If n < m, then for some integer 7> 0, the earélinalitlx*
f’f @7 is not less than . Let H, be a collection of disjoint ’open sets cover-
1sng Sll';l such that no t.slement of H; contains two points of P;. Then 13ile
: IS: Wl;i gn]:;m:fer;g .of 8 is not less than the cardinality of H, nor more than

An example of a space which contai r etri
is not minimal cover refineable ig prox:irclll:ci gvdf(l)l S(;Q)mbmle
examples of stratifiable Spaces which are I;Ot ;
stratifiable spaces are Paracompact.

subspace but
. Following are two
semi-metric. Note that
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Tet § consist of one copy of the plane for each countable ordinal.
1f P, and P, are two of these planes in 8, let P, ~ P;= (0, 0). Let basis
elements for a point p of § distinet from (0, 0) be any open set in the
plane conbaining p which does not intersect (0, 0). For each countable
ordinal o and each integer ¢ > 0, let a basis element for the point (0, 0)
consist of the point (0, 0) plus the points in open disks of radius 1/ with
center at (0, 0) in each plane associated with an ordinal greater than a.

The previous example suggested the following one to D. R. Traylor.
Let S be the points of a simple sequence of copies of the plane, {P;}. For
each pair of integers 4,j >0, i 4, let P; ~nP; = (0,0). For each in-
teger ¢ > 0, let basis elements for P; be any open set in the plane that
does not intersect the point (0, 0). Let each basis element for the point
(0, 0) be the union of an open disk of the plane P; with radius 1/J; and
center at (0, 0) for each integer ¢ > 0 where J; is a positive integer.

McAuley [27] gives an example of a stratifiable semi-metric space
which is not developable.

3. Minimal cover refineable subsets. This section will be concerned
with subsets of minimal cover refineable spaces. The section begins with
the following obvious theorem:

TaeorREM 3.1. Every closed subset of a metacompact or F,-screenable
space is minimal cover refineable.

The statement that a collection B of closed subsets of a space S
dominates S means that B covers § and if A C8 and A has a closed infer-
section with every element of some subeollection of B which covers 4,
then 4 is closed.

The concept of a dominating collection is due to Michael [28].

TurorEM 3.2, In order for every closed subset of a space to be minimal
cover refineable, it is necessary and sufficient that the space be dominated by
a collection of subsels such that every proper closed subset of an element
of the collection is minimal cover refineable.

Proof. For the reason noted by Michael [28], necessity is obvious.
Let @ be a collection of -subsets which dominates a space 8 such that
every proper closed subset of an element of the collection is minimal
cover refineable. Let ¢’ be any open cover of §. Let g be an element of &
and ¢ an element of ¢ which covers a point of g. Then g\¢ is minimal
cover refineable, so ¢ is minimal cover refineable. Let M be any closed
subset of 8. Well-order the collection {g: ¢’ ¢ @ and g= g "~ M} and
call it @& Let ¢ be any open cover of M. Let 0; be a refinement of ¢ which
is a minimal cover of g, the first element of G'. Let C, be a refinement
of {¢: ¢’ ¢ 0 and ¢ = ¢'\¢,} which is a minimal cover of g\C} where g, is
the first element of @ not covered by O;. After each initial segment,
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let g, be the first element of & not covered by | J 0 already constructed,
f<a
Let C, be a refinement of {¢: ¢’ ¢ C and ¢ = ¢'\ | g5} which is a minimg]
B<a
cover of g\ Cj. Then {¢: a >0 and ceC,} is a minimal cover of I,
f<a

COROLLARY 3.3. Hvery open subsel of a space which has the property
that every closed subset is @5 and minimal cover refineable is minimal cover
refineable.

TuEOREM 3.4. Every open subset of a perfectly normal minimal cover
refineable space is minimal cover refineable.

