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As b is order-preserving, h(ms(f)) <o m. By the definition of 71 and the
relation of s to %, there is i’ e Ty, such that ¢ D¢ and range(t') ~y = @,
and such that h(vz(t)) = n. In particular, (t,9), (', y) e X(a) and (#, )
‘>, (t, ). But look, (t,y)ed;, so by definition we must have that
]Ta(ﬂ:}:(t)) >qm. Since hla="h,, this contadicts our earlier inequality.
Hence T(F) cannot be Q-embeddable. N
Suppose now that for some F, & ¢ 21, F # &, we have T(F) =2 T(@).

Let h: ap" T(F) = 25" T(@). Pick oy < o, such that F Moy & [ ay. Let

A={ceay a=Ja>ay& [z T(E)1a= mg’ Tppe- &-
'&'[ﬂauT(G)] la= n/ara”T(’Jfa'&'hTa: ﬂ_;"ra”Tllf"ra = n(,}ra”Té‘ra} .

Clearly, 4 is closed and unbounded in w,. By <, thereis a ¢ 71 such that
h}a= h,. Thus Cage IT applied in constrl}cting ll’ma from Tp,, and ViP
from Tf,. This means that the map ngjj-@a-npra does 1'1017 extelznd o
an isomorphism of T, and Tg,, which is absurd, since =ng'-h-mp
extends it. Thus T'(F) and T'(@) are not isomorphie. The proof is complete,
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Shapes of finite-dimensional compacta
b’yx
T. A.-Chapman (% (Lexington, Ken.)

1. Introduction. The results of this paper deal with shapes of finite-
dimensional compact metric spaces (see [4] for definitions concerning
the concept of shape). In Theorem 1 below we give a characterization
of shapes of finite-dimensional compact metric spaces (i.e. compacta) in
terms of embeddings in Euclidean n-space’ B". In an earlier paper the
author obtained a characterization of shapes of compacta (with no
dimensional restriction) in terms of embeddings in the Hilbert cube [8].
In a sense the results obtained here are motivated by [8], and to some
extent the general structure of the proof of Theorem 1 is a modification
of the argument used in [8]; but the present paper does not involve any
infinite-dimensional topology. For the sake of completeness we give
a short summary of the infinite-dimensional characterization at the
end of the Introduction. We use the notation Sh(X) = Sh(Y) to indicate
that compacta X and ¥ have the same shape.

TEEOREM 1. Let X, Y be compacta such that dim.X , Aim Y << m.

(a) For any integer n>2m-+2 there epist copies X', Y'C E™ (of
X, Y respectively) such that if Sh(X)= Sh(Y), then EN\X' and B\ Y’
are homeomorphic.

(b) For any integer n>>3m--3 there exist copres X', Y ' CE" (of
X, X respectively) such that if BN\X' and E™\Y' are homeomorphic, then
Sh(X)= Sh(Y).

We remark that a similar result holds for embeddings of X and ¥
in the #-sphere S8~

For prerequisites we will need some elementary facts concerning
the piecewise-linear topology of B plus an isotopy extension theorem
from [11]. e also use a characterization of dimension in terms of
mappings onto polyhedra in E* (see [14], p. 111). As for techniques we
remark that part (a) of Theorem 1 is the most difficult part of the proof.
Roughly the idea is to construet a sequence {h;}7, of homeomorphisms

(*) Supported in part by NSF Grant GP14429.
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of E* onto itself such that the sequence {hsoh;_jo...ch}32, of left
products converges pointwise (on E™\X') to define a homeomorphism
of FN\X" onto E™\Y'. This is the idea that was used in [8].

We now make some comments concerning the infinite-dimensional
characterization obtained in [8]. We represent the Hilbert cube @ by

ﬁ I:, where each I; is the closed interval [0, 1], and the pseudo-interior

i=1

of @ is s= fS[ I3, where each T; is the open interval (0, 1). The characteri-
i=1 :
zation obtained in [8] is as follows:

THEOREM 2. Let X, ¥ Cs be compacta. Then Sh(X) = Sh(¥) ff Q\X
and Q\Y are homeomorphic.

The condition “X, ¥ Cs” in Theorem 2 is crucial and in general
cannot be replaced by the weaker condition “X, ¥ CQ”. Also it follows
from [2] that if X, ¥ Cs are any two compacta, then \X and s\¥ are
homeomorphic to s. However the characterization is generally applicable
to compacta, since any compactum can be embedded in s. We remark
that the proof of Theorem 2 given in [8] is non-elementary and uses some
recent developments in the theory of infinite-dimensional manifolds
modeled on @ (see [7] for & summary). The proof we give here of Theorem 1
is a bit more complicated since there are some infinite-dimensional
techniques used in the proof of Theorem 2 which have no finite-dimensional
analogues,.

The author is grateful to Morten Brown for suggesting something
on the order of Theorem 1, in the sense that he felt “shape” for finite-
' dimensional compacta should mean “homeomorphic complements” (in
an appropriate setting in Buclidean space). The author also wishes to

thank R. D. Anderson for making some valuable comments on the
manuseript.

