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c-continuous fundamental groups

by
Karl R. Gentry and Hughes B. Hoyle*, I (Greensboro, N. C.)

1. Introduction. The idea of ¢-continuous functions was first intro-
duced in [1]. The purpose of this paper is to define a new type of funda-
mental group using c¢-continuous homotopy for the equivalence relation
instead of the usual homotopy.

Section 2 consists of a necessary preliminary result.

In Section 3, we give our definitions and prove our main theorems
most of which parallel the usual theorems about fundamental groups.

In Section 4, examples are given which show that our type of funda-
mental group is non-trivial and different from the usual fundamental
group.

Throughout this paper the symbol I will be used for the closed unit
interval and the symbol f 7 g will mean that f is homotopic to g modulo ¥,.

0

The reader is referred to [1] for definitions not covered in this paper.

2. Preliminary result.

DeFiniTIoN 1. [1] Let X and Y be topological spaces, let f: X ¥
be a function, and let p ¢ X. Then f is said to be ¢- continuous at p provided
if U is an open subset of ¥ containing f(p) such that ¥—7T is compact,
then there is an open subset ¥V of X containing p such that f(V)C U.
The function f is said to be ¢-continuous (on X) provided f is c-continu-
ous at each point of X.

TeaEoreM 1. If f: XY is c¢-continuous and g: ¥Y—>Z is a homeo-
morphism from X onto Z, then gf: X—~Z is c-continuous.

Proof. Let U be an open subset of Z such that Z—U is compact.
Then since g is a homeomorphism, ¥—g~%(U) = g~(Z—U) is compact
and g~*(U) is open. By [1, Th. 1, p. 1], since f is ¢- continuous, f g™ )
is open. Thus (gf)~(T) is open and by [1, Th. 1, p. 1}, gf is ¢-continuous.

(*) Financial assistance for this paper was furnished by the University of North
Carolina at Greensboro through a Research Fund and a summer research stipend.
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3. Definitions and main results.

DerFinmoN 2. Let ¥ be a topological space and let gy e ¥. Then
O(X,y,) is the set of all continuous functions f: I —Y such that f(0)
=y, = f(1). We say that f is c-continuous homotopic to g modulo y,,

denoted by f ~ g, provided there is a ¢-continuous function F: IXI-+Y
Yo .

such that F(z, 0) F(x,1)=g(»), and F(0,1t) =y, = F(1,%) for

all zel, tel.
4
THEoREM 2. The relation ~ is an equivalence relation on C(X,y,).

Yo
Proof. Let feC(Y,y,). Since f ~f and every continuous function
Yo

c
is ¢-continuous, then f ~ f.
Yo

Let f,g < C(Y,y,) and suppose f ;ig. Then there is a ¢-continuous
b0)

function F: IxI-Y such that F(z,0)=f(z), F(s,1)= g(z), and
F(0,t)=9y,=F(1,¢t) forallw eI, t ¢ I. Define K: IXI-IX I by K(z,1)
= (z,1—1) and define @ = FK. Since F is ¢-continuous and K is- continu-
ous by [1, Th. 3, p. 4], @ is ¢-continuous. Now G(z,0) = F(K (z,0))
=F(z,1)=g@), G@1)=FEK@®1)="F,0=f(e), and G(0,1)

=F(0,1—1t)=y,=F(1,1—1)=G(1,1) for all z eI, t<I. Hence, g:»f.
Yo
Let f,g,h e C(X,y,) and suppose that f:Jg and grih. Then there
Yo Yo

=f(w)7
=F(1,t) for all eI, tel and G(z,0)

are c-continuous functions F,@: IxI->Y such that F(z,0)
F(x,1) = g(z), and F'(O; 1) =%

=g(z), G(z,1)="h(z), and G(0,t)=1y,= G(1,?) for all wel,tel.
Define H: IXI->Y by
H(x,t):{ (@, 26) i wel, 0K<i<}.
Gz, 20—-1) it sel, 1<i<1.

