icm

Liftings of compact sets of mappings through a light
proper mapping are compact
by
David F. Addis (Fort Worth, Tex.)

For any map p: T—>B and space Z another map p: T2 ->B? exists
defined by #(f)= p-f (T% and BZ are the spaces of maps from Z to T
and B respectively in the compact open topology). In order that a map
f: Z—B or more generally a homotopy h: Z X I-—B might be lifted to T,
it is necessary for 7 to behave well.

This note considers the behaviour of 7 in the case that p is light.
The following is shown. Let p: (T, d)—B be a light proper onto mapping
and let Z be a locally compact, locally connected, and separable metric
space. Then : 72 —B? is a light proper mapping.

A theorem due to Whyburn (1934) and Floyd (1950) states: Let
p: T—B be a light proper onto mapping on the metric spaces 7 and B.
If, furthermore, p is an open mapping then for every path a: I—B and
2 e T with p(z) = «(0), there exists a path p: I—T such that p-f=«a
and $(0) = . The converse holds if B is locally path connected. Hereafter,
this result will be referred to as theorem W-F.

As consequences of these two theorems conditions are given for light
proper mappings to possess covering homotopy and isotopy properties
(this is a generalization of the Whyburn—Floyd theorem), and to be
Hurewicz fibrations. Theorems of McAuley and Tulley on the liffing of
cells also follow.

1. Definitions. A metric space will be denoted as a pair (T, ) with d
the metric on the set T. §(x, £) will denote {y ¢ T| d{(z,y) < £}. A mapping
p: T—B is light iff every point inverse is totally disconnected. The map
p is open if the image of every open set is an open set and finally p is
proper if the preimage of every compact set in B is compact in T. As
a notational convenience a space Z will be called acceptable iff Z is
a locally compact, locally connected, and separable metrie space.

TFurther if 8% and D* are the standard % dimensional sphere and
cell respectively, then a space is LC™ iff for any point 2 and neighbor-
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hood U of z, there exists a neighborhood ¥ of # so that each mzip m: 8% -V
has an extension m’' = D*1=T for 0 <k < n.

2. Sections. A special case of the main theorem will be proved here.
Specitically if p: T—B is a map, let 8(p) = {s ¢ I’®| p-s = I} be a topo-
logical space with the compact open topology. In the case that (T, d) is
a metric space and B is a locally compact, second countable space, §(p) is
matrizable as a countable sum of pseudometrics of the form

di(sy, $2) = min {1/2%, sup {d(sy(), 8,(w))| @ € Ki}}

where {K,, K,, ...} is a sequence of compact sets in B whose interiors
cover B.

Completeness of the fibers of p is enough to insure that §(p) is com-
plete. Compactness. in S(p) is hard to attain in general, but reasonable
conditions are given for the case of light mappings.

(2.1). TeROREM. If p: (T, d)~>B is a light proper mapping onto the
acceptable space B, then S(p) is a compact metrizable space.

Proof. Ascoli’s theorem yields the compactness of S(p) if it can
be shown that S(p) is equicontinuons (see [7], page 155). To this end
let b ¢ B and suppose that S(p) is not equicontinuous at b ¢ B. Then
there exists ¢ > 0, a sequence {sp} in §(p), and two sequences {¥,}, {e.}
in B satistying 1. d(su(yn), Sa(2s)) > e for n e N and 2. {sx(b)} is convergent
in p~Y(b). Furthermore there is a sequence of compact connected sets
{0y, Oy, ..} with 3. ¢;D0,D ... and 4. G, C 8(b, 1/n). V¥ithout loss it
may be assumed that 5. {yu, 2x} C Cp for n e N. Observe that {s,(Cn)} is
a sequence of connected sets each of diameter at least & > 0. Thus, since
P is proper, O = limsups,(Cs) is a connected set of diameter at least
€¢>0; and consequently, since p is light, cannot lie p~*(b). However if
@ e C—p~(b), there exists a sequence {rx}—x with zz e 83 Cp).  Clearly
P(zx) converges to beB and hence mep '(h). This is a contradiction
which concludes the proof.

3. Pullbacks extended. To make effective use of this theorem the
usual notion of the pullback of a mapping will be extended.

~(3.0) Derinrrion. If N denotes the positive integers, let 1/N
={reR| £=10 or z=1/n for n e N}.

Note that 1/N is a compact metric space.

~ (3.1). DeriNtTION. If p: T—B is an onto mapping and {g.} C B?
15 a sequence converging in the compact open topology to g, e BZ, let
[0, {gn}] = {(2,2,9) e ZX TX1N| go(e) = p(a) if y =0 or g,,(2) = p(a)
if y 5 0}. Define a: [p, {ga}]>Z by (2, #, y) = 2. The mapping = is the
pullback of the sequence {gn}.
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(8.2). LEMMA. If T' and Z arve metric spaces then so is [p, {ga}]. Also

}Jf"’p: T—B is a proper (or light) mapping then m: [p, {gn}]~Z is a proper

(light) mapping. i
Proof. Only the proof that = is a proper mapping, given that p is
proper, will be demonstrated. To this end let K C Z be a compact set.