2. Definitions and notation. For any topological space X and any
set ACX we let Bdx(4), Intxz(4), and Clz(4) denote, respectively,
the topological boundary, interior, and closure of 4 in X. When no am-
biguity results we will suppress the subscript X. If Y is another
space and f: X—¥ is a funetion, then fl4 will denote the restriction
of f to A.

All homeomorphisms will be onto and we use the notation X = Y
to indicate that spaces X and ¥ are homeomorphic. The identity homeo-
morphism of X onto itselt will be denoted by idx and by a map we will

mean a continuous function. If (¥, d) is a metric space and f,g: X—>¥
are maps, then we use

af, g = sup{cl(f(m),g(a:))] weX} (if it exists)
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for the distance between f and g. In the sequel we will indiseriminately
use d to denote the metric of any space under consideration.

For products X xY we use px: Xx¥—>X +o denote projection.
In Euclidean space E™ and any integer m < n we use Pm: E">E™ to

~ denote projection onto the first m coordinates, i.e.

DBy Bay ey Tn) = (D1, Toy ooy T) ,  for all (@, @, ..., 2,) € B”.

We use I to denote the unit interval [0, 1] and by a homotopy we
mean a continuous function F: X X I->Y¥. The levels of F are the maps
Fy: XY, defined by Fyz) = F(z, 1), for all (w,%) e Xx I. For a map
G: XXI-»>¥xI we will also use the notation Gy XY for the map
defined by Gy») = px - G(z, t), Tor all (#,0)e XX 1. If BCY and Iy
XY are maps satisfying F(X), 9(X)C B, then we nuse the notation
f~g (in B) to mean that there exists a homotopy F: X x I+¥ such
that Fy=f, Fi=y¢, and F(XxI)C B.

In Euclidean space E™ and any &> 0 we let

Bl ={z e B" o <},
6B = {w < B"| o] = ¢} .

For any integer m < n we will use E™ x 0 C B” to indicate the Euclidean
subspace of E"™ defined by
B X0 = {(#1, @y -.., Tn) € B Toi1 = By = o = &y = 0} .

By a polyhedron we will mean a (locally-finite) union of linear cells
contained in some Euclidean space E™ and by a topological polyhedron
we will mean any space homeomorphic to a polyhedron. Generally we
will use notation and results from [10] concerning elementary piecewise
linear (PL) topology, including such concepts as PL maps, derived and
regular neighborhoods, ete.

AL X is a polyhedron and ¥ is a PL manifold (i.e. 2 polyhedron which
is a manifold), a concordance ¥ of X in Y is a PL embedding F: X x T
=¥ x1I such that F(Xx0)C¥x0 and F(Xx1)C¥x1. The con-
cordance F' is allowable if F{Y x0) = Xx0, F-Y¥ x 1)=Xx1, and
oYX I)= Xy x I, X, being a closed subpolyhedron of X. The following
result will be needed in the proof of Theorem 1.

Limarvia 2.1 (Hudson [11]). Let X be a compact polyhedron, Y be a PL
manifold, and let F: XxI->Y X1 be an allowable concordamce which
satisfies Fy(X) n (0Y) =@, for all teI. If dimX < dim Y3, then there
exists a PL homeomorphism h: Y=Y which satisfies h o Fy=F, and
h|8Y = id.

As an easy consequence of Lemma 2.1 we get the following corollary
(which will he more immediately useful to us).

18%
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CoROITLARY 2.2. Let X be a compact polyhedron such that dimX < m,
Y be an open subset of E*"2, and let f, g: X >Y¥ be PL embfddhzg& ;such that
f=g (in XY). Then there exists a PL homeomorphism h: B 25 F2+2 gyep
that B|EB™A\Y = id and hof=g. :

Proof. For n = 0 the result is trivial and we therefore assume » > 1,
in which case dim Y—dimX > 3. Let F: X x I+Y be a map such that
Fy=f and F, = ¢. Using Lemma 4.2 of [10] (which is concerned with
approximating maps by PL maps) we can replace F by a PL map @G
X x I-+Y such that &, = f and & = g. If we note that 2dim (X x I)+1
< dim(¥ x I), then we can use standard procedures for general positioning
to modify G to obtain an allowable concordance H: X XI->¥ x I such
that Hy= f and H; = g¢. Let P CY be a compact polyhedron such that
H(X)CP, for all ¢I, and let N C ¥ be a regular neighborhood of P,
Then H: XX I>Int(N)x I is an allowable concordance which satisfies
H(X) n(¢N)= 0, for all 1 <I. (Here the combinatorial boundary of N
coincides with the fopological boundary of N.) Thus Lemma 2.1 implies
that there exists a PI, homeomorphism A': NN such that 7' of =y
and %'[aN = id. Then extend A’ to a PL homeomorphism h: EF*+2_s F2ut2
by defining R[EFAN = id. ,

We will also need the following result on regular neighborhoods which
follows from Theorem 2.1 on page 65 of [10].

