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Collectionwise normality and the extension of
functions on product spaces

by
Richard A. Alo (Pittsburgh, Penn.) and Linnea 1. Sennott (Fairfax, Virginia)

1. Introduction and preliminary results. Let § be a nonempty subset
of a topological space X. The subset § is said to be P-embedded in X it
every continuous pseudometric on § extends to a continuous pseundo-
metric on X. The subset § is C-embedded (vespectively O*- embedded)
in X if every continuous (respectively bounded continuous) real valeud
function on § extends to a continuous (respectively bounded continuous)
real valued function on X. It is clear that every (-embedded subset is
a O"-embedded subset; moreover every P-embedded subset is a  O-em-
bedded one (see Theorem 2.4: of [7]). The concept of P-embedding charac-
terizes collectionwise normal spaces in the same way as C-embedding -
(and also C*-embedding) characterize a normal spaces. Specifically a topo-
logical space X is collectionwise normal if and only if every closed subset
of X is P-embedded in X (see [12]). '

Sinee a pseudometric on a space X is a function on the product
set X'x X, it is of interest to relate the extension of pseudometrics to
the extension of functions on X x X (without the triangle inequality).
In [1] we showed that a subset 8 is P-embedded in X if and only if every
continuous function from § into a bounded, closed convex subset of
& Banach space extends to a continuouns function on X with values in
the convex subset. Using results developed in [1] to demonstrate this
result, we also showed in [1] that if L is any Fréchet space, then every
uniformly continuous funection from § into I can be extended to a continu-
ous function on X. Also uniform continuity of the extended funetion
Is shown not to be attainable. '

We now turn our attention to relating P-embedding to the extension
of functions from product sets. By utilizing results from [1] we show
that a subspace § is P-embedded in the Tichonov space X if and only
if for all locally compact hemicompact Hausdortf spaces 4, the product
seb 8x 4 is C*-embedded in the product space X x A if and only if the
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product set §X B8 is (*-embedded in the product space X x 88, whep
BS is the Stone-Cech compactification of 8. As a corollary we have thyt
the subspace § is P-embedded in the Tichonov space X if and only if
for all compact Hausdorff spaces 4, 8x 4 is 0*-embedded in ¥ X A,
For Tichonov spaces X this implies that X iy P-embedded in oX if angd
only if (X x fX) = vX x fX. Moreover for spaces X o_fz non-measnrable
cardinality, this also implies that »(X X A) =vX x 4 for all compact
Hausdorff spaces A. This is similar to a result in [4].

In section 3 the results of section 2 are generalized to give results
concerning P’-embedding and y-collectionwise normality. See [1] for
definitions of these terms. From these results we are able to show that
if §1is a C-embedded subset of a topological space X then Sx I is
O-embedded in X x M for all compact metric spaces M. Tn [10] Morita,
considers y-paracompact normal spaces and such spaces are always
y-collectionwise normal. We obtain characterizations of y - collectionwise
normal spaces. As a corollary to results.of Morita in [10], we show that if X
is & y-paracompact normal space and if 4 is a compact Hausdortf space
with a base for its natural uniformity of cardinality at most y, then X x 4
is & y-paracompact normal space. This theorem is then related to our
results on P7-embedding and v-collectionwise normal spaces.

In Theorem 4.1 we improve a characterization on collectionwise
normal spaces given by H. Tamano in [13] and close with some open
questions concerning P-embedding. . ‘ '

. The major tool of thig paper will be Theorem 1.2 below (which
appeared as Theorem 2.3 of [1]). We state the relevant portion of this
result here for convenience. However first we need the following
definitions.

DrrmiTioNn 1.1. Let X be a topological space and let p be an infinite
cardinal number. A function f on. X is said to he a (L, M)-valued function
on X if fmaps X into a complete, convex, metrizable subset M of a locally

convex topological vector space I. A funchion foon X is gaid to he .

