

Liftings of compact sets of mappings through a light proper mapping are compact

by

David F. Addis (Fort Worth, Tex.)

For any map $p\colon T{\to} B$ and space Z another map $\overline{p}\colon T^Z{\to} B^Z$ exists defined by $\overline{p}(f)=p\cdot f$ (T^Z and B^Z are the spaces of maps from Z to T and B respectively in the compact open topology). In order that a map $f\colon Z{\to} B$ or more generally a homotopy $h\colon Z\times I{\to} B$ might be lifted to T, it is necessary for \overline{p} to behave well.

This note considers the behaviour of \overline{p} in the case that p is light. The following is shown. Let $p\colon (T,d)\!\to\! B$ be a light proper onto mapping and let Z be a locally compact, locally connected, and separable metric space. Then $\overline{p}\colon T^Z\!\to\! B^Z$ is a light proper mapping.

A theorem due to Whyburn (1934) and Floyd (1950) states: Let $p\colon T\to B$ be a light proper onto mapping on the metric spaces T and B. If, furthermore, p is an open mapping then for every path $\alpha\colon I\to B$ and $x\in T$ with p(x)=a(0), there exists a path $\beta\colon I\to T$ such that $p\cdot\beta=a$ and $\beta(0)=x$. The converse holds if B is locally path connected. Hereafter, this result will be referred to as theorem W-F.

As consequences of these two theorems conditions are given for light proper mappings to possess covering homotopy and isotopy properties (this is a generalization of the Whyburn-Floyd theorem), and to be Hurewicz fibrations. Theorems of McAuley and Tulley on the lifting of cells also follow.

1. Definitions. A metric space will be denoted as a pair (T, d) with d the metric on the set T. $S(x, \varepsilon)$ will denote $\{y \in T | d(x, y) < \varepsilon\}$. A mapping $p \colon T \to B$ is light iff every point inverse is totally disconnected. The map p is open if the image of every open set is an open set and finally p is proper if the preimage of every compact set in B is compact in T. As a notational convenience a space D will be called acceptable iff D is a locally compact, locally connected, and separable metric space.

Further if S^k and D^k are the standard k dimensional sphere and cell respectively, then a space is LC^n iff for any point x and neighbor-

hood U of x, there exists a neighborhood V of x so that each map $m: S^k \to V$ has an extension $m' = D^{k+1} \to U$ for $0 \le k \le n$.

2. Sections. A special case of the main theorem will be proved here. Specifically if $p\colon T\to B$ is a map, let $S(p)=\{s\in T^B|\ p\cdot s=I_B\}$ be a topological space with the compact open topology. In the case that (T,d) is a metric space and B is a locally compact, second countable space, S(p) is metrizable as a countable sum of pseudometrics of the form

$$d_i(s_1, s_2) = \min\{1/2^i, \sup\{d(s_1(x), s_2(x)) | x \in K_i\}\}\$$

where $\{K_1, K_2, ...\}$ is a sequence of compact sets in B whose interiors cover B.

Completeness of the fibers of p is enough to insure that S(p) is complete. Compactness in S(p) is hard to attain in general, but reasonable conditions are given for the case of light mappings.

(2.1). THEOREM. If $p: (T, d) \rightarrow B$ is a light proper mapping onto the acceptable space B, then S(p) is a compact metrizable space.