Lemma 2.3. Let X be a compact polyhedron in the interior of a PL
manifold Y and let Ny, N, be two regular neighborhoods of X in the interior
of X. If UCY is an open set containing Ny v N,, then there exists a PL
komeomorphism h: Y=Y such that h|X o (Y\U)=id and h(N,) = N,.

3. Embedding compacta in E™ If X is any compactum satisfying
dim X < n, then it is well-known that X can be embedded in F**'. In
Proposition 3.4 below we prove that X can be embedded into B! in
a “nice” way which will be useful in the sequel. This “niceness” condition
is described in the following definition.

DerFrNitioNn 3.1, Let X CE" be a compactum which satisfies )

dim X < m, for some m > 0. Then we say that X is in standard position
if there exist sequences {P;}2, and {N;}¥, such that the following
properties are satisfied :

(1) each P; is a compact polyhedron in E™ satistying dim P; < m,

(2) each N; is a regular neighborhood of Py in ,

(3) each N, , CInt(¥N;), and

4 X= ;.
i=1

We remark that this condition does not necessarily imply tameness.
For example if X C B is the wild are of Artin—Fox (as described on page 177

©
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of [9]), then it is easily verified that X is in standard position. On the
other hand if X CE" (n> 1) is any arc such that B™NX is not simply
connected (such ares exist from [3]), then it can be verified that X is not
in standard position. We omit the details because these observations
are not needed in the sequel. One obvious fact which will be needed in
the sequel is the following: If X C B is a compactum in standard po-
sition, then X x 0 C B™™ ig in standard position, for all m > 0.

In proposition 3.4 below we show that every compactum of dimension
less than or equal to % can be embedded into F2*+! in standard position.
The following characterization of dimension will be needed in the proof
of Proposition 38.4.

Lemva 3.2. ([14], P. 111). A compactum X C B* satisfies dim X < m
iff for each & > 0 there exists a polyhedron P C E™ satisfying dim P <m
and a map f: X~ P such that f(X) = P and a(f,id) < s.

We will also need a convergence procedure for sequences of embeddings
of compacta into complete metric spaces. Various forms of this type of
convergence procedure are known and have been used occasionally (for
example see Lemma 2.1 of [1]). Tt is for this reason that we state the
result with no proof. For notation let (Y, d) be a metric space and let
X CY be a compactum. Then for any embedding f: X--Y and any

>0 let
e(f, 8) = gb{d(f(2), f@)) 2,y « X and d(z,y) 5 6},
which is clearly a positive number. (Here glb means greatest lower bound.)

Lrmwa 3.3. Let (X, d) be a complete metric space and let X C ¥ be
a compactum. Moreover let

; 7 5
XY, () =5 Y, f o (D) T,
be a sequence of embeddings such that
d(fi, id) < min(3=% (3% - ¢(f,_ o ...
for all > 1. Then the sequence {f;o fii o
to an embedding of X into ¥.
PROPOSITION 3.4. Let X C B*™* be a compactum such that dim X < n.

Then there ewists an embedding f: X - E™+* such that f(X) is in standard
position,

Proof. We will apply Lemma 3.3 (with ¥ = B, To do this we
will inductively construct sequences {Pi}is, (N2, and {f}, which

°Jis 2*1)) ]

o fitie1 comverges pointwise

- satisfy

(1) each P; is a compact polyhedron in E***! such that dimP; < n,
(2) each N; is a regular neighborhood of P; in E**' such that
V41 CInt (W)

H
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(3) {fi}2: is a sequence of embeddings:
7
XL ooV, AE) LBIne(V,), f o AE) L>Tns(Ny), ...,

(4) d(fi, id) < min(37%, (37 &(fyy o e oy, 279), for all 4> 1,

(B) if &= d(fio.. o fi(X), F"\Int(Ny)), then d(fi;,id) < 827,
for all 7,7 >0, and

(8 d(fio... o filX), @) < 1/2°7Y, for all ¢ >0 and z < N;.

To start the induction we now construct P, N; and f;. Using
Lemma 3.2 there exists a polyhedron P, C E™! satisfying dimP, <n
and a map gz X—P, such that ¢,(X)= P, and d(g,,1d) < 1/2. Choose
a regular neighborhood N; of P; in E*™ guch that there exists a re-
traction 7: Ny Py satisfying d(r, id) < 1/2. It is well-known that any
continuous function of X into B+ can be approximated by an em-
bedding. Thus there exists an embedding f;: X —Int(¥,) such that
a(fi, 1) <1/2. This implies that @(fi(X),#) <1, for all x < N,. This
completes the construction of P, Ny, and f;.

For the inductive step let us now assume that {P:;}%,, {N,}7,, and
{fi}, have been constructed so that conditions (1)-(6) are satisfied.
We will construet P,,.q, N¥ppiq, and frpyy 80 that {PJPHY, (N}, and
{fiY25? satisfy conditions (1)~(6). To simplify notation let

=1
e=min(37% (37 s(f oo fy, 279), for 2<i<m+l.