Define ¢(K) = G gu(K) and note that = *(K)CKxp Y (o(EK)x1N
=0

ne

C[2, {ga}]. The compactness of »*(K) follows it p~*(o(K)) is compact

and this is true iff ¢(XK) is compact in B. Thus let {0,,},,.2 be an open

cover of ¢(K) in B and extract a finite subcollection O, , 0,y vy O,
%

which cover g,(K). Let 0= (JO,, and note that since g,—>g, in the
i=1

compact open topology, for all except finitely many subscripts we have

gn(K) C 0. Tt is now clear that a finite subcover can be found for o(K)
which then concludes the proof.

4. The basic theorem. As mentioned before, for each map p: T—+B
and space Z a map p: T?-BZ is defined by B(f) = p-f. It F C B?, define
LF(p) = {g €« T?| p-g e F}. Consequently 7| LF(p): LF(p)—F is a mapping.
We will record this mapping more briefly as p: LF —F as long as no con-
fusion arises.

(4.1). TeeorEM. Let p: (T,d)—~B be a light proper onio mapping
and let 7 be an acceptable space. Then if F C BZ the mapping p: LF—~F
is light and proper.

Proof. To see that 7 is a light mapping suppose that fi, f> e 77(g)
with g« F C BZ. If f, s f, there is some 2 e Z for which f,(2) # fy(2). Define
e,: 7 Hg) =D 9(2)) by ef) = f(#) and note that e, is continuous. Now
if f, and f, were in a connected subset of 77*(g) it would follow that
e,(f) = ¢,(f,). This is not so, and hence p is light.

To show that P is a proper map it is sufficient to consider a sequence
{fu} CLF so that p-fn = gn converges to g, « F. If it can be shown that
a subsequence of {f,} converges to a map f, covering g,, then 2 is proper.
To accomplish this, construct the pullback =: [p, {ga}]>Z and consider
S(x) = space of this sections for = Define a sequence {su} C 8(=) by
$a(2) = (2, ful2), 1/n). Theorem 2.1 applies so that a section s: Z->[p, {gn}]
and a subsequence {s,,} converging to s are obtained. Letting m,: [P, {ga}]
—T be the natural projection on the second coordinate, define for Z->T
as fy=ms. It follows that f,= m(lims,,)=lmm,s,, = limf,.; and
also that f, is continuwous with p-fy=g- This concludes the proof.

There are immediate corollaries.

(4.2). COROLLARY. (James Hill, see [2]). If p: (T, d)—~Bis a light proper
onto mapping with the property that each homeomorphism h: I"+B, n =2,

7 — Fundamenta Mathematicae, T. LXXVII
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can be lifted to T, then each homeomorphism of 8" into B can be lifted
to T. . :
Proof. It is sufficient to note that there is a sequence of homeo-
morphisms of I” info 8§ whose limit is a mapping onto S”.
(4.3). CoROLLARY. Let p: (T, d)—~B be a light proper onto MAPPing
of metric spaces with B LC%. Then p is an open mapping iff for each path
a: I>B there ewists a commuting diagram of onto maps

a -

Lax I =>pHal)
ma D
I — a(l)

a

with La a totally disconnected compact metric space and a( fit) = f(z).

Proof. This follows immediately from theorem 7 and mse of (4.1)
with F = {a}.

A similar diagram exists for o with domains other than [0, 1] provided,
of course, that they are acceptable spaces. Furthermore, it is clear that

in aL]l cages the factor La can be replaced by the Cantor set if the definition
of a is suitably modified.

5. Light mappings and the CHP. A homotopy %h: Zx I-B induces
maps hy: Z—>B defined hy(e) = h(e, ). It ¥ C BZ then h: ZxI->B is
said to be a homotopy through F if hy e F' for 0 <t 1.

A mapping p: T—+B is said to have the Z -CHP through F (the
covering homotopy property with respect to Z through #) iff for each
homotopy h: ZXI—+B through F and map g¢: Z-T with h(z, 0)
=P-9(2)Vz e Z, there exists a homotopy H: ZxI-—-T with p-H=h

and H(z,0) = g(2) Vz e Z. The map p is said to have the Z-CHP if it
has the Z-CHP through BZ.

(6.1). DEFINITION. Let p: T->B be a map and let Z be a topological
space. If F' C BZ, define p to be full over F if given f e LF (p) and a (com-
pact open) neighborhood U of f, there exists o neighborhood V of p-fe
80 that if geV ~F there exists f' ¢ U with pf=y. .

(5.1). TEEOREM. Suppose »: (T, d)
Z is an acceptable space, and F C BZ.

Z-CHP through F. Furthermore if I is
verse is true.

—~B is a light proper onto mapping,
Then if p s full over I, p has the
locally path connected then the con-

Proof. pet h: ZX I+B be a homotopy through F and let g: Z—T
be a map with Pg(7)=h(2,0) Ve e Z. Define a: I—F by a(t) = ke
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Let G be the path component of F' containing the range of a. Consider
the map P: LF —F and note that since p is full over F, (LF) is an open
subset of F. But applying (4.1), p(LF) is a closed subset of F. Consequently
since B(g) € &, P: LG —@ is a light proper open onto mapping. Applying
theorem W-F there exists a path p: I—+L@ with 7-8= a and 8(0) = g.
Finally define H: ZXxI—>T by H(z,f) = f(=)(). The map so defined
is the required covering homotopy. If F is LC° theorem W-F provides
the converse.

