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Closed mappings. and the Freudenthal compactification
by
Krzysztof Nowinski (Warszawa)

The main purpose of this paper is to give a characterization of
closed mappings of locally compact weakly paracompact spaces into
compact spaces and to apply this characterization in a study of the
problem of extending closed mappings over the Freudenthal compacti-
fication. In the first section we state Theorem 1, giving a necessary
condition for the closedness of a mapping f: X—Y from a weakly
paracompact space X into a compact space ¥, and give some applica-
tions of this theorem. The above-mentioned characterization of closed
mappings is given in Theorem 2. The second section contains results
about extensions of closed mappings over some cormpactifications. The
main theorem of this part is Theorem 5, an essential generalization of
a result of Morita ([7], Theorem 5). Lastly, the third section containg
some facts on the Freudenthal compactification. Tn partieular, Theorem 7
gives a characterization of the Freudenthal compactification of some
subsets of manifolds. ~

All notions and notations are taken from [1] with a small modification:
if »X is a compactification of X then we regard X as lying in »X and we
write shortly rX\X instead of »X\r(X). All spaces are assumed to be Ty
and all mappings are assumed to be continuous. The weakly paracompaet
(metacompact) spaces are called shortly WPC spaces.

We define, moreover, some useful notation: if + is a collection of
disjoint subsets of the space X, then X/# denotes the guotient space
X/R,4, where the equivalence relation R4 is defined as follows:

zkay iff x=y or @,yeAd for some Aet.

1. Closed mappings.

DEFINITION 1. A mapping f: X +Y is closed iff for every closed sub-
set A of X ity image f(4) is closed in Y.

Let us notice the following obvious

ProrosirioN 1. If there ewists a compact subset Z of X such that
F(X\Z) is finite, then the mapping f: XY is closed.
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ProrostTION 2. Let f: XY be a closed mapping into the compact
- space ¥ and let £ = {Ag},.s be a covering of X satisfying one of the following
conditions:

(i) # is locally finite,

(ii) #4 is open and point-finite.

Then there emists a finite subset 8 of 8 such that the set f(X\sE é,AS)
is finite.

Proof. We assume that the set S is infinite and our assertion does
not hold, i.e. that for every finite subset §; of 8 the set f(X\ |J4,) is

868y

infinite. We shall define inductively a discrete set O closed in X. Let «, be

a point of X and let 8, = {s: 7, € 4,}. Since the covering 4 is point-finite

in both cases (i) and (ii), the set S, is finite, and hence, by our assumption,

the set f(X\ |J4,) is infinite. Now we assume that we have defined,
s€s.

L
for some =, points {x, ..., xx} such that f(@:) # f(ay) if @545, Let S,
= {s e 8: @; e A, for some ¢ < n}. The set 8, is finite and hence the set
F(EN\ U 4,) is infinite. Take as x,,., a point from the set

- I\ U Ay (e, oy )

Let € = {wy, 3, ...}. For any s e § the set 4, contains at most one
point from the set C. By (i) or (i) the family {{z,}}3, is locally finite
and hence the set (' is closed and discrete in X. The mapping f|C is closed
and one-to-one, hence it is a homecmorphism of ¢ onto a closed sub-
set of Y. But the compact space ¥ cannot contain an infinite closed and
discrete subspace, and this contradiction establishes onr proposition.

TEmorEM 1. Let X be a WPC space and let ¥ be compact. If the mapping
f: X+ i closed, then for every open covering U, = {Us}ses Of X there emists
a finite subset 8' of 8 such that f(X\ \J U,) is finite.

' 8eS’

Proof. As X is WPOC, W has & point-finite refinement U = {V,}.z-
Applying Proposition 2, we obtain a finite subset 7' of T such that
f (X\tL%,Vi) is finite. Selecting for every ¢ « T such an s e § that V. ,CU,,

we obtain a finite set & C § satistying the required conditions.

We now give two important corollaries to Theorem 1. -

DEFINTTION 2. A Ty space X is called rim-compact iff it has a base.
B = {B,};cs such that Fr(B,) is compact for every s e 8.