Proof. Ascoli's theorem yields the compactness of S(p) if it can be shown that S(p) is equicontinuous (see [7], page 155). To this end let $b \in B$ and suppose that S(p) is not equicontinuous at $b \in B$. Then there exists $\varepsilon > 0$, a sequence $\{s_n\}$ in S(p), and two sequences $\{y_n\}$, $\{z_n\}$ in B satisfying 1. $d(s_n(y_n), s_n(z_n)) > \varepsilon$ for $n \in N$ and 2. $\{s_n(b)\}$ is convergent in $p^{-1}(b)$. Furthermore there is a sequence of compact connected sets $\{C_1, C_2, ...\}$ with 3. $C_1 \supset C_2 \supset ...$ and 4. $C_n \subset S(b, 1/n)$. Without loss it may be assumed that 5. $\{y_n, z_n\} \subset C_n$ for $n \in N$. Observe that $\{s_n(C_n)\}$ is a sequence of connected sets each of diameter at least $\varepsilon > 0$. Thus, since p is proper, $C = \limsup s_n(C_n)$ is a connected set of diameter at least $\varepsilon > 0$; and consequently, since p is light, cannot lie $p^{-1}(b)$. However if $x \in C - p^{-1}(b)$, there exists a sequence $\{x_k\} \rightarrow x$ with $x_k \in s_{n_k}(C_{n_k})$. Clearly $p(x_k)$ converges to $b \in B$ and hence $x \in p^{-1}(b)$. This is a contradiction which concludes the proof.

- 3. Pullbacks extended. To make effective use of this theorem the usual notion of the pullback of a mapping will be extended.
- (3.0) DEFINITION. If N denotes the positive integers, let $1/N = \{x \in R | x = 0 \text{ or } x = 1/n \text{ for } n \in N\}.$

Note that 1/N is a compact metric space.

(3.1). DEFINITION. If $p\colon T\to B$ is an onto mapping and $\{g_n\}\subset B^Z$ is a sequence converging in the compact open topology to $g_0\in B^Z$, let $[p,\{g_n\}]=\{(z,x,y)\in Z\times T\times 1/N|\ g_0(z)=p(x)\ \text{if}\ y=0\ \text{or}\ g_{1/y}(z)=p(x)\ \text{if}\ y\neq 0\}$. Define $\pi\colon [p,\{g_n\}]\to Z$ by $\pi(z,x,y)=z$. The mapping π is the pullback of the sequence $\{g_n\}$.

(3.2). LEMMA. If T and Z are metric spaces then so is $[p, \{g_n\}]$. Also if $p: T \rightarrow B$ is a proper (or light) mapping then $\pi: [p, \{g_n\}] \rightarrow Z$ is a proper (light) mapping.

Proof. Only the proof that π is a proper mapping, given that p is proper, will be demonstrated. To this end let $K \subset Z$ be a compact set. Define $\sigma(K) = \bigcup_{n=0}^{\infty} g_n(K)$ and note that $\pi^{-1}(K) \subset K \times p^{-1}(\sigma(K)) \times 1/N$ $\subset [p, \{g_n\}]$. The compactness of $\pi^{-1}(K)$ follows if $p^{-1}(\sigma(K))$ is compact and this is true iff $\sigma(K)$ is compact in B. Thus let $\{O_m\}_{m \in M}$ be an open cover of $\sigma(K)$ in B and extract a finite subcollection $O_{m_1}, O_{m_2}, \ldots, O_{m_k}$ which cover $g_0(K)$. Let $O = \bigcup_{i=1}^k O_{m_i}$ and note that since $g_n \to g_0$ in the compact open topology, for all except finitely many subscripts we have $g_n(K) \subset O$. It is now clear that a finite subcover can be found for $\sigma(K)$ which then concludes the proof.

- **4.** The basic theorem. As mentioned before, for each map $p \colon T \to B$ and space Z a map $\bar{p} \colon T^Z \to B^Z$ is defined by $\bar{p}(f) = p \cdot f$. If $F \subset B^Z$, define $LF(p) = \{g \in T^Z \mid p \cdot g \in F\}$. Consequently $\bar{p} \mid LF(p) \colon LF(p) \to F$ is a mapping. We will record this mapping more briefly as $\bar{p} \colon LF \to F$ as long as no confusion arises.
- (4.1). THEOREM. Let $p\colon (T,d)\!\to\! B$ be a light proper onto mapping and let Z be an acceptable space. Then if $F\subset B^Z$ the mapping $\overline{p}\colon LF\!\to\! F$ is light and proper.

