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We conclude the paper with some open problems. Is it true that
HB = BPIY, or

KM = BPI?, or

SEM < KM?

Postseript (January 12, 1972). After this paper was submitted, we received
& preprint of a review of [1] by W. A. J. Luxemburg in which the results of the present
paper are arrived at independently. Corollary 2.3 has also been proved independently
by Peter Renz. We have also been informed by Professor Luxemburg that D. Pincus
has recently answered the first two of our open problems in the negative.
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Extending maps from dense subspaces

by
L. Rudolf (Gdansk)

The main result of the present paper is a generalization of the
Tajmanov theorem, which claims that a continuous map f: X—Y of
a space X into a compact Hausdortt space Y can be extended by a continu-
ons map *f: *X —»Y onto an extension X of X iff for each pair of closed
disjoint -subsets A and A’ of ¥ we have Clixf™(4) A CLxfH4)=0
(see [3]). Certain results generalizing this theorem were obtained in [2]
and [11]. The main theorem of [2] affords a description of the greatest
subset X, lying between X and *X, onto which a given continuous
map f: X—+Y can be continuously extended, which however is external
and rather complicated and needs complete regularity of all spaces in
question. Meanwhile, the generalization of the Tajmanov theorem
given in [11], which depends on replacing the compact space Y
in it by an H - cloged Urysohn space, the closed sets 4 and A’ by regularly
closed ones and the continuity of *f by 6-continuity, is an immediate
consequence of the Tajmanov theorem since H -closed Urysohn spaces
are known to be exactly those which have a compact minimalization [6]
(the minimalization of a Hausdorfl topology T on X is the Hausdorff
topology u% on X generated by regularly open sets of B; the identity
(X, §8)—>(X,B) is 6-continuous). Besides, the cardinal disadvantage
of the quoted results (and so far as I know, these are the strongest ones
towards generalization of the Tajmanov theorem) ig that they are useless
in the theory of H-closed spaces, since genuine difficulties appear in
this theory when the spaces are not only non-regular (a regular H -closed
space is compact [1]) but also non-Urysohn ones since just then they do
not admit a contraction to a compact Hausdorff space [6].

In looking for a generalization of the Majmanov theorem, it seems
simplest to give an answer to the following question: under which con-
ditions has a map f: XY a continuous extension #f: xX —Y on a certain
extension *X of X? Tt is, however, hopeless to expect the existence of
a continuons extension *f in this general situation, particularly in the
case where *X is compach and Clyf(X) is not compact, which may happen
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for non-compact Y. Besides, the clasical notion of continuity does not
seem to be natural when non-regular spaces are in question, and it hag
often been replaced, either from necessity or for convenience, by
the notion of §-continuity, introduced in [4] and often used, in particular,
in the theory of H-closed spaces (the definitions are given in the
Preliminaries). -

The main theorem yields a sufficient condition for a 6-continuous
map f: X—Y to possess a 6-continuous extension *f: *X =Y on a certain
extension *X of X and contains the Tajmanov theorem and also some
new extension theorems. Further, it is shown that 0-continuous maps
can possess certain defects, which lead to a bad categorial behaviour
of 0-continmous maps. A clags of very §-continuwous maps (in the sense
of weakly continmous maps, see IIL.2) is defined, and a Tajmanov-type
theorem for such maps is given, i.e. a necessary and sufficient condition
for a map f: X—Y to possess an extension *f: *X —¥ on a given ex-
tension *X, both f and #f being very 0-continumous maps in this sense.
This theorem is applied to obtain a new result on extending maps onto
the Katétov extension.

This paper is a dissertation presented at the Mathematical Institute

of the Polish Academy of Sciences in 1971. I wish to express my cordial .

thanks to my teachers Professors Bronistaw Knaster and Jerzy Miodu-
szewski, to whom I owe a debt of gratitude for their patient guidance
and inspiring consultations, in which they have both gone out of their
way to make this paper more valuable.

1. Preliminaries
. 4
The term i: X —»+X 4s an extension of X to *X, shortly *X is an ez-
tension of X is here used in the common sense, i.e. the map 7 is an em-
bedding of the space X onto a dense subset of the space *X. In what
follows, i(X) is identified with X and denoted also by X. Extending
a map f: XY onto an extengion *X of X is understood as nsual, ie.

a map.*f: *X ¥ is a *-extension of f whenever *f(x) = f(z) for each
zeX, in other words the diagram

X

—> %X
’
s
e
v
*
// i

e

7

i
v
Y
is commutative.
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The symbol Cl is used to denote the closure operator and Cl, always
stands for the closure operator in *X. The symbol U, stands for an open
neighbourhood of a point « of the space under consideration, while U
denotes the family of all such neighbourhoods.

A Hausdorff space X is H-closed (Alexandroff and Urysohn [1])
whenever each centred family W, consisting of open sets of X, has an
adherence point, i.e. () {OLU: U e U} 5 @. Equivalently, X is H-closed
whenever each covering 7 of X, codsisting of open sets of X, confains
a finite quasi-subcovering, i.e. X = ClU; v ... v Cl1U, for some elements
Uyy ooy Un €.