Morita has proved ([5], Theorem 1) that the family of all finite
coverings of X by open sets with' compact boundaries defines (in the
sense of [1], Theorem 8.1.4) a uniformity U, compatible with the topology

f)f X (see also [3], pp. 109-116). Tt is easy to check that this uniformity
is totally bounded ([1], sec. 8.3). *
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PRrOPOSITION 3. Let X be a rim-compact WPC space and let Y be
compact. Then every closed mapping f: X - Y is uniformly continuous
with respect to the uniformity .

Proof. It is sufficient to prove that for any finite open covering
U= {Uy, ..., Un} of Y there exists a finite open refinement VU = {V,, ...,V;}
of the eovering f (W)= {f{T,), ..., (Un)} such that FrV; is com-
pact for every ¢ <l Let U = {INVS}NS be an open refinement of f~'(W)
such that Fr(V,) is compact for every s 8. Applying Theorem 1 to the
covering U, we obtain a finite subset S’ = {81y «vey Sm} of § such that
FENUTY) = {41, oy g} Let Wi, for =1, ...,k be a neighbourhood

se8’

of y: contained in some U, and let W, ~ W,; = @ for ¢ # j. One can easily

~ m
prove that the set A = Fr((J7V,) is compact and that 4 C | JfYWi).

sesS’ i=1
Now, let M, for every x4, be a neighbourhcod of » with a compact
boundary contained in f~*(W;) for some ¢ and let the family {M_, ..., M.}
be a finite covering of 4. We shall denote M, by M;. We put
8; = {i: My CfWy)} forrj =1, ..., k and we define V; = (f~"(ys\ | V,} »
s€e8°
v U M;. For every j < k the set V;is open as the union of the set f~(W;) ~
€87 .
~(X\UYV,) and some of the sets M;. Moreover, the boundary of V; is

se8”
contained in

Wy

1,

(X\FpC UTV,v U
seS’ =100, §—

it+1,0,k
But, since W;~W;=@ for i #j and V;Cf W), we have Fr(Vy)
CUV,. Weput 4;=7V,~ UV, and we easily find that 4; = |} M; ~
€S’ . ses’ €8y —_
~UV,. Now, Fr(V;) CFr(d;) v Fr(PA4;) and, since T N4~ UV,

se8’ . sel’
=0, Fr(VA4
mulas Fr(F «

easily find tI

4. On the other hand, applying the well-known for-

ZFr(F) o Fr(@) and Fr(F ~ @) CFr(F)v Fr(@), we

r(4;) C |JFr(M)wFr(UV,) So Fr(Vy) is a closed

ieS. ses’ e

subset of A w [ Fr(I;) emdjhence Fr(V;) is compact. Putting V; =7V
for j= k41, T.E.b,jlc—i—n, we obtain the covering VU = {Vi, ..., V. ;} satis-
fying the required conditions. :

THEOREM 2. Let X be a locally compact WPC space and let Y be com-
pact. The following conditions are equivalent:

(i) f: XY is closed, ,

(il) there exists a compact subset Z of X such that the set f(X\Z) is
finite.

Proof. The implication (ii)—>(i) follows from Proposition 1.

sj-k
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We now prove the implication (i) (ii). Liet U = {Ui}ier be a covering
of X by open sets with compact closures. Applying Theorem 1 -to '(,h.e
covering U, we obtain a finite subset 7" C T such that f(X\kLZJ" U,) is
finite. The set Z = | T, satisties the condition (ii).

tel” .
We shall now gieve an example showing that the assumption of the

weak paracompactness of X is essential in Proposition 3 and Theorem 2.

ExampiE 1. Let X, be the space of all countable ordinals and let
X = X, x I, where I denotes the closed interval [0,1]. Take ¥ =TI and

- let f: X>Y be the projection. The space X is locally compact and, as
X, is countably compact, the projection f is closed. The‘ readﬂer can easily
prove that neither Proposition 3 nor Theorem 2 holds in this case.

The following example shows that the assumption of the local com-
pactness of X iz also necessary in Theorem 2.

ExaMpLE 2. Let X ={0}xIvu{l,$},%,..}X(@I), where @ de-
notes the set of all rational numbers, and let ¥ = {0,1, %, ...}. Let f:
XY be the projection f((z,y)) = =. . .