Proof. To see that \overline{p} is a light mapping suppose that $f_1, f_2 \in \overline{p}^{-1}(g)$ with $g \in F \subset B^Z$. If $f_1 \neq f_2$ there is some $z \in Z$ for which $f_1(z) \neq f_2(z)$. Define e_z : $\overline{p}^{-1}(g) \to p^{-1}(g(z))$ by $e_z(f) = f(z)$ and note that e_z is continuous. Now if f_1 and f_2 were in a connected subset of $\overline{p}^{-1}(g)$ it would follow that $e_z(f_1) = e_z(f_2)$. This is not so, and hence \overline{p} is light.

To show that \overline{p} is a proper map it is sufficient to consider a sequence $\{f_n\} \subset LF$ so that $p \cdot f_n = g_n$ converges to $g_0 \in F$. If it can be shown that a subsequence of $\{f_n\}$ converges to a map f_0 covering g_0 , then \overline{p} is proper. To accomplish this, construct the pullback $\pi \colon [p, \{g_n\}] \to Z$ and consider $S(\pi) = \text{space}$ of this sections for π . Define a sequence $\{s_n\} \subset S(\pi)$ by $s_n(z) = \{z, f_n(z), 1/n\}$. Theorem 2.1 applies so that a section $s \colon Z \to [p, \{g_n\}]$ and a subsequence $\{s_{n_k}\}$ converging to s are obtained. Letting $\pi_2 \colon [p, \{g_n\}] \to T$ be the natural projection on the second coordinate, define $f_0 \colon Z \to T$ as $f_0 = \pi_2 \cdot s$. It follows that $f_0 = \pi_2(\lim s_{n_k}) = \lim \pi_2 \cdot s_{n_k} = \lim f_{n_k}$; and also that f_0 is continuous with $p \cdot f_0 = g_0$. This concludes the proof.

There are immediate corollaries.

(4.2). COROLLARY. (James Hill, see [2]). If $p:(T,d) \to B$ is a light proper onto mapping with the property that each homeomorphism $h: I^n \to B, n \ge 2,$ 7 — Fundamenta Mathematicae, T. LXXVII

can be lifted to T, then each homeomorphism of S^n into B can be lifted to T.

Proof. It is sufficient to note that there is a sequence of homeomorphisms of I^n into S^n whose limit is a mapping onto S^n .

(4.3). Corollary. Let $p\colon (T,d)\to B$ be a light proper onto mapping of metric spaces with B LC°. Then p is an open mapping iff for each path $a\colon I\to B$ there exists a commuting diagram of onto maps

$$La \times I \xrightarrow{\overline{a}} p^{-1}(\alpha I)$$

$$\downarrow p$$

$$I \xrightarrow{a} \alpha(I)$$

with La a totally disconnected compact metric space and $\overline{a}(f,t) = f(t)$.

Proof. This follows immediately from theorem F and use of (4.1) with $F = \{a\}$.

A similar diagram exists for α with domains other than [0,1] provided, of course, that they are acceptable spaces. Furthermore, it is clear that in all cases the factor $L\alpha$ can be replaced by the Cantor set if the definition of $\overline{\alpha}$ is suitably modified.

5. Light mappings and the CHP. A homotopy $h: Z \times I \to B$ induces maps $h_t: Z \to B$ defined $h_t(z) = h(z, t)$. If $F \subset B^Z$ then $h: Z \times I \to B$ is said to be a homotopy through F if $h_t \in F$ for $0 \le t \le 1$.

A mapping $p\colon T\to B$ is said to have the Z-CHP through F (the covering homotopy property with respect to Z through F) iff for each homotopy $h\colon Z\times I\to B$ through F and map $g\colon Z\to T$ with $h(z,0)=p\cdot g(z) \forall z\in Z$, there exists a homotopy $H\colon Z\times I\to T$ with $p\cdot H=h$ and $H(z,0)=g(z) \ \forall z\in Z$. The map p is said to have the Z-CHP if it has the Z-CHP through B^Z .