& (L, y, M)-valued function on X if it is g (L, M)-valued function and
if the image of X under f is a y-separable subset of 3 (that is, there is
2 dense subset A of f(X) and the cardinality of A is not greater than y).
A Fréchet space is a complete, metrizable locally convex topological
vector space. ‘

Let us recall that the set of

- all bounded, real valued econtinuous
- functions on X is a B

’ . anach space under the sup norm, that is |f]
= snigc [f(2)]. This Banach space will be denoted hy CHX).
TeX '

 THEOREM 1.2. Let 8 be a nonempty subspace of- X and let y be an infi-
nite eardinal number. The Jollowing statements are equivalent:

(1) The subspace § is P?-embedded in X
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(2) Bvery continuous (L, vy, M)-valued Sfunetion on 8 exiends o
o continuous (L, M)-valued funciion on X. ‘

(3) Bvery continuous (L,y, M)-valued function on § extends o
a continuous function from X to L.

(4) Every continuous function from 8 to o Fréchet space, such that
the image of 8 is y-separable, exiends to a continuous function on X.

(5) Every continuous function from 8 into 0%(8), such that the image
of 8 is y-separable, exiends to a continuous function on X. i

Furthermore, the above condilions are also equivalent to the conditions
obtained from (2) through (5) by requiring the 1mage of S to be a bounded
subset of the locally convem space in question.

Since a subspace § of a topological space X is P-embedded in X if
and only if it is P*-embedded in X for all infinite cardinal numbers y
(Theorem 2.8 of [12]), it is clear that we obtain characterizations of
P-embedding from Theorem 1.2 by removing all mention of cardinality.

2. P-embedding and. the extension of functions on product spaces. Now
we develop the material needed to characterize P-embedding in terms
of product spaces. If A and B are topological spaces, C(4, B) will denote
the set of all continuous functions from 4 to B equipped with the com-
pact-open fopology. A subbase for this topology is the collection of all

. sets (K, W)= {feC(4, B): f(K)C W} where K is a compact subset

of 4 and W is an open subset of B. On page 80 of [11], the following
proposition is shown.

ProrosrrioN 2.1. If A is o Hausdorff topological space and if B is
a locally convez topological vector space, then C (A, B) is also a locally convex
topological vector space.

In addition we need to know when C(4,B) is a Fréchet space.
Consequently a hemicompact space is defined as one that is a countable
union of compact subsets (L), such that every compact subset of the
space is contained in some I;. Compact spaces, Buclidean spaces E®, -
and countable direct sums of compact spaces are examples of hemi-
compact spaces. In [3] Richard Avens showed that the concept of hemi-
compaet spaces i uwseful in showing when (4, B) is a Fréchet space.

Propostrion 2.2, If A is a hemicompact Hausdorff space and if B is
a Fréchet space, then (A, B) is a Fréchet space.

We notie thati if 4 iy a compact Flansdorff space and if B is a Banach
space, then by the above O(.A, B) is a Fréchet space. More than this,
it is & Banach space under the norm I1F]) = Hu]f [If(@)lls (see [3]). It is easily

e
verified that in this case the topology defined by this norm is equivalent
to the compact-open topology.

The following lemma is due to Ralph Fox (see [6]).
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Lemma 2.3. Let X, 4, and B be topological spaces and let f be a conting,.
ous function from X x A into B. The function ¢ defined from X into ¢ (4,B)
by (p(@))(a) = f(w, a) for all @ in X and a in A is continuous. Conversely,
if A is regular and locally compact, and if @ 18 a continuous map from ¥
into C(A., B), then the map f from X X A into B defined by f(w, a) = ((p(m))(a)
Jor all (z,a) in Xx A is continuous. .

Using Theorem 1.2 as stated in section 1, we can now prove the
following product space characterizations of P-embedding.

THEOREM 2.4. Let § be a subspage of a completely regular T, space X,
The following are equivalent.

(1) The subspace 8 is P-embedded in X.