Since F' and @ are ¢-continuous, by [1, Th. 3, p. 4], Hl,xm]m and H|zy g,y
are ¢-continuous. Therefore, by [1, Th. 4, p. 4], H is ¢-continuous. Now

H(z,0)=F(e,0)=f(») and H(z,1) = G(z,1) = h(z) for all z . Also
F(0, 2t) it o<t}
H(0 t):l ’ SUTE 1
, lG(0,2t——1) it 1<i<1 Yo forall tel,
and
- F(1,21) it 0<t<}
H(l 1):{ ’ - =2 = ¢ 1
, G(L,2—1) i j<i<l Yo for all tel.

c
Therefore, f ~h and hence ~ is an equivalence relation on (Y, y,).
0

icm

o-continuous fundamenial growps 1x

DEFINITION 3. Let f,geC(Y, 7). Then f=*g is the function in

C(YX, y,) defined by

» f(2x) f ooy,
* =
Fro@={""" | & ieses

The equivalence relation ~ breaks 0(Y, y,) into disjoint equivalence
Yo

classes. Liet C(Y, 1, denote this set of equivalence classes. If [f], [4]
€ 0(Y, y,); then we define [f]-[g] to be [f* gl
Levwa 3.1. If [f1, [g] € O, yo), then [f1-[g] is well-defined.
Proof. Let fi,f.e[f] and g1, g.c[g]l. Since f,,fe[f], there is
a ¢-continuous function F: IxI-»Y such that F(z,0)= fi(z), F(z,1)
= fy(®), and F(0, 1) =y, =F(1,%) for all zel, tel. Since G1s 02 €191,
there is a ¢-continuous function G: I x I—¥ such that G(z, 0) = g,(z),
G(z,1) = go(z), and G(0,1) = y,= G(1, t) for all eI, tel. Define

a function H: IXxI>Y by
F(2m,1 if 0<a<y tel

H(.’E,t):{ ( 7) ] 2 b

G(2z—1,t) if i<a<l tel.

Since F and @ are ¢-continuous funetions, by [1, Th. 3, p. 4], Hpzxr
and Hlyp g5y are c-continuous functions. Therefore, by [1, Th. 4, p. 4],
H is a c¢-continuous function. Now

F(22,0) e
= = = (f : for all wel,
20,0 ={ g0 1 0= \pznyy= B 6@ Toralla
and
F(2x,1) fa(2%)
= = = (fp * ¢} (2 ¢ 1xzel,
H(x,1) {G(2m—1,1) {gg(‘.’:w—l) (fe * g2) () or all x
and

HO0,t)=F(0,t) =y,=G(1,t)=H(1,?) for all tel.

Thus f, * g ~ fo * g and hence [f]-[g] is well-defined.
Yo

DEeFINITION 4. The identity element of C(Y,y,), denoted by [e], is
the equivalence class which contains the function e: I —Y¥ defined by
e(x) =y, for all zel.

Levva 3.2. If [f1e O(Y, o), then [f1-[e]l=[f]

Proof. Since f+ o~f, then f ezyi;»f. Thus [f]-[e] = [f]-

DEFINITION 5. If [f]e O Y, 9,), then [f]7* is the element of 0(Y, yo)
containing the function g: I—»Y defined by ¢(t) =f(1—1) for all tel.
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Lawwa 3.3. If [f]e (X, 50), then [f1-[f17 = [e]-

Proof. Let g(f)=f(1—1) for all tel. Then [F10f1t=
= [f*g]=[e]

TemorEM 3. The ordered pair (C1(X, %o),-) 18 -@ group.
is associative. But this follows

[f1-[9]

Proof. It remains only to show that -
[+

immediately sinee (fx* g) * h;wf* (g * %) implies (f=* g)=* hr;f* (g*h).
0 (]

From now on, the symbol Cy(Y,y,) will denote the set Oy, y,)
together with the operation - and Cy(Y, y,) will be called the ¢- continuous
fundamental group of Y with respect to y,.

THEOREM 4. Let 9, € ¥. Then there is an epimorphism A: m(Y, yg)
= Cy(Y, ).

Proof. Let [f]em(Y,y,). Define A([f]) to be the equivalence class
in 0(Y,y,) which contains f.

Let [f]1e€m(Y, y) and let f, g €[f]. Then f~g and thus f~g Thus,

A is well-defined.

Let M e C(Y, y,) and let fe M. Then [f]em (Y, y,) and A([f]) =
Therefore, A is onto.

Let [f1, [9] e m(X, 9o). Then A([f1-[g]) = A([f * ¢]) =
= A([f1)-A([g]). Hence, A is an epimorphism.