- (5.1). DEFINITION. Let $p\colon T\to B$ be a map and let Z be a topological space. If $F\subset B^Z$, define p to be full over F if given $f\in LF(p)$ and a (compact open) neighborhood U of f, there exists a neighborhood V of $p\cdot f\in F$ so that if $g\in V\cap F$ there exists $f'\in U$ with $p\cdot f'=g$.
- (5.1). THEOREM. Suppose $p\colon (T,d)\to B$ is a light proper onto mapping, Z is an acceptable space, and $F\subset B^Z$. Then if p is full over F, p has the Z-CHP through F. Furthermore if F is locally path connected then the converse is true.

Proof. Let $h: Z \times I \to B$ be a homotopy through F and let $g: Z \to T$ be a map with $p \cdot g(z) = h(z, 0) \ \forall z \in Z$. Define $a: I \to F$ by $a(t) = h_t$.

Let G be the path component of F containing the range of α . Consider the map $\bar{p}\colon LF\to F$ and note that since p is full over F, $\bar{p}(LF)$ is an open subset of F. But applying (4.1), $\bar{p}(LF)$ is a closed subset of F. Consequently since $\bar{p}(g)\in G$, $\bar{p}\colon LG\to G$ is a light proper open onto mapping. Applying theorem W-F there exists a path $\beta\colon I\to LG$ with $\bar{p}\cdot\beta=\alpha$ and $\beta(0)=g$. Finally define $H\colon Z\times I\to T$ by $H(z,t)=\beta(z)(t)$. The map so defined is the required covering homotopy. If F is LC^0 , theorem W-F provides the converse.

Remarks. Theorem 5.1 is a generalization of the Whyburn-Floyd theorem since in the simple case that Z is a singleton set, their theorem is immediately recovered.

Note also that whenever B is a compact metric ANR the Z-CHP for $p \colon T \to B$ is equivalent to the fullness of p over B^Z .

Let H(Z,B) be the space of homeomorphisms of Z into B with the compact open topology.

(5.2). COROLLARY. Suppose $p: (T, d) \rightarrow B$ is a proper light onto mapping and Z is an acceptable space. Then if p is full over H(Z, B), p has the covering isotopy property with respect to the space Z. The converse is true if H(Z, B) is locally arcwise connected.

(5.3). COROLLARY. Suppose $p:(T,d)\rightarrow B$ is a proper light onto mapping. If p is full over B^I , then p has the path lifting property, that is, p is a Hurewicz fibration. The converse holds if B is LC^1 space.

Proof. Use of (5.1) insures that p has the I-CHP. It follows easily that since p is light, liftings of paths are unique given the initial point (see [8]). A theorem of Ungar yields the conclusion. His proof will be given here since it is immediate from (4.1).

Define $X=\{(t,\,\beta)\;\epsilon\;T\times B^I|\;p(t)=\beta(0)\}$ and consider the following commuting diagram

with $\pi(a) = (a(0), p \cdot a)$ and $\pi_2(t, \beta) = \beta$. Use of (4.1) and remarks above show that π is a proper, onto injection and hence is a homeomorphism, thus π^{-1} is a path lifting function. The converse follows since B^I is LC^0 whenever B is LC^1 .

Remarks. The results in section five have all been proved assuming that p is full over a large family of functions. Interesting results can be

obtained if more specialized choices of F are made. For example the following result is easily shown.

(5.4). COROLLARY (McAuley-Tulley). Let $p\colon (T,d)\to I^2$ be a light proper onto mapping. Defining $F=\{\alpha\colon I\to I^2|\ (\exists x\in I)\,\alpha(t)=(x,t)\forall t\in I\},$ p is full over F iff for each $\beta\colon I\to T$ with $p\cdot\beta(t)=(0,t)$ there is a section $s\colon I^2\to T$ for p extending β .