Each Hausdorff space X has a maximal H-closed extension (Kate-
tov [6]), abbreviated to X, which is constructed by adding to X all
ultrafilters consisting of open sets of X without adherence points and

.the topology in 7X is generated by all open sets of X and all sebs of the

form {#}v U where z is an ultrafilter from zX—X and U is an ele-
ment of x.

A map f: XY is called 8-continuous (Fomin [4]) whenever for
each #e¢X and each open neighbourhood Uy of y = f(x) there exists
an open neighbourhood Uz of @ such that f(ClU,) C CLUy. Observe that
each continmous map is 6-continuous and these notions coincide when
Y is a regular space.

II. O-continuous extensions of maps

1. G+proper maps. Let *X be an extension of X. Given a map f: XY, -
denote by U(f, Uy) the filter of open sets of Y, generated by the centred
family of sets f(U, ~ X), U, running over the family U, of open (in *X)
neighbourhoods of o point » ¢ *X —X, ie. W(f, W)= {U: U is open
in ¥ and UD f(Uz ~X) for some Uz e Wa}. .

A map f: XY is called 0+-proper whenever for each ¢ *X—-X

W N (01T T W(f, Wal) 0,

that is, U(f, W) has an adherence point.

Observe that in the case of ¥ being H-closed, each map f: XY
is G*-proper with respect to each extension *X of X. This is not true
in general: the identity map X —X of a Hausdorff space X is not 6*-proper
with respect to any proper Hausdorff extension *X of X and such - an
extension exists whenever X is not H -closed.

The §+-proper maps appear when looking for §-continuous exten-
sions of maps, more exactly: ‘ :
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TrrorEM 1.1, If *f: *X Y is a 0-continuous extension of f: X ¥
on *X, then :
(2) #f(2) e {OLT: U e W(f, Wa)} for each x e X —X

Proof. Suppose, on the contrary, that y = *f(z) ¢ ClU for some
U e U(f, Us). Take Uy= ¥—C1U, an open neighbourhood of y. Then

there exists, by the 0-continuity of *f, an open nejghbourhood 7, -

of # such that *f(ClU,) COLU,C Y—TU and all the more *f(U, X)
=f(U;~nX)CY—U. But U, being an element of Us(f, W), contains
a set of the form f(U, nX) for some Uy eW,. Now f(UsnX)n
Af(U,~nX)C(Y-U)~U=9, which implies f(U,n Uy X)=g,
.8 contradiction. '

The theorem proved above shows that in looking for a theorem on
§-contintous *-extensions similar to the Tajmanov theorem a restriction
to G*-proper maps is necessary. But not every 6%-proper map f: X Y
possesses a f-continuous extension *f: *X Y (even in the case of
compact Y, each f: X Y is *-proper, however, a 0-continuous *f: *X - ¥
which becomes by the regularity of ¥ simply continuous, does not always
-exist — a consequence of the Tajmanov theorem). A §*-proper map, in
-order to possess a 0-continuous *-extension, must fulfil additional con-
ditions, which imply the condition of the Tajmanov theorem in the case
covered by it.

2. *-free maps. Let *X Dbe an extension of X. A map f: X —Y ig called
*-free whenever

{3) for each z ¢*X —X and each y ¢ ¥ and each regularly closed set
A C Y such that y ¢ 4 there exists an open neighbourhood Uy, of y
such that

@ ¢ Claf ~H{CLTy) ~ CLfY(4) .

The next theorem justifies the notion of *-freeness.

THEOREM 2.1. A continuous map f: X —¥ of a space X into a compact

Hausdorff space Y is *-free iff for each pair of closed disjoi
int subsets
A and A’ of Y there is !

{4) Cl, f“‘(A) ACLfYAY=@.

» Proof of. the non-trivial implication (3)= (4). Observe that in view
of the normality of ¥ it suffices to prove (4) for 4 and 4’ being disjoint
regularly elose'd sets. Let « be an arbitrary point of *X— X. For each
a <A there exists by (3) an open neighbourhood U, such that

(5) @ ¢ OLf™(CLT,) ~ Ol fY(4).
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Since {Ua: a e A} is an open covering of the compact set 4 a finite
subcovering {Ua,, .., Us,} can be chosen, ie.

(6) AC UG .ovw Ug, CCYUg v ... Us,) .
From (5) it follows that
(7) © ¢ CLf Ol (Ug, v -.. v Ug,)) » Clef (4.

Thus (6) together with (7) yields @ ¢ CLf~ YA) n Cl f4'), © being
an arbitrary point of *X —X, and in consequence

(8) (*X—X) A OLf(4) A CLfHA) = 0.

But X ~CLf7(4) = Clzf(4) = f(4), the set A being closed
and f being continuous, whence

(9) X A OLfHA) nCLf4) =9 .

Now (8) and (9) imply (4) for A and A’ being regularly closed sets
and the theorem is proved. ‘

Although the Tajmanov condition can be generalized in several
ways, the *-freemess seems to be the most reasonable generalization.