Remarks. Theorem 3.1 is a generalization of the Whyburn—Floyd
theorem since in the gimple case that Z is a singleton set, their theorem
is immediately recovered. ]

Note also that whenever B is a compact metric ANR the Z-CHP
for p: T—B is equivalent to the fullness of p over BZ.

Let H(Z, B) be the space of homeomorphisms of Z into B with the
compact open topology.

(5.2). COROLLARY. Suppose p: (T, d)—B is a proper light onio mapping
and Z is an accepiable space. Then if p is full over H(Z, B), p has the
covering isotopy property with respect to the space Z. The converse is true
if H(Z,B) is locally arcwise connected.

(5.3). COROLLARY. Suppose p: (T, d)— B is a proper light onto w.zapping.
If p is full over BY, then p has the path lifting property, that is, p is a Hu-
rewicz fibration. The converse holds if B is LC* space.

Proof. Use of (5.1) insures that p has the I-CHP. It follows easily
that since p is light, liftings of paths are unique given the irllitia,l p‘oint
(see [8]).A theorem of Ungar yields the conclusion. His proof will be given
here since it is immediate from (4.1). _ )

Define X = {({, 8) ¢ T X BY| p(t) = p(0)} and consider the following
commuting diagram

M X

» //£
V-

BI

with (a) = (a(0), p- a) and m(t, f) = p. Use of (+.1) and remarks above
show that = is a proper, onto injection and hence is a hogleomoIrp.hlsm‘,]
thus =~* is a path lifting function. The converse follows since B! is LC
whenever B is L(. )

Remarks. The results in section five have all been proved assuming
that p is full over a large family of functions. Interesting results ean be
7
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obtained if more specialized choices of ¥ are made. For example the
following result is easily shown. .

(5.4). CoROLLARY (McAuley-Tulley). Let p: (T,d)-+I* be a light
proper onto mapping. Defining F = {a: I>I*| (Hx e I)a(t) = (x, ) Vi e I3,
p is full over F iff for each f: I—T with p-f(t) = (0, %) there is a section
s: 2T for p extending p.

Analogues of this theorem can be stated for cells of higher dimension
(see [5] and [6]).

As another example, McAuley (in [5]) attempted to eliminate some
of the pathology of light open mappings by defining a twist free mapping.
Alight open onto mapping p: T'—B is twist free if for each homeomorphism
h: 8t—~B and @ ep~Y(h(1,0)), there exists a homeomorphism H: ST
with p-H = h and H(1,0) = 2.

A conjecture of McAuley is partially answered by the following.‘

(5.5). CorOLLARY. If p: (T', d)—B is a proper twist free onto mapping
and p s full over H (S, B) then any 2 cell in B can be lifted to T.
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Homeotopy groups of orientable 2-manifolds
by
-Jong Pil Lee (Vancouver)

1. Introduction. Let X be a topological space, and let H(X) denote
the group of homeomorphisms of X onto ifself topologized by the compact
open topology. The arc-component of the identity Hy(X) is a normal
subgroup of H(X) and (X)= H(X)/Hy(X) is the group of the arc- )
components of H(X), which is called the homeotopy group of X. T.he
equivalence relation defined by Hy(X) is called isofopy. We can also define
the isotopy relation in a subgroup H'(X) of H(X) and the group gene‘mte‘d
by the isotopy classes will be called the isotopy group of H'(X), which is
denoted by m[H'(X)]. J will denote the group of integers and J, the
integers mod2. In 1914, Tietze [10] showed that the homeotopy group
of the 2-sphere is J,. This was proven again by Kneser in 1926 [7], 3aer
in 1928 [2], Schreier and Tlam in 1934 [9], and most recently by Fisher
in 1960 [4]. In [7] Kneser also obtained a result that the hon{eo’uopy
group of a disk is J,. In 1923, Alexander [1] proved that the isotopy

groirp of homeomorphisms of an n-cell onto itself leaving the boundary

pointwise fixed is trivial. This result has been a mosh important tool
for further development in this area of study. In 1962, in ferms of the
winding number of a homeomorphism of an annulus, Gluck [5] proved
that the isotopy group of homeomorphisms of a closed annulus onto
itself leaving the boundary pointwise fixed is J. He also showed that
the homeotopy group of an annulus is JpX J5. .

In this paper we compute the homeotopy group and 1sot0py groups
of various subgroups of the homeomorphism group of the mamfo}d' qb-
tained from the 2-sphere by removing the interiors of three disjoint

‘subdisks. Further we deal with the orientable 2 -manifold with » boundary

curves. ,
2. Preliminaries. In this section we give preliminary results which
will be used in the mnext section.

Bagie notations
M, will denote an orientable 2-manifold with » boundary curves,
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