The space X is metrizable and hence it is paracompact. It can easily
be checked that the mapping f is closed and does not satisfy the con-
dition (ii) of Theorem 2. As a corollary to Theorem 2 we prove

PropPoSITION 4. A mapping f: X—Y from a locally compact WPC
space X into a compact space Y- is closed iff there exist a compact space W
and a quotient (1) mapping g: X—>W satisfying the following conditions:

(i) there exists a compact subset Z of X such that ¢|IntZ is a homeo-
morphism and ¢(X\IntZ) is finite,

(ii) there emwists a mapping h: W—Y such that f=hog.

Proof. Let us suppose that f is closed. By Theorem 2 there exists
a compact subset Z of X such that f(X\Z) is finite. The set f(X\IntZ)
is finite as the closure of f(X\Z). Let f(X\IntZ)={y,, ..., yn} and let
W= X/{f(y)\IntZ},, .. The reader can easily prove that the
space W and the mapping g: X—~W satisfy the conditions (i) and (ii).

Now, if there exists 'a quotient mapping g: X W satisfying the
conditions (i) and (i), then the closedness of f follows from Proposition 1
and the compactness of W.

Remark. It follows from Proposition 4 that any closed mapping
from the Buclidean space E*, where # > 2, into & compact space ¥ can
be expressed as the composition of the quotient mapping ¢ of B" onto
the sphere 8" obtained by matching to a point the complement of an
open ball in E" and of some mapping h: §"->Y.

(*) The mapping f: X—~¥ is quotient if and only if the set U C I is open iff

F(U) is open in X. Let us notice that if R is an equivalence relation in X, then the:

mapping f: X— X/R is quotient, and that every closed mapping is quotient.
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2. Extensions of closed mappings, In this section we study the relations

between closed mappings of rim-compact WPC spaces and the Freuden-
thal compactification.

DEFINITION 3. The Freudenthal compactification yX of a rim-com-
pact space X is the least upper bound of all compactifications of X with
a zero-dimensional (in the semse of ind) remainder.

Morita has proved ([5], Theorem 1) that X is the completion of the
uniform space (X, W), where U is the uniformity deseribed above, and
that ind(yX\X)= 0. Let us notice that if X is locally compact, then
yX\X is compact, and so Ind(yX\X) = ind (yX\X) = dim (yX\X) = 0.

‘We obtain from Proposition 3 the following

THEOREM 4. Let X be a rim-compact WPC space and let ¥ be compact.
Then every closed mapping f: XY can be extended over yX.

We can obtain further results concerned with the extension of closed

mappings considering only locally compact spaces. We prove first the
following

-Lipvwa 1. Let X be a locally compact space and let AX denote the least

upper bound of all compactifications of X with a finite remainder. Then
AX = yX.

Proof. Obviously, AX < yX. If yX\X = {a} then the equality
AX = X is evident. So we assume that mf > 2. Let us notice that
if X is locally compact, then the remainder rX\X of any compactifieation
rX i3 closed in 7X. Now, since pX\X is zero-dimensional, the family ¥ of
all mappings of »X\X into the two-point discrete space separates points
from closed sets in yX\X and hence the diagonal mapping AF is a homeo-
morphism. Since yX\X is closed in y.X, any mapping f e F can be extended
to & mapping F: yX -7, X, where r,X is some two-point compactification
of X and F|X =idy. So the diagonal mapping 4 F: yX-» PrX i

jeF F

. fe&F
a homeomorphism and hence yX is the least upper bound of all two-point

compactifications of X (see the proof of [1], Theorem 3.4.6). So we

“have yX < AX, what finishes the proof.

Lemma 2. Let X.be a locally compact WPC space and let Y be compact.
Then for any closed mapping f: X—Y there exwists a compactification a; X
with a finite remainder and the extension a;fi ;XY of the map-
ping f.

Proof. Let Z be a compact subset of X such that f(X\Z) is finite
(see Theorem 2) and let A Dbe the closure of X\Z in AX. As Bf(BENX)
CBf(4)Cf(XNZ), the set Bf(BX\X) is finite. We define

o, X = BX[BF T UNE}yerznzy -
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Since X is locally compact, fX\X is closed in fX, and so the quotient
space ;X i3 a compactification of X with a finite remainder. Putting
a;f ([#]) = Bf(w), we obtain the required extension of f.