Call & Ox-proper and *-free map simply *-proper. Examine some
properties of *-proper maps, needed in the proof of the main theorem.
To do this, prove a rather technical but mseful lemma.

Tmvma 2.2. Let X be an arbitrary extension of X and let f: X X be
an arbitrary set-theoretic. map. Then for each % e *X and each Yye¥

Y eN{CLT: UeW(f, Ug)} iff e {OLFHCLTy): UyeUn}.
Proof. Let 4 () {CLTU: T e U(f, Uy)}. This is equivalent to
(10) UynUx@ for each Uye Uy and each U e W(f, Ws) .

Observe that from (10) it follows that
(11) ClUy nf(UsnX)#0 for each Uye Uy and each Uze Uy

(in the opposite case CLUy N f(Uz ~ X) = @ for some Uy e Uy and some
Uy e Uy; thus the open set U= Y-0lU,Df(Uszn X) is an element
of W(f, Uy) for which Uy~ U =4, contrary to (10)).

© Moreover, (11) implies that ClUy ~ U % O for each Uye Uy and
each U e U(f, W) and, this inequality being equivalent to Uy~ U # 0
since U is an open set, (10) follows. Thus (10) is equivalent to (11). Bus (11)
is equivalent to

(12) UsnX~fYCLT,) #@ for each Use Uy and each Uy e Uy

11 — Fundamenta Mathematicae, T. LXXVII ’
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and this is equivalent, in view of X ~f{(CLTy) = fC1Ty), to
(13) UznfClTy) =@ for each Uy e Uy and each Uy e Wy .

TFinally, (13) is equivalent to 2 ¢ (") {Cl« FHOLUy): Uye Uy} and the
lemma is proved.

Now a uniqueness property of *-proper maps is easy to verify.

TrmopEM 23. Let *X be an arbitrary emtension of X. Then for
each *-proper map f: XY inio a Hausdorff space Y the intersection
M {CLT: T e W(f, Us)} 95 & one-point st for each xe*X—X .

Proof. Let « be an arbitrary point of *X —X and suppose that
y e {CLU: U eW(f, Uy)} (such a point y exists since f is a 0%-proper
map). By 2.2, '

(14) 2eCLFHOLT,) for each Uye Uy.

Take an arbitrary point y’ of ¥, different from y. Since Y is a Haus-
dorff space, there exists an open neighbourhood U, of y' such that
y ¢ CLU,,. The map f being *-free, there exists an open neighbourhood Uy,
of y such that

(15) o ¢ CLFYCLT,) A OLF(CLT,) .

) From (14) and (15) it follows that « ¢ Cl.f*(C1T,,) and this implies
in view of 2.2 that y' ¢\ {C1U: U e W(f, Us)}, ¥' being an -arbitrary
point of Y different from y, and this ends the proof.
The converse theorem is true for ¥ being H -closed. More precisely
TEEOREM 2.4. A map f: X—Y into an H-closed space Y is - proper

iff the intersection [\ {CLU: U e U(f, Ws)} is a one-point set for each
ze*X—X. i

Proof. The “only if” implication following from 2.3, prove the

lacking “if”, that is assume that () {ClU: U € W(f, W)} is a one-point
set for each « e *X — X. Tt suffices to prove that f is *-free. To do this,
let # be an arbitrary point of *X — X and let ¥ be a point of ¥ such that

(16) @ e[ {CLf {OLTy): TyeUy}.
It remains to show that for each regularly closed set AC Y, if y ¢ A

then # ¢ CL.f(4). Given such a set A, observe that for each & ¢ A there
exists an open neighbourhood U, such that '

(17) @ ¢ OLf(C1Ty,)

since ¥ is, by assumption, the only point satisfying (16). Regularly closed
subsets of H - closed spaces are known to be H - closed also [6]; thus a finite
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quasi-subcovering of the covering {U,: a <A} can be chosen, that is

ACClUs v ... ClUq,. Then (17) implies that @ ¢Clf™(4) and the

theorem is proved.

3. Main theorem. In looking for 0-continumous extensions of maps
there is no reason to consider extensions of continuons maps only. However,
at most 0-continuons maps can possess 6-contintuous extensions since
the restriction of maps preserves 6-continuity.

TrmoREM 8.1. Let *X be an arbitrary extension of X. Then each
0-continuous *-proper map f: XY possesses a 0-continuous extension
*f: *X Y. The estension of f is unique when Y is a Hausdorff space.

Prooif. Define
(18) *f(@) e (CLTU: UeW(f, Ws)} for each e *X—X;

This definition is correct since f is 0+*-proper. ‘
To prove 0-continuity of *f, the following formula will be mseful:

19) #((*X—X) OL.f~ClU))CClU  for each open set UC Y.

To prove (19) suppose on the contrary that for some open UCY
and some & e (*X —X) ~ CL.f~YCLT) there is *f(x) =y ¢ ClU. The map f
being *-free, there exists an open neighbourhood Uy of y such that

(20) ¢ CLF (01 Ty) A CLSCLT) .

From the definition (18) of *f on points of the remainder it follows
by 2.2 that '

(21) @ e CLfY(0LT,) .