Proof. The following argument seems unnecessarily complicated.
However, no simplification is apparent. Let R be a proper open subset
of §, a perfectly normal minimal cover refineable space, and ¢ any open
cover of E. Since § is perfectly normal, let {@;} be a sequence of open

leo o __
sets such that \E= () Gi=()6;. Let ('={g: ¢’ e 0 and g = g" R},
i =1

=1 i

‘ Lgt_01= {9: g 0" or g= G;}. Let C; be a refinement of ¢, which
is a @mmal cover of 8. Let 0;' = {g: g ¢ 0] and ¢ ¢ &}. Let M, be the
collection of all points of (0;')* which are not in two elements of (.

szt C,= {g: g'eC and g= (g’ "GN\IMy, g=G,, or g= (C))*.
Let O, be & refinement of C, which is a minimal cover of §. Let (7
= {g:, ge C, and g ¢ (G, v (01)*)}. Let M, be the collection of all points
of (C;')" which are not in two elements of C,.

For each integer i > 2, let

., ; , i—1 i—1 =1
Ci={g" ¢ <C and g=(g f\jﬂ ENU My, g= G, or g= (J(0))*}.
=1 j=1 7=1

Let ('} be a refinement of ¢; which is a minimal cover of S. Let

. . 1
Ci={g: geC; and g (G;u U (0}
iz1

Let M be the collection of all points of (C7Y* which are not in two ele-

ments of .
. ’ e *®
Let Co={g: i>0 ¢’ 0} and 9=4¢'\ U M;}. By its construction,
G, is a minimal cover of R. e
Since the properties named are hereditary i i i s
7 Y 1o a space in which closed
sets are @, the following theorem ig true: F
' THEOREM 3.5. If a space has the
either metacompact or F,-sereenable,
caver refineable.
An example of a paracomp
cover refineable is given by [o,

Pproperty that closed sets are G, and is
then the space is hereditarily minimal

act space which is not hereditarily minimal
£]. The following is an example of a minimal
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cover refineable space which contains a closed set which is not minimal
cover refineable. It is based on a suggestion by C. W. Proctor.

Let 7 be the points of [0, Q). For each point p of [0, Q), let T, be
an independent copy of [0, Q) and let T, have the order topology. Let
S={p:pel or geT and p e T;}. For each point p of T, let an open
set containing p be the union of all the points between ¢ and » where
g;reTand g<p<r (for 0, use [0, 7)) plus the union of all the points.
greater than some point of T for each s ¢ T such that g < s < r.
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On Helling cardinals ()
by
A. Wojciechowska (Wroclaw)

*§ 0. Introduction. The cardinal number » > o, is called a Helling
cardinal if every relational structure with a =x-like ordering has an
elementary substructure with a 1-like ordering for an arbitrary w, < 1 < .
(If the language-L of the structure under consideration is uncountable,
then we can modify this notion, requiring 2 > |L|.)

The existence of Helling cardinals is incompatible with the Axiom
of Constructibility: it is easy to see that if there exists a Helling cardinal
then P(w,) ~ L is countable. By the method of Silver [9] one can obtain
the existence of O provided that there exists a Helling cardinal.

In 1966 Helling [2] proved that every measurable cardinal is a Helling
cardinal, and Silver [8] hag shown the same for Ramsey cardinals. These
results seem to imply that Helling cardinals are very large. In Section 2
there is given a sufficient condition for a cardinal to be a Helling cardinal.
This condition is satistied by — among others — real-valued measurable
cardinals. Prikry’s result [6] entails that cardinals fulfilling our condition
may be less than the continuum:

From the example of Fuhrken [1] we know that every Helling
cardinal » must be regular. If there is a limit (strongly limit) cardinal
wy< A< 2, then » is weakly (strongly) inaccessible — see Keisler [3].
From these remarks it is clear that every Helling cardinal which is larger
than o, must be weakly inaccessible. The question arises: can w, be
a Helling cardinal? A partial solution of this is given in Section 3.

In Section 4 we give an application of previous results to a language
with a generalized quantifier (2).

(*) The results of this paper ave contained in the doctoral dissertation prepared
by the authoress under the guidance of Professor (. Ryll-Nardzewski at Wroclaw
University. See also [11]. ‘

(*) The Corollary from [11] is not stated here. I am indebted to Professor A. Mo-'
sto wski, who pointed out a gap in that proof. If this theorem is still true, the proot
will be published.
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