TaEOREM 3. Let X be a locally compact WPC space. Buvery closed
mapping f: XY into a compact space ¥ can be extended to yf: yX Y.
If aX % yX then there ewist a compact space ¥ and a closed mapping
f: X=X which does not extend over akX.

Proof. The first part of our theorem follows immediately frem
Lemmas 1 and 2 or, in a paralel manner from Theorem 2 and Proposition 3.
To prove the second part, let us notice that if X § pX then there
exists a compactification rX with a finite remainder such that the
embedding r: X—>+X does not extend over aX. By [1], Theorem' 3.4.5,
this means that there exist two closed sets 4 and B in X such-that

a(A)n a(B) # @ and simultaneously #»(4)~r(B)=0@. Let »X\X
= {2, ..., %} and let U; be a neighbourhood of #; in »X such that T,
intersects at most one of the sets A and B and U, U, = @ for ¢ # j.
Let YITX/{ﬁZ}ixl,...,n' The space Y is compact and the quotient

mapping f: XY is closed, The reader can easily prove that f(4) ~ f(B)
=@ and hence f does not extend over aX.

Remark. The assumption of the weak paracompactness of X is
essential. In faet, it is easy to check that the compactification fX of
the space described in Example 1 is equal .to X, x T = wX;x I and
Lence the remainder of any compactification of X is connected, and so
yX = wX. On the other hand, the projection f: X I is closed and it
cannot be extended over wX.

To prove the functoriality of yX we introduce some notions:

DEFINITION 4. Let X be a locally ecompact WPC space. We denote

by CC'(X) the set all closed continuous real-valued bounded functions
on X.

Levra 3. The set CC/(X) is a Junction ring containing all constant
functions and separating points from closed sets in X.

Proof. All constant functions belong to CO0'(X). Let f, g e 0C'(X);
both f(X) and g(X) are compact and, by Theorem 2, there exist two
compact sets Z;, Z, C X such that F(E\Z)) and g(X\Z,) ave finite. The
set Z; v Z, is compact and the sets f+ 9(X\(Z; © Z,)) and fg(X\(Z, v Z,))
are finite. By Proposition 1 both f+g and f.¢ are closed. I‘\Tow, let e X
and let F be a closed subset of X not containing 2. Since X is locally
c_oxppact, there exists a neighbourhood V of % such that 7.~ =0 and
V is compact. By the Urysohn Lemma there exists a function f such

that f(#)=1 and f(X\V)C {0}. It follows f ropositi hat
fe O (X), {0} ws from Proposition 1 thab

©
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7 DEFINTTION 5. The ring CC(X) is the closure of OC'(X) in the ring
C*X) of all continuous real-valued bounded functions on X with

. the
topology of uniform convergence.

PropOSITION 5. If the mapping f: X'>Y between two locally com-
pact WPC spaces 1is closed, then f*(O’O(Y))C 00(X) ().

Proof. It is clear that fYCC'(Y))C CC'(X). But f* is continuous
and hence f*(C0(Y))C 0C(X). :

The reader can easily modify the well-known Theorem 71 in [7] so
as to obtain the following

LEMMA f Let X be a completely regular space and let R be a closed
subring of O7(X) contwining all constant functions and separaling points
from closed sets. Then the set M of all proper mazimal ideals of R with the
topology genea"qted by the basis B = {J e M: f ¢ J}en 18 a compactification
of X (to the point x ¢ X corresponds the ideal of all functions from R vanishing
in z), ond B is exactly the set of those bounded functions which can be extended
over M. .

DEFINITION 6. We denote by Mx the set of all maximal ideals of
0C(X) with the topology described above.

Lemma 5. My = 9 X for every locally compact WPC space X.