Then (20) together with (21) implies 2 ¢ CL.f~Y(CLU), contrary to
the choice of #, and so (19) is proved.

Now pass to the proof of the §-continuity of *f.

Tirst consider an avbitrary point =z of X. Take y= xf(z)= flz)
and let Uy be an arbitrary open neighbourhood of y. The map f being
§-continuous, there exists an open neighbourhood U, of x such that
flO1T,) C ClUy; in other words

(22) OLU, CF(CLTy) .

Define U*=\J{U: U is open in *X and U ~X= Uy}, an open
neighbourhood of  in *X. Then Cl Ut = Ol (U n X) = CL U, and
from (22) it follows that OL, U C CLf(CLUy); thus

(23) OL, U* C Ol f~(CLTy) .

11 — Fundamenta Mathematicae, T. LXXVIL
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Calenlate
*f(CL T2 = *f((*X—X) ~ CL T w (X~ 0L T3)
- *f((*X-X) ~ Cl, U:) u f(OLT,) CClTy,

the inclusion of the first summand heing a consequence of (19) and (23)
and of the second ome it follows by (22). Thus *f is 6-continuous at
points of X.

Now prove the 0- continuity of *f at points of the remainder. Consider
an arbitrary point # ¢ *X —X and let Uy be an arbitrary r.o. neighbour-
hood (r.0. stands for regularly open) of ¥ = *f(z). It suffices to prove
§-continuity by using r.o. neighbourhoods of y only, of course. Then
y ¢ ¥Y—Ty and from the formula (19), applied to the r.c. (regularly closed)
set ¥ —Uy, it follows that

(24) z ¢ CLf Y —Uy).

Thus Uy = *X —CL.f ¥ —TUy) is an open neighbourhood of » in *X.
But Y =ClUyu(¥Y—Uy); thus *X= Ol f{CLUy) v CL (XY —Ty)
and U, is disjoint, by definition, with the second summand; thus Uy
C CLf™(C1Uy) and hence .

(25) Cl, U C CLfY(CLTy) .

Moreover, U X =X—Clf (T —U,) CX—fHY—Ty) =Ty
thus

(26) Cl(Uy ~ X) CClf(Ty) .

But f(CLf(U)) C CLU holds for each open U C Y since f is 6-con-
tinuous. To prove this, suppose on the contrary that f(x) ¢ CLU for some
# ¢ Clf (T). For Uy,= Y—ClU take U, such that f(ClTUs)C ClUy,
C ¥ —TU. It follows that C1U, ~f(U) = @, and all the more x ¢ ClfX(U),
contrary to the choice of 2. The formula proved above, together with (26),
yields .

(27) v flO(T; ~ X)) CCLTy .
Calculate
*f(CI* Ua:) = *f((*X—X) ~ Cly Ua;) “ *f(X ~ Cl, Ua:)
= *f((*X = X) ~ CL Ug) v f(CL(Tz ~ X)) C CL Ty,

the inclusion of the first summand following from (19) and (25) and of
the second one from (27), which proves the -continuity of *f at points
of *X—X; this ends the proof of the 6-continuity of the defined ex-
fension *f.

The uniqueness of the §-continumous extension of a «-proper map
into a Hausdorff space is a direct consequence of 1.1 and 2.3.
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Remark. It has been proved, in fact, that

(*) for each x ¢ *X — X and for each r.0. neighbourhood Uy ‘of y = *f(x)
there exists an open neighbourhood U, of x such that *f(ClU,)
CCUy and *f(Uz " X)C Uy.

The = latter inclusion follows from the definition Uy= *X—
—CLfH Y —Uy)

Suppose the map f: X ¥ in Theorem 3.1 to be *-free with respect
to all closed sets, which means that the set A in the definition of *-free-
ness is assumed to be an arbitrary closed, not only r.c., set. Then
Theorem 3.1 remains valid and *f has the property (*) with respect to
each open, not necessarily r.0., neighbourhood Uy of y = *f(2). To prove
this assertion observe that on account of the assumption on f formula (19)
is true for arbitrary closed sets. In consequence, given an arbitrary open
neighbourhood Uy of y, formula (24) holds; thus Uz = * X —CL.f MY —Uy)
is a neighbourhood of # with property (%). This property of *f is very
important (see III.2 and IV.1).

The assumption of f being * - proper, which is sufficient for the existence
of a (unique) f-continuous extension *f of f, is not necessary, as shown in

ExAmpLE 1. Let ¥, be the plane subset consisting of the points
(—1,0), (1,0) and points (-1/n, 1/m) and (0, 1/m) for n,m=1,2, ..
with topology generated by all one-point sets {( +1/n,1/m)} and sets

Uk = {00, 1/m)} © {(£1/n, 1jm): n >k} for m=1,2,..,
Uk, = {(—1,0} v {(—1/n,1jm): m=>Fk and n=1,2,..},
Uk o= {(1,00}v {Ijn,1/m): m>Fk and n=1,2, ...},

where k=1,2, ...