TEEOREM 5. Let 4, e ¥y, let y,e X,, and let H: ¥,->Y, be a homeo-
morphism from X, onto ¥, with H(y,) = y,. Then 0(Xy,y,) 18 isomorphic
to O Ys, ¥s)-

Proof. Let fe O(X,,9,). Then f: I-Y, and since H: ¥,~Y,, Hf:
I->Y,. Since Hf is continuous and Hf(0) = H(f(0)) = H(y,) = ¥a= H(y:)
= H(f(l)) = Hf(1), Hf e O(¥,,y,). Define i: (¥, )~ O X,, Jz) by
ML) = [Ef].

Let [f1eOyfYy,9) and let f,ge[f]. Then fg. Thus, there is
n

a c¢-continuous funetion F: IxI->Y; such that F(z, 0) = f(z), F(z, 1)
= g(z), and P(0,t) =y, =F(1,¢) for all wel, tel. Then HF: IXI->Y,
and by Theorem 1, HF is a e- contmuous function. Now HF (z, 0)
H(F(z,0))= (f(m)) Hf(z) for all sel, HF(z,1)= H(F(z,1))
Hlg (w)) Hg(2) for all w eI, and HF(0,%) = H(F(0,1)) = H(y,)= ¥,

H(y,) = H(F(1,%) = HF(1,%) for all teI. Therefore, HfNHg and

[Hf]=[Hg]. Hence, 1 is well-defined.

» Let {f]e Ol(Yz,y2 Then fe O(X,, y,). Sinee f is continuous, and
Hf(0) = H(f(0) = H-yy) =y, = H\(y) = H{f(1)) = Bf(1), B~
€ 0(XY4, 9,). Therefore, [H"lf]e Oy, 1) and since A([H™*f]) = [HH'f]

=[f], 4 is onto.

[fxg]l=
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Let [f1,[g] € Ci(¥:, 1) such that A((f]) = A({g]). Then [Hf]=[Hy]
and therefore, Hf ~H ¢. Thus there is a ¢- continuous function K: I x I +¥,
Ya

such that K(z,0) = Hf(»), K(z,1) = Hyg(z), and K(0,t) = y,= K(1,1)
for all # €I, t ¢« I. Thus by Theorem 1, H 'K is a ¢-continuous function.
Now

HK(z,0)= H Y E(z,0)) = H{Hf (2)) = for all wel,
HOE(z,1)=H™ (E(2,1)) = HHy(z)) = g(x) forall wel,
HE(0,%) = H(K(0,1)) =H y) =t for all teT,
HK(@1,1) = HYE(1,1)) = H Y y) =1 for all tel.

Therefore f rcvg and thus [f]= [g]. Hence, A is one-to-one.

. Let [fji,1 [g]e O(¥y, ). From the definition of f* g, it is obwous
that H(f* g) = Hf # Hg. Then
MIf1-[g]) = A(LS * g)) = [H(f * )] = [Hf = Hg] = [Hf]-[Hg]
= A([fD)- A(lgD) -

Hence, A is an isomorphism.

TraeoREM 6. If Y 4s pathwise connected and y,,y, € ¥, then O(Y, yo)
is isomorphic to Cy(X, y1).

Proof. Since Y is pathwise connected, there is a continuous function
p: I->Y such that p(0)=y, apnd p(l)= 7. Define : I-Y by (o)
= p(1—w) for all # ¢ I. Then 7 is continuous. Let ¢, and e, be the functions
defined by e(®) = 9, and e(x) =y, for all z e I. It is well known that
D * ﬁ’;’eo and P*p ;"51- Therefore, [p* 7]=1[e] and [P*pl=T[e].

Define 4: Oy, y0)~Cu( ¥, 1) by A([f)=[F*(f*p)l. Since * satis-
fies the associative law up to homotopy, for convenience in the future
the parenthesis in [P * (f* p)] will be omifted.

Let f,geC(X,y,) such that ffig. Then there is a c¢-continuous
Yo
function F: IxI—Y such that F(z,0) = f(z), Flz,1)= g{z), F(0,?)

