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On Helling cardinals ()
by
A. Wojciechowska (Wroclaw)

*§ 0. Introduction. The cardinal number » > o, is called a Helling
cardinal if every relational structure with a =x-like ordering has an
elementary substructure with a 1-like ordering for an arbitrary w, < 1 < .
(If the language-L of the structure under consideration is uncountable,
then we can modify this notion, requiring 2 > |L|.)

The existence of Helling cardinals is incompatible with the Axiom
of Constructibility: it is easy to see that if there exists a Helling cardinal
then P(w,) ~ L is countable. By the method of Silver [9] one can obtain
the existence of O provided that there exists a Helling cardinal.

In 1966 Helling [2] proved that every measurable cardinal is a Helling
cardinal, and Silver [8] hag shown the same for Ramsey cardinals. These
results seem to imply that Helling cardinals are very large. In Section 2
there is given a sufficient condition for a cardinal to be a Helling cardinal.
This condition is satistied by — among others — real-valued measurable
cardinals. Prikry’s result [6] entails that cardinals fulfilling our condition
may be less than the continuum:

From the example of Fuhrken [1] we know that every Helling
cardinal » must be regular. If there is a limit (strongly limit) cardinal
wy< A< 2, then » is weakly (strongly) inaccessible — see Keisler [3].
From these remarks it is clear that every Helling cardinal which is larger
than o, must be weakly inaccessible. The question arises: can w, be
a Helling cardinal? A partial solution of this is given in Section 3.

In Section 4 we give an application of previous results to a language
with a generalized quantifier (2).

(*) The results of this paper ave contained in the doctoral dissertation prepared
by the authoress under the guidance of Professor (. Ryll-Nardzewski at Wroclaw
University. See also [11]. ‘

(*) The Corollary from [11] is not stated here. I am indebted to Professor A. Mo-'
sto wski, who pointed out a gap in that proof. If this theorem is still true, the proot
will be published.
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§ 1. Preliminaries. The ordinal « is identified with the set of ap
ordinals less than o, i.e. a= {£: &< a}. Cardinaly are initial ordinals,
For a cardinal number », by [#]" we denote the set of all 7 -element gup-
sets of x, and by [»]<“ the set of all finite subset of .

f* X denotes the image of a set X by a function f- By | X| we denote
the cardinality of X. .

An ideal ¥ of subsets of X iy said to be wy -saturated if there ig no
family of e, disjoint subsets of X, not belonging to ¥.

We say that a cardinal number x» has the property i(x, w,) if % carrieg
an o, -saturated «-complete non-trivial ideal. (An ideal is non-trivial i
it is proper and containg all points.)

Levma 1.1. A eardinal number = has the property i(x, w,) iff it satisfies
the following condition (%):

(X)  There is a x-complete, non-trivial filter & on » such that Jor each
cardinal A<« and each function f: []°*—>2 there is o set U eg

such that |f x [U]<°] < w,.
The proof that i(x, w,) implies (%) is due to Solovay [10], Theorem 5.

Conversely, if » satisfies (%), then the family of complements of sets in &
establishes the required ideal.

Remarks. If in (%) we required |U|= » instead of Ue&, then .

we would obtain the condition of Rowbottom [7]- If we required F to De
uniform (not necessarily #-complete), then (%) would be transformed into
the condition (x, R(col)) in the paper of Prikry [6]. Neither Rowbottom’s
nor Prikry’s condition implies the regularity of », but the condition
(%) does. .
An ordering < of a set 4 ig called »-lik
segment of < is of the power less than s
For the cardinal numbers %,
structure with a »-like ordering
is J-like in the same ordering.
We say that zisa H elling cardinal it

We are going to show thas if
cardinal.

§ 2. The main theorem. T.et

¢ if |4] = » and every initial

A we write x> 1 if every relational
has an elementary substructure which

%= A holds for every wy< A< x.
# sabisties-4(x, w,) then it is a Helling

L De an arbitrary elementary language
with & binary predicate <. By L, we denote the language I with an
additional quantifier Q, (“there is at least o of ...”). Let 1 be a cardinal.
L(i) denotes the language I with an added sequence of congtants
{es: &£ <2} and a unary relation C.