The space ¥, was constructed by Urysohn and proved to be H-closed
in [1]. The set U = {(1/n,1/2m): n,m=1,2,..} is regularly open; thus
Y,~U is H-closed as a regularly closed subset of the H-closed space Y.

Let N denote the set of natural numbers with diserete topology
and *N = N u {*} —its Alexandroff one-point compactification. Define
it N—Y,—U by i(n) = (0,1/n). Then both (—1,0) and (1,0) are ad-
herence points of Us(3, Us), Uy being the filter of co-finite sets of *N,
containing the point #. Thus 4 is’ hot *-proper in consequence of 2.4.
But the extension #i of 4, given by the formula *i(*) = (-1, 0), is §-con-
tinuons, and it is easy to verify that this is the only 6-continuous ex-
tension of 4 on *N, and this proves that not only *-proper maps possess
unique 6-continuous extensions.

Theorem 3.1 yields an answer to the more diffieult half of the problem
of the characterization of eéxtendability of maps under sufficiently large
and reasonable assumptions. The properties of the map *f depend
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simultaneously on those of the map f and of the spaces *X and ¥, and
this connection is too deep to be expressed in this general situmation by
nsing natural and simple conditions. ,

However, under various restrictions either on the space ¥ or on the
map f of on the structure of the extension +X the converse thcorem be-
comes true. Note two Tajmanov-type theorems following immediately
from 3.1 (another one will be proved in IV). ‘

COROLLARY 1. A continuous map f: X—¥ into a regular space Y
possesses a continuous extension *f: *X ¥ iff f is *-proper.

Proof of =. Suppose *f is a continuous *-extension of f. Then f is
6+-proper by 1.1. To prove that f is *-free observe that the continuity
of #f implies #f(Cl,f~(4))C C14 for each AC Y. So, given y e Y and
a r.c. set A CY such that y ¢ 4, it follows that

(N {CLfHCLTy): Uy e Uy}~ CLfHA) CM {OLTy: Uy e Uy} n A
= n4A=0;

thus no point of *X — X belongs to (M) {CL.f~HCLUy): Uy € Uy} ~ Ol
and this proves the *-freeness of f. * v): Uy e Wy} ~ Ol f74(4)

) P;oof of <. Suppose f is a continuous *-proper map. Then the
-continnons *-extension of f, which exists by 3.1, is simpl i
the space Y being regular. ’ e Iy contimmons,

Remark. For Y being a compact s i
Ren pace, Corollary 1 together
2.1 implies the Tajmanov theorem. ’ v ether with

' OOROLLAR:Y 2. An open 0-continuous map f: X —Y possesses a 0-con-
tinuous extension *f: *xX Y iff f is *-proper.

Proof of the non-trivial implication =. It suffices to prov i
*‘ﬁ'ee._ Supposg 2 e[\ {CLfCLTy): UyeUy} for some 5 eOYe ta? a;e]icnl;
an arbitrary point of * X —X. This implies *f(z) = ¢, for if *f(w)7= Y'Y
then, for U,, chosen in such a manner that y ¢ClU,,, there exists a [%’
such that '*f(Ol Uz)CCL U, whence f(U,~X)C IntOl U,y f being a.;
open map;in consequence y ¢ CLf (U ~ X); thus g ¢ ) {CLU: U ¢ W(f, Us )}
sm‘(lze f(Uz ~ X) € W(f, W), contrary to 2.2 and the a,ssumption’ onzw
ia.lxgo d'y ll;’ owj,E let A be a t.c. set for which 4 ¢ A. There exists a neighbour-
C Int(jl?yo“j ilcy{l that *f(Ol Uz)' COlUy=0(Y—4), and f(U,nX)
g nf*l(f)t)—— Q—Av;h :mce fis 01_3:311 and A regularly closed. Then
AN, 5 nee Uz nf(A)=0 and o¢ Cl, f (A)and
for eil;ha,n:ﬁ%? é?tglo], ca{]l a map f: XY a Urysohn map whenever
o Up rol 1; inct pomtg ¥ and y' of Y there exist open neighbour-
I 1o y AL y for which IntCL “H(CLT,) ~ IntOLf~Y(C1T,,) = @.

1 continuous Urysohn maps were studidd in connection I{vi‘ﬁh ex-
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tending maps on the Katétov extension. The Katétov extension X of
2 Hausdorff space X is known from [7] to possess the following properties:g
1° CLA = A for each closed and nowhere-dense seb ACX and 2°
(tX—=X)nCLUNCLT =0 for each pair of disjoint open sets U
and U’ of X. It follows from 1° and 2° that a Urysohn map is z-iree;
thus 3.1 implies

COROLLARY 3. Fach 0-continuous Urysohn map f: X—Y dnfo an
H-closed space Y possesses a unique B-continuous extension tf: tX Y.