=1y,=F(1,t) for all zel, teI. Now
P(21) it oo,
(T’*(f*P))W)=|f(4$—2) #t i<o<i,
pldo—3) if F<w<l,
and
P(2) i ooy,
(ﬁ*(g*p))(w)z{g(w—m it i<e<i,
p(4z—3) if i<e<l.
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Define G: IXI—+Y by «
B(2t) if
Fdz—2,1) if
p(d0—3) if

It is easy to check that @ is well-defined. Since @[y 1z, r 18 continu-
ous and @Flypgaxs i ¢-continuous (by [1, Th. 3, p. 4]), Glogxr 18
¢-continuous by [1, Th. 4, p. 4]. Since @y xr I8 continuous, by [1,
Th. 4, p. 4], & is c-continuous. Now

o<y tel,
d<o< tel,
i<, tel.

Gz, 1) =

P(2x) p(2x)
Gz, 0)={F(4z—2,0) = [f(4;v——2) =(p*(f*p))@) for all wel,
p(42—3) p(d2—3)
and
P(2) P(2)
Gz,1) = [F(etw-—z, 1) = ‘g(e&m—2) = (Ps(g*p)(w) forallwel,
p(42—3) D (40—3)
and
G0, 6)=720)=p1)=y,=p(1)=G(1,t) foralltel.

Therefore, 7 * (f*p)f—rfa «(gxp). Hence, if f';c»g, then & #* (f#* p)
,}3—;* (g * p). Similarly, i h;ﬁk, then p * (b 7)~p * (k * B).
;3 1 Yo
Leb [f]1e Cu(Y, yo). Then feC(X,7,) and P * (f* p) is continuous.
Now (B*(f*p)(0)=5(0)=p(1)=y, and (= (f*p)(1)= (f*p)(1)

= p(1) =y,. Therefore, P=*(f*p)eO0(X,5). Thus, A([f])e C(T,y).
Hence, 1 is into. :

Let [f]eCy(T,y,) and let f,ge[f]. Then fg. Thus, 5+ (f*7p)
%p* (9 * p). Therefore, 4 is well-defined. -

Let [f1,[g1€ Cy(Y, %) such that A([f]) = A([g]). Then [7*fx*p]
= [Pp+*g=*p] and therefore 7 * (f x p) 5;@ * (g * p). But this means that
p*ﬁ*f*p*f)ip*ﬁ*g*ﬁ*p and thus ¢, * f 30'5:00*9*904 There-
fore, f ;:'g. Hence, [f]: [g] and A is one-to-one.

Let [f] ¢ (Y, 9). Then [p=f*ple0y(Y,y) and A([p+*f*pl)
=[p*p*f*pxpl=1[e;*f*e]=[f]. Hence 1 is onto.
Let [f]; [g} € 1(YJ Yo)- Then
Af1-[9D) = 2([f*g]) = [P*fxg*p] = [B*f* e+ g% ]

=[pxfrpxprgrpl = [Bxfxp]-[F*g*pl= (1) -1{g)) .
Hence, 4 is an isomorphism.
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From now on in view of the previous theorem, if ¥ is pathwise con-
nected, then Cy(Y) will denote the ¢-continuous fundamental group of ¥
with respect to any point of ¥.

TaHROREM 7. If Y 4is a compact space and y,e ¥, then (Y, 1)
= 0¥, Yo)-

Proof. This follows immediately from the fact that if the range

space is compact then a function is continuous if and only if it is
¢-continuous.

4. Examples.

THEOREM 8. Let Y = Plane — {(0,0)}, let T be the usual induced
topology for ¥ and let yy= (1, 0). If f(w) =y, for all 3 I and g: I>Y is
a loop at y,, then frig.

Yo

Proof. Let D be the closed unit disc and H: I x I+ D be a homeo-

morphism from I x I onto D. Then it is cléax that H maps the boundary

'of Ix I onto the boundary of D and the interior of I X I onto the interior
of D. Define F: [0,1)->[1, c0) by F(z)= 1/(1—a) for all £¢[0,1) and

" define G: {interior D}—(1, o) by G(z,y)= Fla*+y*"). Then F is

a homeomorphism and @ is continuous and onto. Define K: I X I+Y by

GH(z,y) i Oo<oe<l, 0<y<l,
K(z,y)={¥ it #=0,0rz=1,0ry=1.
g(x) it y=0.