Using Lemma 3.2 there exists a polyhedron P, CE™ satistying
dimP,, ;< nand & map gp,.;: fon o - o f(X) =Py, such that g,,, ;o f,, o
oo fi(X)="P,,, and

Uy 10) < D (ey40/2, 827, 827, .., f27) .

Sinee d(g,,44,id) < 6n we have P, CInt(Ny). Thus we can choose
a regular neighborhood N, ., of P, in #***! such that N a1 C Int(Np)
and for which there exists a retraction Tmt1t Vg1~ P +1 satisfying
ATy, 1) <1/2™F Now leb frpi: fom o .o o f(X)>Int(N,,,.,) be an
embedding satistying ‘

A(frntas Imyr) < min(e,,,./2, 61/2m+1’ 827, vy 0mf2P) .
It then follows that
A(fnyr,1d) < Min(e,,;, 6,/2™, 6,/2™72, ..., Om(2) .

I 2eN,p, then d(g,.; o f .. o filX), 2} = A(Ppqy ®) < 1/2™F1 Since
A frni1s Imrr) < Emyy < 1/2™H, it follows that Afprs o oen o il X), 2) <127,
Thus {P}75h, (N2t and {f ot satisfy. properties (1)-(6). Thus we
have inductively constructed the desired sequences,

e © '
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It follows from (4) and Lemma 3.3 that the sequence {fi ... of,},
converges to an embedding f: X—E™*!, From (3) and (5) we have
S(X) CIn(N;), for all 4> 0. Thus all we need to do is show that

) [or]
.ﬂ Ny = f(X). To see this choose any z eﬂ N; and use (6) to conclude

i=1 . =1
that _d(fg o o fi(X), @) < 1/2°7, for all > 0. Since we have a(fi, id)
< 37% for all ¢ >1, it then follows that z e f(X).

The following result will be useful in the proof of part (b) of Theorem 1.

LemuMA 3.5, Let YCE® be a compactum in standard position such
that w > 2dim Y41 and let X be a compactum such that dim X+ dim Y < »n.
Also let UCTE" be an open set containing Y, ACX be closed, and let
f+ XU be a map such that f(A) ~ ¥ = @. Then there exisis a map g: X T
such that g(X) ~Y =0 and g|4 = f|A.

Proof. Since Y is in standard position there exists a compact
polyhedron P C U such that dimP < dim ¥ and a regular neighborhood N
of P such that ¥ C¥ C U\f(4). There ave standard teechniques for
approximating maps by maps into polyhedra (for example see pp. 69, 70
of [12]). Since dim(X\4) < dim X we can use these techniques to find
a map f’': XU such that f(X\4) lies in a locally compact polyhedron
of dimension equal to or less than dim X and J'1A = f|A. Let P’ be the
intersection of this locally compact polyhedron with . Then we have
J(&X)nNCP and dAim P’ < dimX. Lemma 4 on page 97 of [10] implies
that there exists a PL homeomorphism k;: N->N such that by | BA (V)
=1id and h(P'\Bd(X)) is in general position with respect to P, i.e.

dim (1,(P\Bd(N)) ~ P) < dimP' -+ dimP—n .

But dimP'+dimP < n, hence dim(hy(P\BA(N))~ P) < —1, which
implies that hl(P’\Bd(N )) ~P=@. Extend h to a homeomorphism
h: B*—~B" so that h|B\N = id. Thus % o f't X—B"is a map satisfying
hof(X)nP=0 and hof|4d=Ffld. -

Now let N, CInt(¥N) be a regular neighborhood of P such that
Nynhof'(X)=0 and let N,CInt(N) be a regular neighborhood of P
such that ¥ CN,. Using Lemma 2.3 there exists a homeomorphism
L'z B"—E" such that 1'(N,) = N, and WIE\N =1id. Then g =& o hof":
XU fulfills our requirements.

4. Relative shape. In this section we define a relative notion of shape
which will be needed in the proof of Theorem 1. This apparatus was also
employed in {8] to prove Theorem 2 as cited at the end of our Introduction.

Consider compacta X, ¥ contained in a space W and let GC W be
a neighborhood of X. Let { SeYier, e a sequence of maps fi: G>W
such that : :
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1) each f% is homotopic to the inclusion of ¢ in W (we will incorrectly
write this as f ~idg),

(2) for each neighborhood V C W of Y there exists a neighborhood
U C@& of X such that fx|U=~f;|U (in V), for almost all integers % and L
Then we define {fi, X, Y, G} to be a relative fundamental sequence (in W)
and we write f= {fi, X, ¥, &} We will agree to identify relative
fundamental sequences f = {fi, X, ¥, G} and g = {g, X, ¥, H} provided
- that there exists a neighborhood UC ¢ ~ H of X such that fy | = g, |7,

for almost all k. -

Now choose compacta X, Y,Z in a space W and relative funda-
mental sequences [ = {fx, X, Y, G} and g= {gx, ¥, Z, H} (in 'W). Tt is
clear that there exists a neighborhood &, C & of X and an integer Ty >0
large enough so that

gof=AgsofulG, X, Z, 6} (hzk)

is a relative fundamental sequence (in W). Because of the agreement
made above on the identification of relative fundamental sequences it
follows that the composition g o f is well-defined.