This is a generalization of a theorem of [10], concerning continuons
Urysohn maps. )

II1. Weakly continuous maps

1. Defectiveness of 0-continuous maps. The troubles in giving a full
description of 6-continuously extendable maps are caused by a cerfain
oddity of 0-continuity. A §-continuous map f: XY is called defective
at a point & of X whenever there exists such an open neighbourhood Uy
of y = f(») that f(Us—{z}) CCl Uy —Uy for a certain (and in consequence
for each sufficiently small) open neighbourhood Us of z. The point * in
Example 1 is such a defective point of the map *4. This possible deficiency
of 6-continuons maps leads to bad categorial properties of the category
6 H of all Hausdorff spaces and all their 6:continnous maps. One of them
can be seen in Bxample 1: in the decomposition X —-f(X)C Y of a de-
fective 0-continuous map f: X —Y¥ the inner factor X f(X) need not
be 6-continuous and F(X) need not be H-closed, although X is H-closed.
Further, the value of a defective 6-continuouns map f: XY at a point
2 ¢ X need not be determined by the values of f on X —{z}, and a cate-
gorial consequence of this fact is the following theorem:

THEOREM 1.1. Epimorphisms of 6H coincide with onto maps.

Proof of =. To prove that an epimorphism in 6H is onto it suffices
to show that for each 6-continuous map f: XY for which f(X) g; Y,
there exist distinet maps f',f': ¥ —Z such that f'of=f" of.

Suppose ¥, ¢ ¥ —f(X). Denote by S8 the set {+1/n: neN}ow {0},
with topology from the real line and let Z,= SX (¥ —(y,}) with the
product topology and let Z = Z, v {y, ¥+ With topology generated by
all open sets of Z, and sets of the form

U'(U,,) = {ygyo {—1/n: neN}X (Uy—{o})

and
U"(U,,) = {yo} v {+1/n: me N} (Uy—{})
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for each U, € U,,. Then Z is a Hausdorff space and f' and f'* are- defined
by the formulas
(0;y) when ¥ # ¥ (0,y) when y = y,,

@)= and  f(y) =
ys  when y=1, Y  when y=1y,.

The maps f’ and f* are 0-continuous. It is clear for points y s y,
of Y since f* and f” restricted to ¥ —{y,} are embeddings, and to prove
it- for y = g, observe that Cl,U'(U,)= {y;}v ({0} v {~1/n: neN})X
X (CLT,,— (%o}); thus f'(C1T,,) C Cl; U’(U,,) and analogous formulas are
valid for f”'. Moreover, "o f=f" of since f'(y) = f"'(y) for each y =y,
and all the more for each y ¢f(X). But f' and f’' being distinet maps,
this proves that f is not an epimorphism.

Proof of <. Since there is a forgetful functor § -G into the cate-
gory S of all sets and all their maps and each onto map is an epimorphism
in G, the same is valid in 0H. .

Remark. Observe that Z iy H-closed whenever Y is H-closed.
It follows that, given the Katétov extension X of a non-H-closed
Hansdorff space X, there always exists a map f: X -¥ into an H -closed
space ¥ which possesses two different 6-continmous extensions f',f":
©X —Y, both being defective. Thus the Katétov extension is not a reflec-
tion in the sense of [5] of 6 H info the category 6HCI of all H -closed
spaces and all their §-continuous maps. To avoid the categorial triviality
of f-continuous maps & restriction to maps without the deficiency in
question is necessary.

2. O-continnous maps without defects. Let f: X —Y be a 0-continuous
map. The non-defectiveness of f depends, roughly speaking, on the follow-
ing property: for each z ¢ X and each ‘dpen neighbourhood Uy of y = f(x)
there exists an open neighbourhood U, of # such that f(ClTU,) C C1T,
and that (Uz— {2}) ~f~}(U,) contains at least one point, or a set which
is either open, or dense, or open #nd dense in U,. In the first case f is
f:alled a non-defective map, in the last. case. a weakly continuous map. Tt
is clear that each continumous map is weakly continmous and that the
converse is not true. Although the difference hetween those two extreme
notions of 0-continuity without defects seems to be large, they are of
equal importance from the categorial viewpoint as shown in Theorems 3.2
and 3.3 of the next paragraph. Especially the notion of weak. continuity
proves very useful in extension theory.

3. Weakly contyinuous maps and s-maps. Recall that topological spaces
(X,%) and (X ,7?‘) are said to be r.0.-equivalent (for details see [9])
whenever the families of r.0. sets of both © and ' are identical. If in

©
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addition BC B, the set-theoretical identity (X, T)—-(X,T’) is called
an 7.0.-expansion. The standard 7.0.-empansion i3 the r.o.-expansion
sx: (X, B)—>(X, sB) where sG is generated by the base = {U: VCU
C IntC1V for some V e B}. Observe that for each point z of X the family
{{#} v (Uz—A): Uy is an open neighbourhood of # from T and 4 is closed
and nowhere-dense in G} is a neighbourhood basis of # in sB (now it is
easy to check, using a criterion given in [9], that sx is, in fact, an r.0.-ex-
pansion). Denote the space (X, sT) by sX. There is a ¢lose connection
between weakly continnous and continuous maps, given in the following
theorem.
THEOREM 3.1. A map f: X—Y is weakly continuous iff the map f in
the diagram
s X
™
Sy ] \\7\
|
|

N
N,

]
18 continuous.
Proof. This is easily proved by using the described basic neighbour-
hoods of points in sX together with 6-continuity of the r.0.-expansion sx.
Theorem 3.1 implies

COROLLARY 1. Let f: XY be a weakly continuous map. Then the inner
Factor X —f(X) of the decomposition X —f(X) C Y is also weakly continuous.