Now K(0,1)=y,= K(1,1), E(z,0)=g(), and K(z,1) = f(z) for all
wel, tel. It is clear that K is eontinuous on the interior of IXI and
that if B is the boundary of I X I, then K|z is continuous. So it remains

. to show that K is ¢-continuous on B. Let p € B and let U be an open

subset of ¥ with compact compliment containing K (p). Since Kl|p is
continuous, there exists an open subset M of B containing p such that
E(M)CU. Since U has compact compliment, there is a number r>1
such that (r, o0) C U. Let R = {(#,y)] 1 > (#*+*)"* >1—(1/r)}. Then
R is open and G(R)C U. Now H~YR) is an open subset of IXI. Let
N=HYR)vM. It zeHYR), then H(z)eR and K(z)= GH()
€ G(R)C U. Thus K (N)C U. Let ¢ « M and suppose ¢ is a limit point of
(Ix I)—(B v H‘l(R)). Then since H is a homeomorphism H(g) is a limit
point in D of {(z,y)| (#*+9*)* < 1—(1fr)}. But ¢ is in B, so H(g) is in
the boundary of D which is impossible. Thus ¢ is not a Limit point of
(IxI)—(Bw HXR)). Also ¢ is not a limit point of B—M. Therefore
g is an interior point of H™Y(R) v M. Thus, since H~YR) is open and each
point of M is an interior point of H~*R)w M, N = HYR) v M is open.

[
Hence, K is c¢-continuous and f~g.
Yo
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CoROLLARY 8.1. Let ¥ = Plane —{(0, 0)} and let T be the usual induced
topology for Y. Then Oy(Y) is the trivial group.
Proof. This follows immediately from Theorem 8.
™7 The following example shows that two spaces pmy have the same
fundamental group and yet have different c¢-continuous fundamental
£Toups. _
ExavpLE 1. Let X be the unit circle with the usual topology and
et ¥ = Plane—{(0, 0)} with the usual induced top.ology. T.hen 7, (X))
is isomorphic to 7, (¥) but Cy(X) and 0,(Y) are not isomorphiec. |
Proof. By Theorem 7, z;(X) is isomorphic to 0y(X). T.hu.s both are
isomorphic to the integers under addition. However m(Y) 1.s 1s0morp}}1@
to the integers under addition while by Corollary 8.1, 0,(Y) is the trivial
group. » :
The. following example shows thabt there are non-compact spaces
with non-trivial ¢-continuous fundamental groups.

BxampLe 2. Let A= {(#,y)| *+y*=1}, let B= Lﬁjﬂ{(m, N ©v=mn,

n=2
0 <y <n}let Y= A v B, and let T be the usual induced plane topqlqu
for Y. Then Y is not compact and if y, = (1, 0), C(Y, %) is not frivial.

Proof. Let f: I+Y be defined by f(x) = y, for all z ¢ I. Let; g: I->Y
be defined by g(«) = (cos2nz, sin2nx) for all x ¢ I. Suppose f Tog' Then

there exists 2 ¢- continuous function F': Ix I such that F(z, 0) = f(%),
F(w,1) = g(2), and F(0,t)=y,=F(1,1) for all » e I, t e I. If the range
of ' is bounded, then the range of F' is contained in some compact subset
‘of ¥ and by [1], Th. 5, p. 5, F' is continuous and hence, f ;;'g. But f is not

homotopic to g modulo ¥y, and thus the range of ¥ is unbounded. There-
fore the range of ' must intersect an infinite number of components of Y.
Let J6 be the collection of components of ¥ which intersect the range
of . Then I X I = | J {F~YM)| M e M}. If M e b, then by [1, Th. 1, p. 1],
since F is c-continuous and M is compact, then F~*(M) is closed. It is
clear that if M, N e A, then FY M)~ F}N)=@. Thus IxI is the
union of a countably infinite collection of disjoint closed sets which is
impossible. Thus f is not ¢-continuous homotopic to g and hence C;( X, %)
‘is not trivial.

The authors have not yet been able to show that there is a non-
compact, pathwise connected space which has a non-trivial ¢-continuous
fundamental group. A candidate for such a space might be as follows:
Let ¥ be the subset of the plane under the usual topology defined by

Y= {z, 9| ??+y=1yv ( \j;{(@v, N y=n@@E—2)+n 1< 2}).
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Another interesting problem is that of almost continuous funda-
mental groups and connectivity fundamental groups. In [2], the necessary
preliminary theorems are proved about almost continuous functions and
connectivity maps to insure that these fundamental groups can be defined
in a similar manner to ¢-continuous fundamental groups. These groups
also turn out to have the usual properties of fundamental groups. The
problem is to decide whether or not these groups are different in some
cases from the usual fundamental groups.
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