Analogues of this theorem can be stated for cells of higher dimension (see [5] and [6]).

As another example, McAuley (in [5]) attempted to eliminate some of the pathology of light open mappings by defining a twist free mapping. A light open onto mapping $p\colon T\to B$ is twist free if for each homeomorphism $h\colon S^1\to B$ and $x\in p^{-1}(h(1,0))$, there exists a homeomorphism $H\colon S^1\to T$ with $p\cdot H=h$ and H(1,0)=x.

A conjecture of McAuley is partially answered by the following.

(5.5). COROLLARY. If $p:(T,d) \rightarrow B$ is a proper twist free onto mapping and p is full over $H(S^1,B)$ then any 2 cell in B can be lifted to T.

References

- [0] J. Dugundji, Topology, Boston 1966.
- E. E. Floyd, Some characterizations of interior maps, Ann. of Math. 51 (1950), pp. 571-575.
- [2] J. Hill, Strongly twist free mappings and the Whyburn conjecture, to appear.
- [3] S. T. Hu, Homotopy Theory, New York 1959.
- [4] Theory of Retracts, Detroit 1965.
- [5] L. F. McAuley, Lifting disks and certain light open mappings, Proc. Nat'l. Acad. Sci. (UAS) 53 (1965), pp. 255-260.
- [6] and P. A. Tulley, Lifting cells for certain light open mappings, Math. Annalen 175 (1968), pp. 114-120.
- [7] H. L. Royden, Real Analysis, New York 1963.
- [8] G. S. Ungar, Light fiber maps, Fund. Math. 62 (1968), pp. 31-45.
- [9] G. T. Whyburn, Analytic Topology, Amer. Math. Soc. Coll., Rhode Island 1942.

RUTGERS UNIVERSITY, New Jersey

TEXAS CHRISTIAN UNIVERSITY, Texas

Reçu par la Rédaction le 4. 3. 1971

Homeotopy groups of orientable 2-manifolds

by

Jong Pil Lee (Vancouver)

1. Introduction. Let X be a topological space, and let H(X) denote the group of homeomorphisms of X onto itself topologized by the compact open topology. The arc-component of the identity $H_0(X)$ is a normal subgroup of H(X) and $\mathcal{X}(X) = H(X)/H_0(X)$ is the group of the arccomponents of H(X), which is called the homeotopy group of X. The equivalence relation defined by $H_0(X)$ is called isotopy. We can also define the isotopy relation in a subgroup H'(X) of H(X) and the group generated by the isotopy classes will be called the isotopy group of H'(X), which is denoted by $\pi_0[H'(X)]$. J will denote the group of integers and J_2 the integers mod 2. In 1914, Tietze [10] showed that the homeotopy group of the 2-sphere is J_2 . This was proven again by Kneser in 1926 [7], Baer in 1928 [2], Schreier and Ulam in 1934 [9], and most recently by Fisher in 1960 [4]. In [7] Kneser also obtained a result that the homeotopy group of a disk is J_2 . In 1923, Alexander [1] proved that the isotopy group of homeomorphisms of an n-cell onto itself leaving the boundary pointwise fixed is trivial. This result has been a most important tool for further development in this area of study. In 1962, in terms of the winding number of a homeomorphism of an annulus, Gluck [5] proved that the isotopy group of homeomorphisms of a closed annulus onto itself leaving the boundary pointwise fixed is J. He also showed that the homeotopy group of an annulus is $J_2 \times J_2$.

In this paper we compute the homeotopy group and isotopy groups of various subgroups of the homeomorphism group of the manifold obtained from the 2-sphere by removing the interiors of three disjoint subdisks. Further we deal with the orientable 2-manifold with n boundary curves.

2. Preliminaries. In this section we give preliminary results which will be used in the next section.

Basic notations

 M_n will denote an orientable 2-manifold with n boundary curves,