(2) For all locally compact, hemicompact Hausdorff spaces A, the
product set SX A is P-embedded in the produet space X x A.

(3) For all locally compact, hemicompact Hausdorff spaces A, the
product set 8 X A is O-embedded in the product space X x A.

(4) For- all locally compact, hemicompact Haousdorff spaces A, the
product set Sx A is C*-embedded in the product space Xx 4.

(8) The product set 8 x B8 is P-embedded in the product space X x p8.

(6) The product set 8 x B8 is C-embedded in the product space X x p8.

(7) The product set 8 x 8 4s 0" -embedded in the product space X x f8.

Proof. To show that (1) implies (2), let 4 be a locally compadct,

hemicompact Hausdorft Space. By the equivalence of (1) and (4) in
Theorem 1.2 and the remark after Theorem 1.2 relating to P -embedding,
it is sufficient to prove that it fis a continnous function from the product
set 8 x4 into a Fréchet space B, then f extends to a continuous function
on XxA. Let f be a continuous funetion from S x4 into a Fréchet
space B, and define a map ¢ from g into 0(4, B) by (p(2))(a) = f(, a)
for all 4 in 4 and all # in g, Then ¢ is continuous by Lemma 2.3 and
C(4,B) is a Fréchet space by Proposition 2.1. By assumption § is
P-embedded in X. Hence by Theorem 1.2 the map g extends to a continu-
ous function ¢* from X into ¢(4, B). Define g map f*from X x A into B
by A=z, a) = (¢"(@)(a) for au (#, @) in Xx A. The function f¥is an
extension of f and is continuous by Lemma, 2.3,
_ The inllp]ications (2) implies (3) implieg (4) implies (7), and (2)
fmplfes (5) implies (6) implies (7) are clear. Tt remains to show that (7)
1mp1}es {(1). By Theorem 1.2 it iy sufficient 4o prove that every bounded
continuous function from § into C™(8) extends to a continuous function
on X* Let ¢ be such a function, The Banach space 0%(8) is isomorphic
o C7(fS), by the mapping f ~f" which assigns to every bounded real
valued continuous funetion fon 8 its unique extension f? to §§. Hence
we may think of ¢ as Mapping § into C*(pg). .
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Define f from S§x B8 into R by f(z,z) = (p@))(z) for all (,2)

in §x pS. The map f is continuous by Lemma 2.3. Since ¢ is bounded,

there is a constant K such that [lp(#)|| < K for all w in 8. Hence sup |p(z) (2)|
zefS

= gup |f(#,2)] < K for all # in 8. Therefore, f is a hounded continuous
m:;cegsion on 8x 8. By hypothesis f extends to a continuous real valued

function f* on X x 8. Defining a function ¢* from X iuto 0*(88) by
(p*(@))(2) = f*(z, 2) Tor all @ in & and z in B8, we see that ¢* is continuous
by Lemma 2.3 and iy the desired extension of the. map o.

As a result of this theorem extending pseudometries from a sub-
gpace S to the space X is the same as extending bounded continuous
real valued functions from 8 x4 to X x 4 where 4 is a compact Haus-
dorff space. .

CoROLLARY 2.5. Let 8 be a subspace of o completely reqular T space X.
Then 8 is P-embedded in X if and only if Sx A is C*-embedded in X x 4
for all compact Housdorff spaces A.

As mentioned in the introduction, Theorem 2.4 gives new characteri-
zations of Tichonov spaces which are collectionwise normal. Recall that
a space is collectionwise normal if and only if every closed subset is
P-embedded. We state here two of the characterizations for these spaces
which result from 2.4, )

CorOLLARY 2.6. Let X be a completely regular Ty space. The following
are equivalent.

(1) The space X is collectionwise normal.

(2) For all locally compact, hemicompact Housdorff spaces A amd for
all closed subsets I of X, the product set Fx A is O*-embedded in X x A.

(3) For all closed subsets I' of X, the product set F' x BF is C’*—embedded
in X x BE.