Proof. Let Y be a compact space and let f: X-+Y be a closed
mapping. We can regard ¥ as lying in a Tychonoff cube P I,. Let fs be

the sth coordinate of f. Every mapping f, con be extendeéﬁzo Fg:Mx—>T
and the diagonal mapping ASFsz Mx— PI, is the required extension of f.
se seS

So Mx > X. On the other hand, assuming that yX & Mx and denoting
by O(X) the ring of all bounded functions on X extendable over y.X,
we find that 0(X)) 00(X) and, by the density of C¢'(X) in CC(X)
and the closedness of §(X) in C*X), that CC'(XN\C(X) + 0. This means
that there exists a closed bounded function on X which cannot be extended
over yX, which is impossible. This contradiction establishes the equality
yX = My.

We can now prove the main theorem of this paper:

Tusorey 4. Let both X and ¥ be locally compact WPC spaces. Then
every closed mapping f» XY can be extended to vf: yX—>y¥.

Proof. By Proposition 5 the mapping f*: 00(¥)-C0(X) is a con-
tinuous homomorphism. Let J be a proper maximal ideal of CC(X). The
seb f*7J) iy an ideal in CO(X) and, as f* preserves the unit element,
FNJ) is proper. One can easily check that £*7%(J) is maximal and so

(*) O*(X) denotes the ring of all continuous real-valued bounded functions on X,
and if fi XY is a continuous mapping, then f*: C*(X¥)~C*(X) is defined as follows:

S*) = po f.
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FUT) e My. We put yf(J) = f*YJ) and thus we obtain a mappinky
yf: yX->p¥Y. Notice that if J, is the ideal of all the functions in co(X)
vanishing at # ¢ X, then yf(Jz) = {g « CC(X): ¢(f(#)) = 0}, and so of is
an extension of f. .

‘We shall now prove that yf is continuous. Let U « 8,7, that is let
U= {JeyY: g¢J} for some fixed ge OC(Y). Then yfYU) = {J e pX:
geof¢d} e Bx. This finishes the proof of Theorem. 4.

Remark 1. If the mapping fis onto ¥, then the assumption of the
weak paracompactness of ¥ is not essential since the closed image of
the WPC space is also WPC ([9], Theorem 1).

Remark 2. Morita has proved in [3] that any cloged mapping between
locally compact paracompact spaces can be extended over the Freuden-
thal compactifications. Theorem 4, as is shown by the following example,
is an essential generalization of this theorem.

EXAMPLE 3. There exists a locally compact space weakly para-
compact but not paracompact. Let D, be a discrete space of power n
and let X = (wD,,X oD)\{(w;, ©,)} where {o;} = oD \D,, and {w}
= oD\D,. The space X is an open sublet of the compact space
@Dy, X oD, and hence it is locally compact. The sets 4 = {wD \{w,}) X
X oD and B = wD, X (0D\{w,}) are open in X and are homegmorphic

to the sums EBNcuDc and te?r oD, respectively. Hence, by [1], Theorem
ne € :

5.1.9,‘44 and B are paracompact. Now, let U, = {Uglses D& an open
covering of X. We put Wa= {4 n U,},.¢ and Up = {B " Ugsq- There
exigt, by the paracompactness of 4 and B, locally finite refinéljaents Vg
and VUp of Wy and UWsp, respectively. The union U = U, w Uy is the
required open and point-finite refinement of U.

O.n the other hand, the sets 7 = X\A and @ = X\B are closed in X
and disjoint. It is easy to check that I and @ cannot be separated by
open sets. Hence X is not normal, and so it cannot he paracompact.

We can now give a characterization of cloge anpi
sed mappings Wi
locally compact WPC spaces. ppings between

T‘IIEOREM 5. Lf:t both X and ¥ be locally compact WPC spaces. The
mappéti‘{ f:. X l—>Y ts closed iff it extends to vy X >9Y and pf(z) e ¥ Jor
Tey implies the ewistence of 4 neighbourhood U of x in ch 1]
N C f @ in yX such that
. P;‘o of. The existence of such an extension yf follows from Theorem 4.
Now, e?- ?f(z) € ¥ for some z € pX\X and let V be a neighbourhood of
yf(z) }vﬂ;h compact closure. The mapping f|f~V) satisfies the as-
sun;}ptz;ns of Theorem 2 and hence there exigts a compact set Z C )
;uc ihit the set 4 = f(/~(7)\Z) is finite and vf(®) e 4. Let W be

neighbourhood of yf(z) such that W NA = {yf()}. The set U

icm®
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= (@) VINZ) ~ (7f)7(W) is open and @ ¢ U. Now, yf(U n X) = f(U ~ X)
CWAffTVNZ) CAn W= {f(@)}, so f(T)=f(UnX) = {3f()}.