I X, Y arve compacta in W and f= {fi, X, Y} is a fundamenta]
sequence (in W), then {f;|G¢, X, ¥, @} uniquely defines a relative funda-
mental sequence (in W), for any neighborhood ¢ of X. We also see that
¥ XCWis a compactum and G is any neighborhood of X, then
{idg, X, X, G} uniquely defines a relative fundamental sequence (in Ww).
We denote this sequence by idx (when no ambiguity results) and ecall
it the ddentity relative fundamental sequence from X to X,

If X, ¥ are compacta in W and f = {fx, X, ¥, G}, 9= {g, X, ¥, H}
are relative fundamental sequences (in W), then we write fg it for
each neighborhood ¥ C'W of ¥ there exists a neighborhood U C G ~ H
of X such that

felUz2g|U  (in V),
for almost all integers k. .

Now let X', Y be compacta in W and assume that there exist relative
fundamental sequences f = {fy, X, ¥, @} and g = {g:, ¥, X, H} (in W)
such that g o f~ idx and fog~idy. Then we say that X and ¥ have
the same relative shape (in W).

We emphasize the fact that the notion of relative shape depends
on W and the positioning of X and ¥ in W, k

5. ’}‘he m:‘iin lemma. Tn Lemma 5.1 below we establish what amounts
to the inductive step in the proof of part (b) of Theorem 1. This is the

only place that it becomes necessary to get deeply involved with the
apparatus of Section 4.
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Levma 5.1. For any integer n >0 let W C E™* pe an open set and
let X, Y CW be compacta such that X is wn standard position, AimX < n,
and X, Y have the same relative shape (in W). If Wy C W is any neighbor-
hood of ¥, then there exists a PL homeomorphism ®: Fen+2_, gen+s such
that D(X) is in standard position, DB W= id, and @(X), Y have
the same relative shape (in W,).

Proof. Since X is in standard position we can find sequences {P;}2

‘and {N;};2, which satisty properties (1)-(4) of Definition 3.1. Choose

neighborhoods GCW of X, HCW of ¥, and relative fundamental

sequences f= {fz, X, ¥, ¢} and g=1{gx, Y, X,H} (in W) such that

gof~idy and fogx~idy (in W).

"~ " Now choose an integer 7, > 0 and an Integer 4, > 0 such that ¥, C

and -
fel Vo2 fil Ny, (in HA Wy,

for all integers %,l>mn,. Since Ju| Pyt Py—>H AW, is a map and
dimP; < n, we can find a PL embedding ¢: P, —~>F"2 which is as
close to f, |P, as we like. We can therefore choose @ close enough
t0 fn,|P; so that ¢(P,) CHA~W, and oxf, | Py (in HAW,) (for
example we can use the straight-line homotopy joining ¢ to Jaal Py
Using Corollary 2.2 we can extend ¢ to a PL homeomorphism @,: E*+2
— B satisfying @, | B AW = id.

Since @7 (H ~ 'W,) is a neighborhood of P, we can find a regular
neighborhood N of P, such that ¥ CO7HH ~ W;). Using Lemma 2.3
it follows that there exists a PL homeomorphism a: B¥*2-—s 22 sych
that a(N,)= N and o|P, v (B*"+A W)= id.

Then @ = @, o a: E*"*—»>F"+* is a PL homeomorphism satisfying
DB\ W = id and @|P, ~ S| Py (in H ~W)). Also it follows that
@(X) is in standard position, since & is PL.

Sinece N, is a regular neighborhood of P, there exists a retraction
r: Ny P, such that »~id (in N¥,). Thus the two smaller triangles in
the following diagram homotopy commute (where we use | for the ap-
propriate restriction): ’ :

i
That is @] ~ (@|P,) o (in H ~W,) and f, | N, ~ (fai| Py) o r (in H ~ ).
We can now use this to prove that S| Ny =@ (in H ~ W) as follows:
fnliN’h:lel or (1]1 H WI) ~Poy (111 Hn Wl):¢] (ID HnWl) N
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This will be needed below. Thus all that remains to be done is prove
that ®(X), Y have the same relative shape (in Wy).