Subsets of the sets of constants are treated as sequences with the
ordering given by the indices. Tf X,y are two sequences of constants,

We say that they are congruent up to the level B<AHE xn {e: &< u}
=yo{es &< g} (notation: xl|y(u)).
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We use the following classification of the terms of L(4): a term of L
has level zero; otherwise a term ¢ of L(1) has level a1 (notation: I(7)
= g-1), if '« is the largest index & such that €; oceurs in 7. ;

In L, (4) — just as Helling and Keisler (1) have done — we introduce
a theory T'(1) with axioms of the following forms:

L) “< is a linear ordering”,

(2) ‘e < e, for E< <,

(3) “C(e)” for &< 4,

(4) “there emist at most countably many values of 7(x') where 7(x') < 7,
and x'|x (1(71))", for each n-placed term v and each constant term 7y of L(2)
and each n-element sequence x = {&y, ..., ;> _

The scheme (4) may be formally written in L, () as follows:

(4) Vg, .., wn(()‘(wl)/\.../\ C ()
- (_|Qw1yﬁIm{, veey T C(@) A A C ) AV2(C(R) A2 < C1een
(= B2 = DA A= Tuor = T)AY = (@, ., TIAY < rl)).

Lemma 2.1, Let w satisfy the condition i(s, w;). Let U = (A,<,..>
be a »-like model (of a theory in L). Then there are o sequence {2 & < 2}
of elements of A and o subset C C A such that th.fa expansion q}t’ ={A,<, ..
e 0y 22, of W ds @ model of T(x), with O = C and € = z,.

Proof. We introduce an additional relation - which well-orders A
in the type x. Let & be a filter of subsets of 4 satisfying (%) in Lemma 1.1. -
By Tm(f, n) we denote the set of all n-placed terms of level §.

We show that there are a decreasing sequence of sets {¥X,: £ < x} CF
and a strictly increasing (in the sense of <) sequence {z: £<»}CA
such that: ! ‘

(i) #; is the minimal element in the semnse of < in X,

(i) 2, K@, for v e X,,, .

(iii) in the structure Wy = (A, <, ..., {8 4 < &}, 2>, hold the awioms
(1)~3) of T(&), _

(iv) if v is an n-placed term, v, — a constant term and 1(z) < U(z) < &
then for x running over [Xyup]® there are at most countably many values
of 7(x) with Wy 1= 7(x) < 7.

The proof of this is by induction on & < x.

Step 1. £ = 0. Since |Tm (0, 0)| < x» and » is regular, there is a g, ¢ 4
such that +¥ < y, for every term v e Tm(0, 0). _ i

For an arbitrary n < wy, veTm(0,n), we define a funfztlon fo [4]
>{y: ¥ < yo} putting f.(a) = +(a) it 7%(a) < y, and f.(a) = min{y: ¥ < Yo}
(in the sense of <2) otherwise. '

(*) A similar method was used firstly by Silver in [8].
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Since [{y: ¥ < 9o}l < %, by (%) for every f, there is a set U, e such
that |f, « [U]" < o, We define Xy= () (| U,. Then X,¢F anq

n<ag 7eTm(0,n)
for an arbitrary term v of level zero there are at most countably many
values of z(a) <y, in A (where a is a sequence of elements of X, of an
appropriate length).
Then we set 2, = minX, in the sense of <.
Now we assume that for n < &, X, and &, have been defined.
Step 2. & is a limit ordinal. We set X, = (| X, and 2, = min X,

. n<é
in the sense of <.

The satisfaction of (iv) results from the fact that if I(v) < & then
1(7) < &. Conditions (i)~(iii) are easy to verify.

Step 3. £=7n+1. As in Step 1, we choose ¥, ¢ 4 such that % < Ye
for every term 7 e Tm(&, 0). For n < wy, v ¢ Tm (&, n) we define a function
fo AT —>{y: y<w;} such that f(a) =+Na) i Ma) <y, and f(a
=min{y: y <y} (in the sense of <) otherwise.

Then' there is a set T, eF such that |f,«[U.]* < w,. Let Z,
= (1" (1 U, Then Z <7 and for every term = of level <& there are

n<wo zeTm(n)
at most countably many values of 7(a) < Ye for a C Z,.

Weset X=X, n(Z;—{y: 9y < #,}); then X, e F Dbecause Hy:y< 2}
< # Pub 2;=minX, in the sense of <. Of covrse, conditions (i)—(izr)
are then satisfied.

Now we define ¢'= {¢: £ < x}. The satisfaction of axioms (1)~(3)
in % results immediately from (i)-(iv) holding for every & < x.

It remains to show that axiom (4) holds in 9’. For this purpose we
take v — an n-placed term, and 7, — a constant term of L(2x). Put
E=1(n) < :

If I(7) > & then we substitute successive free variables which have
not been used for all constants with indices >¢& in 7. Thus we obtain
& ferm <’ of n-k places (for some %) with I(7') < & If x is an n-tuple
f)f z.’s, then we extend it to an (n+ k)-tuple x’, adding the constants with
indices >£. Of course, if x|ly(£), then xlly'(¢) and we choose a sequence
Yx(£) such that «'(y) = z(x).