The other characterizations can be obtained in a likewise fashion.
We also obtain a result on the Hewitt realcompactification of a product
that is similar to a result of W. W. Comfort (see Theorem 1.2 of [4]).

CoromLARY 2.7. If X ds a completely regular T, space, the.n X s
P-embedded in vX if and only if (X X fX) = vX x BX. Moreover, if X has
nonmeasurable. cardinality, then »(X X A) == vX x A for all compact Haus-
dorff spaces A.

Proof. If X is P-embedded in ».X , then by Theorem 2.4 the space
XX pX is ¢-emboedded in »X x X. The product of a compact Hausdorﬁ
Space and a realcompact space is realcompact. Therefore, +X x fX is
a realcompact space in which X x AX is dense and C -embedded. By the
uniqueness of the Tewitt realcompactification, it follows that v.(X X BX)
=1X x pX. Conversely, if »(X x fX) = »X X X, then X x X is (-em-
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Lo

bedded in »X x fX. Therefore, by Theorem 2.4 it follows that X i
P-emhedded in »X.

To prove the second statement we note that in [12] it wag shown
that if § is a dense C-embedded subset of a completely regular T, space b
and if the cardinality of § is nonmeasurable, then § is P-embeddeq in X,
Consequently if X has nonmeagurable cardinality then X is P-embeddeq
in »X. Thus the statement follows from (1) implies (2) of Theorem 24,

"This completes the proof.

A nonempty subset § of a topological space X is Z-embedded in Y
if for every zero set Z of § there is a zero set Z’ of ¥ such that 2’ ~n§ = g,
Every (*-embedded subset is Z-embedded but the converse is not true,
This concept was studied in [2]. In Theorem 2.1, statement (7) cannot
be improved by stating “the produet set §x AS is Z-embedded in the
product space X x $8”. In fact an equivalence to (1) cannot be obtained
even if § is required to be closed. The following examples are instructive,

Let R be the real line and let & be the open interval (0, 1). Since § is
a cozero set of B and since §x 8§ is a cozero set of B x B8, then § is
Z-embedded in B and 8 x S is Z-embedded in R X B8 (see [2]). However
8 is not P-embedded in R since it is not C-embedded.

Now let X be the Tichonov plank, that is X = [0, 2]x [0, o\&, o)
and let F be the closed subset {(Q, a): a < w}. Since F is a Lindelof sub-
set of X and sinee Fx AF is a-Lindelof subset of X x BI it follows that

FxBF is Z-embedded in X x BE. However, F is not P-embedded in X
since it iz not C*-embedded in X.

3.  P?-embedding and product spaces. This section attemptbs to generalize
the results of the previous section to the case of P?-embedding. It will
be seen that a generalization of Corollary 2.5-is possible, with suitable
restrictions on the spaces 4 referred to in the corollary.

Levma 3.1. Let A be any topological space and let y be an infinite
cardinal number. Let 8 be o subspace of & topological space X. If §x A is
Pr-embedded in X x 4, then 8 48 P7-embedded in X. T fSx A is P-embedded
i Xx A, then 8 is P-embedded mn X.

Proof. The second statement follows from the first by choosing y

t0 be the cardinality-of 8. For if §x 4 is P-embedded in X x 4, by
Theorem 2.8 of [12], it is P¥-embedded in X x 4. Therefore by the first

state?:uent«, »S'. 1s P’-embedded in X. But since every continuous pseudo-
metric on 8§ is y-ge