In order to do this choose an integer n, > n; and a neighborhood
H CHAW, of ¥ such that gx|H,~g|H, (in Ny), for all integers
%,1> n,. Using the fact that fo g~idy (in W) we can find an integer
ng > n, and a neighborhood H'C H, of ¥ such that fro gx|H' ~idy.
(in H}), for all k > n;. Put ¢ = O(N, ) and for all k > n, define f: @' -W,
by fr = fr o @7 and define g;: H'—>W, by g, = @ o gx|H'. For all k > n,
put f'={fi, ®(X), Y, &} and g' = {g;, ¥, H(X), H'}. We will prove
that f’, g’ are relative fundamental sequences (in W;) which satisfy
g o f ~idgs (in Wy) and f'eg' ~idy (in Wy). ,
T "o see that f’ is a relative fundamental sequence (in W) we first
Hote that -

fr="feo @7 =@ o0 (in W)= idg,

since k> 7;. Now choose a neighborhood V' C W; of Y. Sinee f is a re-
lative fundamental sequence (in W) there exists a neighborhood U C ¥,
of X and an integer n, > ng such that f,|U ~£|U (in V), for all %,1 > n,.
This obviously implies that f,,|®(T)~f;|D(U) (in V), for all k,1=n,.
Thus f' is a relative fundamental sequence (in Wy).

To see that g’ is a relative- fundamental sequence (in W) we note that

Gi =@ o gel B =y o gulH' (in Wy) = fio el H' (in Wy) = idg (in W),

for all & > n;. Now choose a neighborhood U C G' of @(X). Then &7YT)
is @ neighborhood of X and there exists a neighborhood V CH' and an
integer m, > ny such that x|V =g|V (in &XT)), for all k, 1> n,. It is
then clear that

GelV =0 ogx|V =P og|V (in U)=g|V,

for all k,1> n,. Thus ¢' is a relative fundamental sequence (in Wy).

To see that f' < g’ ~idy (in W,) choose a neighborhood V C H' of Y.
Since f - g~idy (in W) we can find a neighborhood V' CV of ¥ and an
integer m, > n, such that fi o gx|V’' ~idy (in V), for all % > n,. Then
we have :

Jeo0elV = (fr o @) o (Do gi) |V = fr o gu|V' ~idy. (in V),

for all k> n,. This implies that f'o g’ ~idy (in W)).

To see that g'o f'~idyx (in W), choose a neighborhood U C &
of @(X). Then ®~YT) is a neighborhood of X and there exists an integer
7y 2 7y and a neighborhood U’ C @(TU) of X such that gy o fi| U’ ~idy
(in &7XT)), for all k = n,. Clearly &(U')C U is a neighborhood of @(X)
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and also
Gr e S| @(U) =D o giofr o &7 D(T)
& @ oidy o &7 O(T) (in U) = iy, »

“for all k> 1. Thus g’ o f’ ~idgy, (in Wy) and we are done.

6. Proof of Theorem 1. We will first establish part (b) of Theorem 1.
Let X', Y CE*™ 1 x0CE" be copies of X, ¥, respectively which are
in standard position in F*™*1x 0 and let h: E\X'—E™\Y' be a homeo-
morphism. We must prove that Sh(X') = Sh(X') (which implies that
Sh(X) = Sh(Y)). Choose a number t, > 0 such that Xouy C Int(Bf).
Then choose #, € (0,%) such that Int(B;™"')x 0 CE" contains X' v Y’
Since A (2B}) is bicollared in E™ we can use the Generalized Schoenflies
Theorem of [6] to write

E™\W(B}) = Av B,

where A is the bounded component (which is homeomorphic to Int(B}))-
The proof now splits into cases and we first treat the case in which Y CA
and h(Int(BENX') = A\Y'. In this case it is clear that #, can be chosen
large enough so that BE"+*x0C 4.

Let r: B">Bi™"x0 be a retraction and define a homotopy
F: (Bimttx 0)x I»E" by

By Dy, ooy Bomyns 05 0,0, 00) = (@15 vvey Bappys, 8,0, 0, .00,

for all (%, ey Bome1, 0,0, 0,..) e Bi"'x 0 and tel. For each integer
k>0 let fr: BITIx 0B x0 and g Byt x 0->Bi*tix 0 be de-
fined by

v fe=rehoFy, ge=7ch""oFy.

We will show that f = {fx, X', ¥'} and g = {gx, ¥’, X'} are fundamental
sequences which satisty ¢ o f ~idy and f o g ~idy. (in B+ x 0), where idy
and id ;- are the identity fundamental sequences of X' and Y’, respectively.
Then from [5] it will follow that Sh(X’) = Sh(X"). )

To see that fis a fundamental sequence let 7 C Bi***x 0 be an open
set containing ¥’. Since »~X(¥) is an open set containing ¥’ it follows
that 27Hr"Y(V)\¥’)w X' is an open set in H" containing X’. Thus there
exists an open set U C Bj"**x 0 containing X' and a number & >0 sueh
that F(Ux [0, &]) C A7 (r~*(V\X') v X’. This implies that Fyy|U ~F U
(in BHr~YV)\X)), for all integers %, 1> 1/e. Since this homotopy takes
place in the complement of X’ we have hoFy,[U~he Fp|U (in
r Y (VI\X'), for all %, !> 1/e. Then applying r to this homotopy we have
roholy,|U~xrohoF,;|U (in V), which means precigely that fu|U=~f|U


Artur


272 T. A. Chapman

(in ¥), for all integers %, > 1/e. Thus fis a fundamental sequence. Simi-
larly ¢ is a fundamental sequence.