We are going to show that there are at mogh countably many values
of 7(y') < 7, such that yjix'(z). '

In order to do this, define »

= y, n {2 : < 5 = P 1 —
n{zn: 7= £}. Then T(y) = (VI(JH)) - 1 } = x; and Yo=Yy N

! (»,) and y,C X, Applying (iv) to the
term rC= 7' (y) = 7v'(xy), we know that substituting an arbitrary se-
{luenﬁ}i_ X, for y, we can obtain st most countably many values of "
ess than fl' .So e\.*er.y Sequence pillx(£) has only countably many ex-
pansions y’ with @s{nncb values of 7(y) < 7,. Thus there are at most
cotmtably many distinet values of z(p) for yllx(8).
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The case where I(7) < & follows ilnmedia,teiy from (iv).

LevMA 2.2. If A can be expanded to & model of T(n), wy<i<
then W has an A-like elementary substructure,

Proof. Leb {2}, be @& realization in U of constants in T'(x) and
9 = (U, 2¢)ecn- Denote by T the elementary theory of the structure 91’
with all Skolem functors and put B = {z¥: 7 is a constant term of T
and 1(z) < 4}, Of course we have |B| = A, and by the definition of T, the
substructure of A’ with the universe B is an elementary substructure of 9.

To show that (B, < > is A-like one needs to examine the power of
the set By = {y e B: y < «} for an arbitrary z ¢ B. Let 7, be a term of
level <A such that z =", We define a function f: By~ | J Tm(0, n)x

n<a

X {#st £ < U(1y)}. For y € By leb f(y) be a pair <z, a*> where or is a term
of level zero, a is a sequence of 2’s of an appropriate length, % (a) =y
and " =an{eg: & <l(z)}. Of conrse, the sets {J Tm(0,n) and

n<wy

{s: & <l(7,)} have a cardinality less than i. By axiom (4) of T(x) the
counterimage of an arbitrary pair (7, ") is at most countable, and so
Bzl < wp (7)) < 4.
THEOREM 2.3. If » has the property i(x, w,), then x is a Helling cardinal.
Proof. By Lemmas 2.1 and 2.2.

§ 3. Concerning two-cardinal models. Before we state the next results,
we introduce some auxiliary notions. )

DerINITION. A relational structure A= <{4,U,..> is called a two-
cardinal model of type (x, Ay if », A are cardinals, UC 4, |4|= «, and
|U| = 2. 'We write {x, A)—>> (u,»> if every two-cardinal model of type
{x, 1y has an elementary substructure of type <u, »).

Proposition 3.1 below gives a condition for w, to be a Helling cardinal
in the terms of two-cardinal models.

PrROPOSITION 3.1. For a natural number m > 1, the cardinal wy is
o Helling cardinal iff the following conditions are satisfied:

Wy Wpy) >3 {1y @0

Wy Wpey) >0z, 01,

(%%)

{0y g Oy} >><{ Wy Ops) -

Proof. (Outline) Let A= <4,U,<,f,...>, where UC 4, |4]= p»
[Ul=»9, f: 4254, < orders A, and for # e A the function f(x,-) is an
embedding of {y € A: y < #} into U. Then there is an elementary sentence o

which is satisfied in such a structurve U iff (for u % 9) p= ",
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Suppose the conditions (¥3%) hold. If {(4,<, ...)is an wn-like structure,
‘then, choosing a U C A of power w,,_, and f as desired, we obtain a model %
of ¢. By (%%) this model has an elementary submodel of type <wy, @pgd
for every 0 <k < m. The order < in this submodel is wy-like, which ig
-ensured by ¢ being satisfied in if.

Conversely, let ¢(4,U,..> be a model of type {w,, w,_,>, w, being
a Helling cardinal. Then <4, <, ...> i8 an w,-like model, < being a well-
ordering of A in the type ws, and a function f may be defined such that
A= <A, U, <,f,..> is a model of ¢. Now, A has an elementary wy-like
submodel for 0 <k < n. By the properties of o this submodel is of the
“tyve Loy, w1

COROLLARY- 3.2. The sentence “w, is a Helling cardinal” is consistens
with the Zermelo—Fraenkel Set Theory under the assumption that theye is
a Ramsey cardinal. In symbols:

Con(ZFC--Hx Ramsey)->Con(ZFC+- w, is Helling) .

Proof. By Proposition 3.1, w, is a Helling cardinal iff (w,,w,)
~+{wy, 0oy holds. This condition is known an Chang’s Conjecture. Silver
in [9] has shown the consistency of Chang’s Conjecture provided that
a Ramsey cardinal exists.