Parable, this means that S is P-embedded in X,

’:[‘o prove the first statement et g be a y-separable continuwous pseudo-
metrie on 8. By Theorem 2.1 of [12] it is sufficient to show that @ extends
to a continuous. pseudometric on X. Define 5 pseudometric ¢ on §x 4 by

e((-”"; a), (ZL", CL')) = (Z(;X’, z')
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for all (z,a) and (#', ') in §x A. Then ¢ ig g continuous pseudometric
on 8x A since 8,((z,a), e = 8z, ) x 4 for all &> 0. From this re-
lationship it is also clear that the y-separability of g implies the y-sepa-
rability of e. Therefore by assumption e extends to o continuous pseudo-
metric ¢* on X' X A. Fix b in A and define a function d* on ¥ X X by
&z, v') = e*((z, b), (', b)), for all &, 4’ in X. Then g* is a pseudometric -
on X which extends d. To see that d* is continuous, let y, € 8y, &),
Then (¥, b) ESG*((%, b), e). Hence there are U and ¥, mneighborhoods
of y, and b respectively such that UxV C »S’e*((mn, b), e)‘ Therefore y, ¢ T
C Sy, £). This completes the proof of the lemma.

The following result is probably known, but we cannot find a prootf-
of it in the literature. The proof will be included here for completeness.
Recall that a compact Hausdorff space possesses a unique admissible
uniformity, that is generated by all continuous pseudometrics on the
space. In the case of a compact Hausdorft Space, this uniformity will
be referred to as its natural uniformity.

LipMma 3.2. Let X be a compact Hausdorff space and let v be an infinite
cardinal number. Then X has a base for its natural uniformity of cardinality
at most y if and.only if X has a base for its topology of cardinality at most y.

Proof. Suppose that D forms a base of cardinality ‘at most y for
the natural uniformity of X. For each d in D and each # in N , consider
the cover of X by d-spheres about the points of X with radii 1/n. Let
(8, 1/%))i=1’..,_m(d, be a finite subeover. The collection of the spheres
in these finite subcovers, for all d in D and n in N, has cardinality at most y
and forms a base. for the topology of X. To see this let 2y ¢ U, an open
subset of X. The natural uniformity is admissible. Therefore there exists d
in® and » in ¥ such that @, € Sy(w,y, 1/n) C U. Let Zo be in Sy(wi, 1/2n),
an element of the finite subcover associated with ¢ and the natural
number 2u. It follows that S,(z, 1/2n) is contained in .

Conversely, suppose that 9 is an open hase for the topology of X
of cardinality at most y. We may assume that a finite union of elements
in U is also in U, since these unions will not increase the cardinality
of U. Suppose that I C &, where I is a closed set and @ is an open fset
in Y. By an easy argument involving the compactness and normality
of X, it can be shown that there ave U and'V in % such that Ij’C U
CelUCYC@. Consider a pair (17, V), where U C ¥ and U,v are in Us.
Since every compuct Hausdorit space is normal, there exists a coni.nnuous
function f on X with values in [0, 1] such that f(x) = 0 for all # in cl‘U,
and f(y) =1 for all ¥ in X\V. Pick a function f with these propert'les
for each pair (U7, V) such that ¢l 7 CV and U,V are in W. The fzolleetmn
of finite supremum’s of the wy I8 w Dase for the natural uniformity on X.
Note that this collection has the proper cardinality.
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To gshow this we will show that for every continuous pseudometric g
on X and &> 0, there exists f;, ..., f» in this collection and 6> 0 such
that g, V... Vyg,(#, y) < 0 implies that d(z,y) < & for all #,y in X.

Let d be a continuous pseudometric on X and let 0 < &< 1. T
{Sales, ?_;e))iﬂ”_m be a finite subcover of the c.overing of X by d-spheres
of radii %e. Since this cover-is normal, there is an open cover (W 1)1.=1’_._,_ﬁ
of X such that clW;C Sy@:, i) for 4= 1, ..., n. By the remark above,
for each 1 < ¢ <7 we may choose U; and Vy in U such that U;Cel 7,
C Vi C S4(wi, 3¢) and such that (Ui);_y,..,n covers X. Then for 1< ign,
(T4, Vy) are in the pairs mentioned above, and therefore we have the
corresponding functions fi for ¢=1,..,n. Assume that (2, y) < e
for 1 <4< n. This means that |fi(z)—fily)| < 4e for 1 <4 < n. Since

Ui,
:(q is) ziri’ X\V;. Hence fj(#) = 0 and f;(y) = 1, which cannot be. Therefore
9 e 8327, Le), which implies that d(z,y) <e.