To see that g of~idy (in BE**'x 0) let UCBF*** X0 be an open
set containing X’. Since h(r " UNX’)w Y’ is an open set in B" contain-
ing Y' we can find an open set VCA(r Y UNX')w ¥’ containing ¥’
such thatb

By or|V 2idy (in R UNX) X,

for almost all %. Since X' C Int(BE""*) X 0 we can clearly find a compact
polyhedron P C Bi™* such that

X’ CInt(P)x 0 CPx0CHY(T\Y)u X

Then Px 0 is a closed neighborhood of X’ (in BX™*'x 0) and we will
prove that gz o fi ~idpy, (in U), for almost all integers k. This will he
suificient to establish that g o f~idy.

Sinee PxO0CARYV\Y')u X' we can choose &.>0 so0 that
F((Px0)x[0, &]) CA™YV\X') « X'. Choose an integer 7y > 1/, so that

Py or|V =idy (in 2~ (UNX') v X'),

for all & = n;. Note that ko Fy;,(Px 0) CV, for all & > n;. Thus for each
integer k >, we can define a homotopy &: (P x 0)x I—h(r { UNX')u ¥’
such that Gy =1 o Fy, | Px 0 and G, = Fyy 070 hoFyy| P x 0. Note that
GIPX0)NY =0 and G(Px0)~ Y = 0. Since dim (P x I)-dim ¥’
< 3m—+3 < n we can use Lemma 3.5 to obtain a homotopy H: (P x 0)xI
—>h{r(U\X') such that H,= Gy and H,= &,. Thus for all % > n
we have i

gkofk]_P)(O:roh_lo 1/k°7‘°h°F1/kl-P><O
2rolT oo By |PX O (in U)=7oF,,|Px0.

All we need to do now is verity that 7 o F,,;|PX 0 ~idpy, (in U), for
almostiall values of k. Note that A~{V\¥’) v X' C+~(U). Since we had
chosen >0 so that F((Px 0)x [0, el])Ch“l(V\Y') v X', we have
r oF((Px 0)x[o, elj) C U. But this implies that » oI | PXO 2idpy,
(in U), for all & > n,. This completes the proof that g o f = idy.. Similary
one can prove that f e g~idy.. Thus Sh(X') = Sh('J“Z’).— o :

Now returning to cases assume that Y’ C A and B (Tot (BEN\X")
7 A\Y'. Then we must have h(Int (BANX') = B, the unbounded com-
ponent of E™\h(2B}). But appealing to the Generalized Schoenflies
Theorem of [6] this implies that X’ is cellular, By [13] we have Sh(X")
= Bh({point}). Also we must have MENBE) = A\Y'. Then Y’ is also
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cellular and we have Sh(X')= Sh({point}) = Sh(¥’). Thus we have
treated all cases in which ¥'C A.

On the other hand let us now assume that ¥’ ¢ 4, hence ¥’ ~ Bz~ @.
Note that we have either (Int(BENX')= B\X' or h(E"\B}) = B\Y"
It h(E™\B}%) = B\Y’, then it follows that B ~ ¥' = @, a contradiction.
Thus we must have h(Int(BE)\X') = B\Y’, hence h(B}\X') = CI(B\Y".
Choose any p € 4 and let u: C1(B)->Cl(A)\{p} be a homeomorphism such
that u|Bd(B) = id. Then u o k[B\X': BP\X'—>CL{AN({p} © u(¥' ~ B))
is a homeomorphism and we can extend u o h|éBj, = 1|2Bj to a homeo-
morphism «': B™\Int(B})-Cl(B). Define 1': EA\X'—E™ ({p} v u(¥' » B))
by setting

BIBINX = u o h|BI]NX', W [BE™\B}j =u'.

Then k' is a homeomorphism and the first case that we treated above
implies that Sh(X") = 8h({p} v u(¥’ ~ B)). Since h(Int(B}N\X')= B\Y’
it follows that h(E"\Int(B})) = Cl(4A)\Y'. This implies that ¥ ~.4 is
cellular, hence Sh(Y’' ~ A) = Sh({point}). Now decomposing ¥’ we get

Sh(Y') = Sh((Y’' ~4) v (¥’ ~ B)) = Sh({point} v (¥’ ~ B)) = Sh(X"),

as we observed above. This completes the proof of (b) of Theorem 1.

For the proof of (a) of Theorem 1 we choose X', ¥' C E" (n > 2m+2)
to be copies of X, Y vespectively which are in standard position. We
will prove that B\X’' and E"™\Y' are homeomorphic. The procedure will
be to use Lemma 5.1 to inductively construet sequences {U}j; and
{V:}2, of open subsets of B" and a sequence {h:};2, of homeomorphisms
of B" onto itself such that

(1) X' = U; and U,,,C U, for all i >0,
i=1

(2) ¥'=[V:and V,,CV; for all >0,
i=1
(3) hos_y 0. o hy(X')CVy for all i >0,
(4) he| B™\V;=1id for all 4 >2j—1 and j >0,
(B) Tigg o oo © iy(T3) D X7 for all i >0, and
(6) B} E™hy; o ... o hy(U5) = id for all 4> 2j and j > 0.