On the other hand, we assume that f satisfies the conditions of our
theorem. Let A = 4 C X and let 4 be the closure of 4 in yX. Since 4 is
compact, it is sufficient to prove that ¥ ~ yf(4) = f(4). We prove that
7f(ANA) ~ Y C f(A). In fact, let y = yf(2) C ¥ and let e A\ 4 C yX\X.
By assumption, there exists a neighbourhood U of z such that yf(TU)
= {y}. But 24 and hence Un 4 # @, and so y ef(U n A).

3. Applications.

ProrosiTION 6. If both X and Y are locally compact WPC spaces
and Y has no isolated poinis, then every open-and-closed mapping f: X >Y
i8 perfect. »

Proof. Let # be a point from yX\X. If yf(s) « ¥, then there exists.
a neighbourhood U of # such that yf(U) = f(U ~ X) = {yf(x)}. Since { is
open, {yf(x)} is open, which is impossible since ¥ has no isolated points.
So yf(yX\X) Cy¥Y\Y and f is perfect by ([1], Problem 3.X).

ProPOSITION 7. Let both X and Y be locally compact WPC but not
compact spaces. Then every closed mapping from X onto Y is perfect if
wX = yX. k

Proof. We prove that yf(yX\X)Cy¥\Y. In fact, if pf(yX\X)~
~ Y 3 O then, by assumption yf(pX\X) C ¥ and there exists a neighbour-
hood U of the unigue point of yX\X such that yf(U) is a single point.
But X\U is compact and hence ¥ = f(X) = f(U) v f(X\U) is compact,
which contradicts the assumption. 8o yf(yX\X)C »¥\Y and hence f is
perfect. .

Tt is interesting in the context .of Proposition 7 to give a characteri-
zation of all locally compact WPC spaces such that yX = wX. )

THEOREM 6. If X is a non-compact locally compact WPC space, then
the following conditions are equivalent:
(i) »X = X, ‘
(ii) for any compact subset Z C X and for every set A open-and-closed
in I\IntZ either 4 or ((X\Int(Z)))\A is compact.
Proof. We prove first that (i) = (ii). We assume that there exists
a compact subset Z C X and two disjoint non-compact closed subsets A
and B of X\IntZ such that X\IntZ = 4 v B. Let us notice that Fr(4) v
w Fr(B)C Z. 8o, since Z is compaet, we can find two sets U and V open inX
and such that T~ ¥ = @, Fr(4) C U, Fr(B) CV. Taking U= (T v B\A
and V= (Vv ANB, we obtain two disjoint open sets separating 4 and B.
So the quotient space X/{4, B} is T,. One can easily check that the
pace ¥ = X/{4, B} is compact and the quotient mapping f: XY ig
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closed (see Proposition 1). On the other hand, f cannot be extended over
X and thus we obtain wX # yX.

To prove that (i) = (i) we assume that yX\X > 1. Since ind (yX\X)
= 0 and X is locally compact, there exist two disjoint sets M and N such
that both M and IV are closed and non-void and M v N = yX\X. Let U
and 'V be disjoint open subsets of yX separating M and N, and let
UnV=0. The set Z=I\(Uw V) is compact and the sets T~
~ (X\IntZ) and ¥ ~ (X\IntZ) are non-compact disjoint open-and-closed
in X\Int Z, which contradicts (ii). This contradiction establishes Theorem 6.

COROLLARY. If for every compact subset Z of the locally compact non- -

compact WPC space X there exisis a compact set Z' D Z such that INZ' is
connected, then yX = wX. :

LemMA 5. Let X be compact and let Y be a WPC ‘space. Then the
product X X Y is weakly paracompact.

- The proof is analogous to the proof of ([1], Theorem 5.1.10).