We can now state the generalization of Corollary 2.5 for P’-em-
bedding. :

THEOREM 3.3. Let 8 be a subspace of a topological space X, and let A be
a compact Hausdorff space with a base for its natural uniformity of cardinality
at most y. If 8 is P*-embedded in X, then Sx A is P?-embedded in X x 4.

Prooi. Let § be P?-embedded in X, and let 4 be a compact Haus-
dorff space with a base for its natural uniformity of cardinality at most .
Let f be a continuous function from §x 4 into a Banach space B such
that f(Sx 4) is a y-separable subset of B. By the equivalence of (1),
(4), and (5) in Theorem 1.2, it is sufficient to show that f extends to
a continuous function on X x 4.

Let 3 be a dense subset of f(§x:A4) of cardinality at most v, and
let D be o Dbase of cardinality at most v of continuous pseudometrics for
the natural uniformity of 4. Define a function g from 8§ into C(4, B)
by (g(2))(a) = f(z, a) for all 5 in § and « in A. As was mentioned before
Lemma 2.3, 0(4, B) with the compact open topology is a Banach space
with norm ||f|| = iug If(a)llz. Hence Lemma 2.3 shows that ¢ is continuous.

€.

Now if g(8) is a y-separable subset of 0(4, B), then by the equivalence
of (1) and (4) in Theorem 1.2, the mapping ¢ will extend to a continuous
map ¢g* from X into (4, B). Define then a function f* from X x 4 into B
by f(z, a) = ¢*(z)(a) for all (2, a) in X'x A. The mapping f* is an ex-
tension of f and Lemma 2.3 shows that it is continuous. The remainder
of the proof then will be devoted to showing th
subset of O(4, B).

For each din D and each n in I let (S,(a, 1))ims....m e a finite
subeover of the cover of 4 by d-spheres of radii 1/n. Every open cover
of a compact Hausdorff space is a normal cover (see [12]). Therefore,

at g(8) is a y-separable
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this cover has a partition of unity (Bt)ims,.. m SUboTdinate to it such that
ANZ (hs) C Bglas, 1fn) for 1< i< m.

For each subset B = (b,),., ., of m elements of % consider the
function which maps A into By and is defined by

(f 7l¢7)z) (@) = f hifa)b;  (aed).

i=1
Now for each ¢ in D and each n in N form the function :

3

Tong= D) haby.

dr=l

Bach function by is continuous. To see this, let v denote the continnu-
ous function which maps 7 in I to b in 8, where b is a fixed element of 8.
Then hsb = v o by, and consequently it is continuous. Therefore, each .
fanp is continuous. The totality of these functions is a collection whose
cardinality does not exceed y. We now show that every function in g(8)
is uniformly approximated by functions in this collection. Since any
y-separable metric -space is hereditarily y-separable, this will prove
that ¢(8) is itself y-separable. :

Let k be an element of ¢(8) and let & > 0. The function & maps 4
into B, and is uniformly continuous. Therefore there is a d in D and an »
in N such that d(a,a’):1/n implies that |[k(a)—Ek(a')| < te. Let
(h}imy,..m Dbe. the partition of wmity subordinate te the cover
(Sd(ai,l/n))¢=1,,,.’m. For each 1 {4 < m, the image %(a;) is an element
of f(§x A). Henece there i3 a b; in B such that ||k{a;)— b < Le. We will
show that :

m
o= D) b < e,

d=1
Hk-2 mm” = ::33”70(«)——2 hi(a) b1H.

Let o be a fixed element of 4. Then

Since k(a) = > hi(a)k(a), the first term of this sum becomes:
N S @@~ X it ban)]|= | 3 wlae(a)—Ted)|

< 3 @) (@)~ k@)l

= D ha)[[k(a)—k(a)] -
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Tf hi(a) 5= 0, then a ¢ ANZ (h;). Hence d(a, a;) < 1/n, so |[(a)— k) < Lo
Therefore

D @)k (@)—E(an)] < D hfa)de = 4e.