COROLLARY 2. The image of an H -closed space under a weakly continu-
ous map into a Hausdorff space is H-closed. :

Proof. Recall that a space is H-closed iff its standard r.o.-ex-
pansion is H-closed because of their r.0.-equivalence and apply 3.1.

However, weakly continunous maps do not form a category, even
when only H-closed spaces are in question, as shown in

ExampLE 2. Let Y, be the space defined in Example 1. Let Y, de-
note the subset of Y, comsisting of points with non-negative first co-
ordinates with topology induced from ¥, and let x¥, denote the set ¥,
with topology generated by r.o. sets of ¥,. Let *N be the space used in
Example 1. Then the map 4: *N—>uY, defined by i(n) = (0, 1/n) and.
i(*¥) = (1, 0) is continuous, since the basic neighbourhoods of the point
(1,0) in pX, have the form uUEy= Ufqyv {(0,1/m): m >k}, and
all the more the map 4 is weakly continuous. The map j: uY,—Y,, defined
as the inclusion of the set pY¥; into ¥,, is weakly continuous. But the
composition joi: *N ¥, is not weakly continuous since j ¢ is 'de-
fective at *. ‘ R
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The question arises whether there exists a greatest category of weakly
continuous maps. In the sequel such a category will be defined.
A map f: XY is called an s-map whenever the map sf in the
diagram :

(s) x

is continuous.

This formal definition can easily be translated into the following ¢—é
description: a map f: XY is an s-map iff for each # ¢ X and each open
neighbourhood Ty of y = f(#) and each closed nowhere-dense set A C Y
there exists an open neighbourhood U, of # and a closed nowhere-dense
set A’ C X such that f(ClU;) CClUy and f(Us—A')C Uy—A.

Each s-map is weakly continuous by 3.1 and s-maps form a category
abbreviated by S, of weakly continuous maps. This category contains

all standard expansions since s(sX)= sX. The importance- of s-maps, -

from the categorial viewpoint, is established by

THEOREM 3.2. A category K of topological spaces and their weakly
continuous maps, containing with each object X the standard expansion sx,
8 a subcategory of S.

Proof. Let f: X—»Y be a map from K. Then the map sy of of
diagram (s) is a map from K; thus it is weakly continuous. In view of 3.1
it follows that 5 o f = §f is continuous and so f is proved to be an s-map
and thus KXC S. .

In other words, § is the greatest category consisting of weakl
continuons maps. It is remarkable that a similar result is true for the
class of all non-defective maps. :

TeEOREM 3.3. Let K be a category consisting of topological spaces and
their non-defective 0-comtinuous maps and containing the category .
Then K= S. ' ' '

Proof. Suppose f: X~ Y is a map from K, which is not in §. Then
there exist a point # ¢ X and a closed nowhere-dense set 4 in ¥ such
that A CClUy for some open neighbourhood Uy of y = f(z) and '

(28) Uy ~IntOlf (A—{y}) #0  for each U ey,

Let X’ be the space obtained from X by adding sets of the form
{#}o Uy I~Ilt CLf (A —{y}) nf~YA—{y}) as open sets for each U e Us.
Denote by i’ the set-theoretical identity X’ X. Then for each basic
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open set of X' of the form U'=1T A [{#} v Uz nIntCLf A —{y}) ~
A A—{y})), where U is an arbitrary open set of X, one gets:

(29) TntOLi*(T") D IntCL{T ~ Uy ~ IntCLF (A — {y}) ~ f (A~ {p})
DInb(U A Us ~ IntOLf (A — {5}) ~ CLf (A —{3}))
= U~ Uy ~nIntCLf YA —{}),

the second inclusion being true since f~(4—{y}) is dense in UnUzn
A IntCLf (A —{y}). Suppose U’ 7 @. When e U’, it follows from the
Jefinition of U’ that zeU; thus (29) yields IntCli(U")D Ve
AIntOlf‘l(A—{y}) for Vy= U ~ U, whence on account of (28)

(30) IntCLi(U") = 0 .

In the case where z ¢ U, it follows from the definition of U’ and (29)
that (30) is true. Singe (30) is true for each non-void open set U’ of X7,
it follows that Inti ~}(A’) = @ for each closed nowhere-dense A’ C X and,
in consequence, i’ is an s-map, since, in addition, it is continuous. Then,
gince sy is also a map from § and SCK by assumption, the map
X’i; X Ly%syisa map from K. But for the (open in sY) neighbt.mp
hood U, = {y}v (Uy—A) of the point y and the (open in X') neigh-
bourhood U, = {#} v Us ~IntCLf (4 —{y}) ~AfHA-{y)) qf X, where
U, is chosen to satisfy the formula f(Cl1U,)C ClUy, there is

(s of o) (Up—{w}) CA—{y} COLT,—T,

and so K contains a defective 6 - continuous map contrary to the assumption
and the theorem is proved.