LemvA 6. Let X be a locally compact WPC space and let Y be WPC.
Then the product XX Y is weakly paracompact. ‘

Proof. Let W= {U;};.r be a point-finite covering of X by open
sets with compact elosures. Let U = {V },.¢ be an open covering of X x Y.
We denote by U, the restriction of U to U,x ¥. By lemma 5 the space
U;X Y is weakly paracompact and we ean refine VU, by a point-finite
open covering of U;xY. We denote the restriction of this refinement

“to UyXY by W,;. One can verify that the covering W= [ W, is the
tel

requiréd point-finite open refinement of 4.

Prorosrrion 8. If both X and ¥ are connected nron-compact locally
compact WPC spaces, then y(Xx ¥) = o(X X Y).

Proof. Let ZC X XY be compact. The set Z’' = 7,7 X 7w, %, where
Az _a;n.d 7, denote the projections of X x ¥ onto X and ¥, respectively,
satisties the assumption of the Corollary to Theorem 6 and then y(X xY)
= w(X X Y).

Remark. Magill has proved in [4] the equality y(XxY) = (X' x7T)
for non-compact, ‘connected, locally compact, metrizable X and Y.

COROLLARY. If # > 2 then pE" = B* — Qv

Proof. "= Ex B"! and it remains to apply Proposition 8.

ProposITION 9. Let X be a locally compact WPC space and let ¥ be
a compact connected space. Then

YEXT) = (XX D){{#} X T} yopinx -

Proof. Let Z be compact and let the mapping f: X x Y-+ Z be closed.
By Theorem 2 there exists a compact subset Z of X x ¥ such that
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F(Xx TN\Z) is finite. We put %' = nZx Y. For every zeX the set
{x}x ¥ is connected and hence if (@1, ¥1), (%2, Y2) € (XX ¥NZ' and 2, = @,
then f((@, 1)) = f((@:, 92)). Let F: yXxY->Z denote the mapping
defined by F((z, y)) = 7f,(#), where f ()= f((»,y)). It is easy to check,
using the density of (XX ¥\Z' in (»X X ¥Y\Z’, that the mapping F is
continuous and if # e yX\X then F((z,y))= F((z,¥.) for any yi,%,.
So, putting yf([#,y]) = F((@,y)), we obtain the extension of -f over

CYEXY) = (p XX DEX T gemx- S0 y(XXT) Ly(X X T).

On the other hand, the remainder (X x ¥)\(X x ¥) is homeomorphic
to yX\X; hence ind(y (X X YN\(X X ¥) =0 and so y'(Xx¥) Ly (X X ¥),
which finishes the proof.

As an application of Proposition 9, we now define the notion of
“g-homotopy” between two closed mappings. .

DEFINITION 7. The ¢-homotopy between two closed mappings fo, fi:
XY is a closed mapping F: X x I-Y such that f,= F|X x {0} and
fo = F|X x {1}. Tt there exists a ¢-homotopy between f, and fi, then f,
and f, are called ¢-homotopic.

ProPOSITION 10. If both X and Y are locally .compact WPC spoces
and fy, fi: XY are c-homotopic, then yfylyZ\X = yilyI\X.

Proof. Tt easy to check that for any ¢ € I the embedding #;: X —~>X X
x {t} C-X x I extends to the homeomorphic embedding yig p X —»p(X x I),
where the space y(X x I) is described in Proposition 9. Hence yi; maps
the remainder yX\X homeomorphically onto y(X X \(X x I). We can
now easily check that yF([zx I1) = yf{z) for zeyX\X and any tel.
So yfolyZ\X = yfilyX\X.

COROLLARY. If fy,fi: X—~Y are c-homotopic, X and Y are locall
compact WPC spaces and f, is perfect, then f is also perfect. .

Proof. This is an obvious consequence of Proposition 10 and ([1],
Exercise 11, p. 120).

TaEOREM 7. Let X be a compact space and let-Z be a closed subset of X
such that X\Z is weakly paracompact. Then X = y(X\Z) iff Z satisfies
the following conditions:

(i) ind(Z) = dim(Z) = 0,
(ii) for every e Z and every neighbourhood U of » there ewisis an
open subset V. of X such that
(a) 2eVCT,
(b) V\Z # 6, T
(c) for every open-and-closed in V\Z subset 4 ¢4~ (MZN\A.