Similarly, the second term of the sum can be shown to be <e. This com-
pletes the proof. ‘

The following corollary combines Theorem 3.3 and Lemma 3.1.

CoroLLARY 3.4. Let A be a compact Hausdorff space with a base for
its natural uniformity of cardinality at most y. A subspace S is P - embedded
in X if and only if SX A is P’-embedded in X X A.

Sinee P*-embedding is equivalent to C-embedding, we obtain the
following from Lemma 3.2 and Theorem 3.3. :

COROLLARY 3.5. If 8 is C-embedded in X, then S X M is (- embedded
in Xx M for oll compact metric spaces 1.

From Corollary 3.4, the following characterization of - collection-
wise normality is obtained.

CorOLLARY,3.6. Let X be a topological space, let y be an mfinite cardinal
number, and let A be a compact Hdusdorff space with a base Sor its natural
uniformity of cardinality ot most y. The following statements are equivalent:

(1) The space X is v-collectionwise normal. )

(2) For all closed subsets F of X, the product F'x A is P-embedded
in Xx A. :

It is known that every y-paracompact normal space i3 y-collection-
wise normal. K. Morita proved the following theorems (see Theorems 2.1
and 2.2 of [10]): (1) If X i @ y-paracompact space and if A is a compact
space, then X X A is y-paracompact; and (2) If X is a y-paracompact
normal space and if 4 is a compact normal space with an open base of power
at most y, then XX A is normal. Combining these two theorems and
recalling Lemma 3.2, we have the following result.

THEOREM 3.7. If X is a y-paracompact normal space and if A is
a compact Hausdorff space with o base for its natural uniformity of power

at most y, then Xx 4 is a y-paracompact normal space. o

This result is parallel to that of Corollary
¥ Xis a y-paracompact normal space and if 4 is g compact Hausdortf
space w-vmh a base for its natural ~uniformity of power at most ¥, then
X X‘A Is a y-paracompact normal space by 3.7. Hence X x A i ’y-col-
lectlonwisg normal, therefore every closed subset of the form-If’xA
where F' is closed in X, is P -embedded in X x 4. But the latter can

zf’o be.obt‘zinec%l by first noting that X is y-collectionwise normal, and
en using Lorollary 3.6 to argue that if 7 is el in T A i
Pr-embedded in Xx 4. closed in X, then F'x A is

3.6 in the following sense.

@ © .
Im Collectionwise normality of functions on product spaces 241

The next section deals with some special results for collectionwise
normal spaces. :

4. Product space characterizations of collectionwise normality. Recall that
every paracompact normal space is collectionwise mormal, H. Tamano
proved that if BX is any Hausdorff compactification of a completely
regular 7T, space X, then X is paracompact if and only if X' x BX is normal
(see [13]). Since X x BX is paracompact if X ig paracompact, this can
be restated as: A Tichonov space X is paracompact if and only if X x BX
is normal if and only if X x BX is paracompact. The next theorem is
a parallel result for collectionwise normality. If 4 is a compact Hausdortf
space in which the space X is C‘*~embedded, this result will show that
the collectionwise normality of X is equivalent to the following conditions:
(1) For all closed subsets F' of X, the product Fx 4 is ¢*-embedded
in Xx 4, and (2) For all closed subsets # of X, the product Fx 4 is
P-embedded in X X 4. We know that every closed subset of a normal
space is C*-embedded and every closed subset of a paracompact Haus-
dorff space is P-embedded. Hence it is clear that these conditions are
weaker than the normality or’ paracompactness of X x 4.

TaeorEM 4.1. Let A be a compact Hausdorff space in which X is
C*-embedded. The following statements are equivalent:

(1) The space X is collectionwise normal.