Remarks. Let us recall that » iy a Rowbottom cardinal (see [81)

Cif VA << %[ (e, AD>> (2, o] From this definition it follows thatb formally
Rowbottom cardinals play a similar role in the theory of two-cardinal
models to that played by Helling cardinals in the theory of models with
ordering. S0, a natural question arises: Do those classes of cardinals
-coincide? .

(1) Corollary 3.2 states that w, may be a Helling cardinal. On the
other hand, in ZFC one can prove that w, is not a Rowbottom cardinal.

(2) Prikry [6] has shown that there may be a Rowbottom cardinal
which is cofinal with w,. No such a cardinal ig Helling (Helling cardinals
must be regular).

(3) W. Marek asked me if it is consistent with ZFC that Helling
and Rowbottom cardinals coincide (under some additional assumptions,

e.g. that they exist). We can give the following partial answer, suggested
to me by B. Weglorz:

PROPOSITION 8.3. Lei MM be o model Of ZFC, % ¢ M and M = “x= | xu, ’

n<w

where xyn are measurable”. Then, in every mild (*) Conhen extension of I,

% 18 & Rowbotiom but not o Helling cardinal.

(*) That is,

oo n generic extension where 3 set of conditions has a power less than
» in M.
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Proof. Suppose C is a set of conditions and |C| < %. So, there is
an # < o such that |C| < %,. Thus, by the result of Lévy and Solovay [4],
in the resulting Cohen extension MM[G] all w, for m > 2 are measurable.
Hence, » in Mi[F] is a sum of countably many measurable cardinals,
and by a theorem of Prikry [6], it is a Rowbottom cardinal in IMM[G).
On the other hand, » is obviously singular in M[E], and so it is not
a Helling cardinal in IMM[G].

(4) In connection with our Theorem 2.3, it is easy to see that the
condition 7(x, w,) is not necessary for » to be a Helling cardinal. Indeed,
by Corollary 3.2 w, may be Helling cardinal, but (as Solovay showed
in [10]) if w fulfils 4(x, o), then it must be very large (e.g. larger than
the first weakly inaccessible cardinal).

§ 4. Application to languages L. The relation between models of
theories in L, and x-like ordered models is given in the following theorem
of Fuhrken [1]:

TemorEM (Fuhrken). For any theory T in a language L, there is
a theory - T™ in L where the predicate < and some Sfunctors are added such
that every model W of T with [A|= » can be expanded to a »-like model
of T* and conversely — every x-like model of T* is a model of T.

CoroLLARY 4.1. Suppose that the condition i(x, w,) holds. Let T be
a theory in L, and T,— a L,-counterpart of T for an uncouniable A < ».
If A is a model of T, then A has an elementary (in the sense of L) submodel
which is a model of T,.

Proof. Obvious from 2.3.
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Collectionwise normality and the extension of
functions on product spaces

by
Richard A. Alo (Pittsburgh, Penn.) and Linnea 1. Sennott (Fairfax, Virginia)

1. Introduction and preliminary results. Let § be a nonempty subset
of a topological space X. The subset § is said to be P-embedded in X it
every continuous pseudometric on § extends to a continuous pseundo-
metric on X. The subset § is C-embedded (vespectively O*- embedded)
in X if every continuous (respectively bounded continuous) real valeud
function on § extends to a continuous (respectively bounded continuous)
real valued function on X. It is clear that every (-embedded subset is
a O"-embedded subset; moreover every P-embedded subset is a  O-em-
bedded one (see Theorem 2.4: of [7]). The concept of P-embedding charac-
terizes collectionwise normal spaces in the same way as C-embedding -
(and also C*-embedding) characterize a normal spaces. Specifically a topo-
logical space X is collectionwise normal if and only if every closed subset
of X is P-embedded in X (see [12]). '

Sinee a pseudometric on a space X is a function on the product
set X'x X, it is of interest to relate the extension of pseudometrics to
the extension of functions on X x X (without the triangle inequality).
In [1] we showed that a subset 8 is P-embedded in X if and only if every
continuous function from § into a bounded, closed convex subset of
& Banach space extends to a continuouns function on X with values in
the convex subset. Using results developed in [1] to demonstrate this
result, we also showed in [1] that if L is any Fréchet space, then every
uniformly continuous funection from § into I can be extended to a continu-
ous function on X. Also uniform continuity of the extended funetion
Is shown not to be attainable. '

We now turn our attention to relating P-embedding to the extension
of functions from product sets. By utilizing results from [1] we show
that a subspace § is P-embedded in the Tichonov space X if and only
if for all locally compact hemicompact Hausdortf spaces 4, the product
seb 8x 4 is C*-embedded in the product space X x A if and only if the
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