Proof. We assume first that the conditions (i) and (ii) are satisfied.
Let us notice that X\Z is dense in X and hence X = u(X\Z) is a com-
pactification of X¥\Z with a zero-dimensional remainder; 0 w(X\Z)

<y (X\Z). Now, let ¥ be a compact space and let f: X\Z~-Y be a closed
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mapping. By Theorem. 2 there exists a compach subset Z, of X\Z such

that f(X\(Z v Zf)) = {Y1, +ry Yn}. The set W;= (.X\(Z w Zf)) A,
fori=1,...,n,is open in (¥\(Z v Z,)) and hence open in X. Now, let V.,
for every x ¢ Z, be an open subset of X\Z; containing z and satisfying
the conditions (b) and (c) of (ii). It is clear by (c) that @ « (V;\Z) ~ W,

for only one 1. Therefore; putting V,= Int(V, v Z) r;ﬁf;, we obtain
a neighbourhood of # such that ¥,\Z C W; for some i. We denote by M,

the set of all such z eZ that V.\ZC W; (i=1,...,n). It is clear that
n
Z = ) M; and the sets M; are mutually disjoint. From (it} it follows

1=1
that IntZ =@ and Vo, C Wiw M, for every ze Mi; 80 we have M;
C Int(Wyw M;). This means in particular that the sets M, are open-and-
closed in Z. We put F(s) = f(x) if ¢ X\Z and F(o) =y, if x « M,;. We
shall now prove that F' is continuous. Let U be an open- subset of .
We have F(U) = f(U) o UUJIL = fYU)u UU(MW W;) and, since
i Y€ i ygel

M; CInt (Wi My), F7Y(U) is open in X. So F' isy the required extension
of f and, by Theorem 3, u(X\Z) & y(X\Z), which finishes the first part

of the proof.
Let us assume now that X = y(X\Z). Then the conditions (i) and
(a), (b) of (i) must be satistied by the definition of yX. Agsume now
that for some # € Z the condition (ii.c) does not hold. This means- that
" there exist two disjoint subsets 4 and B open in X\Z and such that
Int(4 v B Z) is a neighbourhood of ¢ in X and for every open. in X
set U containing # both- U~ 4 and U~ B are non-empty. ‘We define
the space X' puttihg X' = X {p}, where p ¢ X, and we define the
topology in X' as follows: the neighbourhoods of the points from X\{z}
are unchanged. The basis of the neighbourhoods of » is the family {B ~ U},
where U is a neighbourhood of # in X, and the basis of the heighbour—
hood§ of p is the family {4 ~ U}, where U runs over all neighbourhoods
of # in X. The reader can prove that the space X’ is a compactification
of X\Z with a zero-dimensional remainder and X’ is essentially greater

than X' as-a compactification of X\Z. 80 X # y(X\Z) and this contra-
diction establishes the last part of our proof.

COROLLARY 1. Let X be a co
of X such that
(i) ndZ = dimZ% = o,
(i) Z\Z is weakly paracompact,

(ill) for every x e Z and every nei i
eighbourhood T ) one
subset V of X such that of @ thw exists an open

(a) 2V C T,

(b) V\Z is non-empty and connected
Then y(X\Z) = X. ? e

mpact space and let Z be a closed subset
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COROLLARY 2. If M is a compact manifold of dimension greater tham 1
and Z is a zero-dimensional closed subset of M, then y(M\Z)= M.

Remark. The equality yE" = wBE" = 8" if n > 1 follows immediately
from Corollary 2. It is sufficient to put M = S" and Z = {w} C 8™

The result given in Corollary 2 has been obtained independently
by E. Scepin, regarding yX as the Wallman compactification of X.

I would like to express my hearty gratitude for Doc. Dr. R. Engel-
king for his guidance and valuable remarks. .

Added in proof. The generalization of Corollary 1 to Theorem 7 is given in
J. R. McCartney, Maximum zero-dimensional compactifications, Proe. Cambridge
Phil. Soc. 68 (1970), pp. 653-661.
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