(2) For all closed subsels B of X, the product set F'x A is P-embedded
in the product space X X A. ’

(3) For all closed subsets F of X, the product set F' x A is C*-embedded
in the product space X x A.

Proof. The implication (1) implies (2) follows from (1) implies {2} of
Theorem 2.4 and the fact that every closed subset of a collectionwise
normal space is P-embedded in it. The implication (2) implies (3) is
immediate. Hence it suffices to show that (3) implies (1).

It is easy to show that (3) implies that every closed subset of X is
C*-embedded in X; hence X is normal. Let (F,),.; be a discrete family
of closed subsets of X. For each o in I, the sets ¥, and H,= QF" are

disjoint closed subsets of X. For each « in I, by the normality of X, there
exists a continuwous function f, on X with values in [0,1] such that
fo@) =0 for all weF,, and fly)= 1 for all ye H,. Sinee X is C*-em-
bedded in 4, let £* e a continuous mapping of 4 into [0, 1] such that f}
restricted to Y is f,. Let 7 De the union of F, for ¢ in I. Then F is a closed
subset of X.

Define a real-valued function f on Fx 4 by f(z,a) = fi(a) for the
unique « in I such that f,(x) = 0. The function f is clearly bounded and
is continuous. To see this, let (@, a,) be in Fx 4, let ¢ > 0, and suppose
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that , is in F,. There is a neighborhood U of a, such that if ¢ is in U,
then |f3(a)—f3(a0)| < e If (@, @) is in F,x U, then |f(2, a)—f(zy, a,)] <
Therefore by assumption f extends to a continuous real-valned funetion f*
on XxA. ' *

Define g from X into O(4) by (g(@)(a) = f*(z, a) for all 4 in 4
and z in X. By Lemma 2.3 the function g is continuous. Hence the Dsendo-
metrie d* defined on X by d%(@, y) = llg(@)—g(@)|| for all z,y in ¥ i
continuous. Let ¢, = | 8z(#, }) for all a in I. Then @, is an open sul.

zel,
set of X containing F,. It remains to show that (G aer 18 a pairwige
disjoint family.
Suppose ¢ is in @, and G, where a # . There exist z in F, and y
in F, such that d*(t,) <3} and d*(,y) <}. Hence flg (t)—g(@)|| < 1
which means that vsu}l) If*(¢, )= f*(@, a)] < }. Similarly, il;qf IF¥t, a)—

—f*y, a)] < L. Let b= 2. Then
¥, @)~ (@, @)| = |f¥t, @)—f(@, @) = £, )| < &

and i
7 2=y o) = ¥, 2)—Fly, )] = £, 0)—1] < i,
which is a contradiction. This completes our proof. .
Now as a corollary we have Tamano’s original result. (See [14].)

COROLLARY 4.2, A completely regular T, space X is collectionwise

normal if and only if Fx X is O*-embedded in X X BX for all closed
subsets F of X.

S. Concluding remarks. We have just obtained Tamano’s original
result on collectionwise normality as a corollary to Theorem 4.1. We
have pointed out that our conditions are weaker than requiring the para-
compactness or normality of X x A for 4 any compact IHausdorff space.

It is an open question whether the above condition characterizes P-em-

bedding. That is, is it true that if § ig a subspace of X, then § is P-em-
bedded in X if and only if SxBX is O*-embedded in X x pX?

) In section 3 we discussed two results of Morita, from [10]. In this
Paper his main result is the following: A topological space X is y-para-
compact and normal if and only it X x 17 is normal, where I denotes the
unit interval. We do not know it there is a parallel result for ¥ - collection-
wise normality. It might be conjectured that X is y-collectionwise normal
if and only if Fx I7 is C*-embedded in X x I for all closed subsets F

of X. This would be Parallel to the result that X is collectionwise normal

if and only if for all closed subsets F of X, the set T x AT iy C*-embedded
in X xgF. .

The authors wish to €xpress their

) gratitude to H. I.. Shapiro for
his comments.
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