" For the time heing we assume that these sequences have been con-
structed and we show how to prove that B\ X’ and EF™\Y’ are homeo-
morphic. Choose any = « Z"\ X' and consider the sequence {; o ... o hy(®)}oeq -
If j is chosen large enough so that x¢ U;, then it follows from (6) that

Tig 0 ee 0 Iy(#) = Dyj 0. 0 Iy(2)
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for all i3> 2j. From (5) it follows that &; o ..o hy(x) ¢ ¥', for all ¢ > 2.
Thus it makes sense to define a function h: EN\X'~HE\Y’ by

h(x) = limh; o ... o Ry(z) .
Since each h; is 1—1 it follows that % is 1—1. If » e B"\X" and U C B\ X’
is & compact neighborhood of x, then there exists an integer j so that
" U~ U;=@. From (6) it follows that h(U) = hy; o ... o 1y(U), hence h(T)
is a neighborhood of %(#). This implies that % is open. To see that # is
continnous and onto choose a compactum V C F™\Y' and choose j >0
such that V ~V; = @. It follows from (3) that V C hy;_; o ... o (BN X")
and it follows from (4) that V C 2 (B™\X') and A™V) = (hyjy © ..o © hy) "X T).
Thus % is our desired homeomorphism.
We now turn to the construction of the necessary sequences. For
each integer & > 0 consider the following statement.

Py: There exist collections {Us}%., and {V;}%., of open subsets of E™ and
a collection {¢}¥, of homeomorphisms of E" onto itself such that
X'CU; and Y'CVyy for 1 <4<k, and
(1) U4, C U, for 1 <i<k—1, and U;C{zeB"|d(X, ) < 1/i},

for 1Ci<hk,
(2) Vi, CVi, for 1<i<k—1, and ViC{zeE"|d(Y", x) < 1/i},
for 1<k, :
(8) hagsq © v o By(TU) CVy for 1< i<k,
(4) 7| BNV, =1id for 1 <j <k and 2j—1 < i < 2k, :
(8) hyyo e o hy(U) DV 4, for 1 <i< k, and hy,o ..o h(Ur) D Y,
(6) | B™\Rgj 0 o o y(Uy) =id for 1 <j < % and 2j < i < 2k,
(7) hogy 0 o @ By(X') is in standard position, and

(8) hog o o hy(X'), Y’ have the same relative shape (in hy, o ... '

« o hy(TUg)).

‘We will prove that Py is true for all . Moreover in the inductive step
from Py to Py, we will construct the necessary collections of open gets
and homeomorphisms for P,., by adding appropriately constructed
Uisry Viery hogys, and hy,p, to the given collections {TE,, {Vi%,,

and {R:}3%, for P;. Once this is done we will be finished with the proof.
For k=1 let :

Vi={oeB"| 4(¥',0) <1}

and use the assump.tion that Sh(X') = Sh(¥’) to conclude that X’ and ¥"
have the same relative _shape (in B"). Then Lemina 5.1 implies the existence
of a PL homeomorphism &,;: B> E" such that W(X')CVy, Iy(X’) is in
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standard position, and hy(X’), ¥’ have the same relative shape (in V).
Then put

Uy = 17(Vy) A o e B 4(X,2) <1}

and once more use Lemma 5.1 to obtain a PL homeomorphism g,: B*— E"
such that g(¥Y') Chy(Uy), ¢(¥’) is in standard position, g,| E™\V, = id,
and 7 (X'), go(Y’) have the same relative shape (in &,(T;)). Then define
hp= g5 * and note that this implies that P, is true.

For the inductive step assume that we have collections {T%_,,
{Vi¥e_,, and {R}%*, for which Py is true. Let

Vi =Vi N hgy o e o hy(Ug) ~ {w e B* (X', ) < 1/{(k-1)}

and use (8) and Lemma 5.1 to get a PL homeomorphism hy,,: B> E*
such that hgyq o .. o ly(X") CViyyy hopyg 0. o By(X') is in standard po-
sition, Rygyy o ... o hy(X’), T’ have the same relative shape (in Vi.,),
and Aoy | By, o oo o by(Ux) = id. Then put

Upir = Up, o (hggg © voe 0 1) H(Vipr) » {m e B d(X7, 2) < 1J(h+1)}

and once more (as in the construction of ;) use Lemma 5.1 to construct

a PL homeomorphism hy.,: E'>B" such that hy,,| BV, =id,
hogag © e o By(Upy) D X'y hopygo o o By(X’) is in standard position, and
Ropz © - 0 By(X'), ¥’ have the same relative shape (in hgps © . o By Upy))-
This completes the inductive step and the proof of the theorem.
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