IV. Weakly continuous extensions of maps

1. A Tajmanov-type theorem. An extension *X of X is called a Ka-
tétov-type ewtension () whenever

1° X is an open set in *X,

2° *xX —X is discrete in the induced topology,

3° each nowhere-dense closed subset of X is closed in *X. o

Tach extension *X of X can be modified to a Katétov-type extension
k*X by adding to the topology of *X the set X and all sets (?f the form
{m}w (Uy ~ X —A), where ¢ e*+X~X and Uz e Usp a;n.d 4 is a clqsed
nowhere-dense subset of X. Then #X is 9-homeomorphic to k+X, since

(*) The notion of a Katétov-type extension defined in [9] is gqu%valent to that
given here. However, the characterization of a Katdtov-type extension in [9] by means
of properties 1° and 2° only is not complete. ’ '
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the identity map *X—k*X ‘is 0-continuous. Therefore in the sequel
only Katétov-type extensions are considered. Henceforth *-free maps
are understood to be *-free with respect to all closed sets.

For use in the sequel first note that

TaporeM 1.1, If f: XY dis a weakly continuous map, then

1° f(ClIntCLf(4)) C OLA for each A C Y, and

20 f(C1T)C CLf(U) for each open U CX.

Proof. Suppose y = f(x) ¢ CLA. For Uy= Y—Cl4 take U, on
account of weak continuity, in such a way that f(Us—4") C Uy for gome
closed nowhere-dense A’ C X. Then f(Uz—A') nClA=@ and all the
more (Uz—A’) nf4)=@. But U,— A’ being open, it follows that
(Us—A") ~ Clf{4) = @; thus O1(Ts—A’) » IntClf(4) =@ and since
CYU,—A’)= ClT, the set A’ being nowhere-dense, it follows that
Uz ~ IntClf(A) = @. Thus 2 ¢ ClIntCLf Y (4) when f(2) ¢ CLA and 1° is
proved. To prove 2° observe that ClU = ClIntClU C ClInt Clf~(f ()
and apply 1° for A = f(7).

TaroREM 1.2. Let *X be a Katéiov-type extension of X. Then a weakly
continuous map f: XY possesses a weakly continuous extension *f: *X ¥
iff f is *-proper. The extension of f is unique when Y is a Hausdorff space.

Proof of =. Suppose #f is a weakly continuous extension of f on *X.
To prove that f is *-proper it suffices, in view of 1.1. I, to show that f is
x-free with respect to all closed sets. Accordingly, let # e *X —X and
suppose that x e ) {CLF(CLTy): Uye Uy} for some y e Y. Then

(81) *f() = y..
To prove this observe that
Clof~(C1Ty) = CLOIf {(CLT,) = CL(Iutf}C1T,) v A),

where 4 = CIf(C1U,)—IntfY(C1T,) is a closed nowhere-dense subset
of X; thus ‘
(32) (*X —X) n Cle fHCLTy) = (*X —X) A Ol Intf~X(Cl Uy)
since Cl,.:A = A CX holds for the Katétov-type extension *X. But, by
a§sumpt10n, 2e(*X—X)nCLfCLT,) for each UyeUy; thus (32)
yields z ¢ Ol Intf~Y(C1Uy) for each Uy e Uy, and all the more
(33) z e ClIntoxf(C1T,) for each UyeUy.

Now (33) implies, on account of formula 1° from 1.1, that

(@) e {ClTy: Ty e Uy} = {y}

and so (31) is proved.

Let A be a closed subset of ¥ not ini

; containing the point y.. For the

open neighbourhood U, = Y—4 of y there exist an open neighbour-

e ©
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hood Us of z and a nowhere-dense closed set A’ in *X such that *f(U;—A")
C Uy, since *f iy weakly continuous by assumption. From 2° of the defi-
pition of a Katétov-type extension it follows that there exists a neighbour-
hood U’ such that U o (#X—X)= {u}, and since in view of 1° A’ n X
is nowhere-dense and closed in X, a neighbourhood U, can be chosen
by 3° in such a way that U nA nX=0. Take Vo= Uz U.L~TL.
Then
Sf(Va) = (Vo n ($X—X) 0 Vo n X) C (@) f(Ua n U A X)
Ciyvf(Us—ANCUy=Y—-4,

0 Vo #fY(A)=0 and all the more V5 nf ' (4)=0, which implies
that « ¢ CLfY(4), and so f is proved to be *-free with respect to all
closed sets.

Proof of <. Since f is assumed to be *-proper, there exists by 3.1. Ia
(unique, if ¥ is a Hausdorff space) §-continuous extension #f: *X Y.
To prove the theorem, it sutfices to check that *f is even weakly contini-
ous. This is easy to see for 4 ¢ X, since f is assumed to be weakly continu-
ous and *X is a Katétov-tiype extension. Given a point » ¢ *X —X and
an open neighbourhood Uy of ¥ = *f(x), take the neighbourhood U, of =
for which *f(ClT,) C C1Ty and f(Us ~ X) C Uy, which. exists, as pointed
out in the remark following the proof of 3.1.IIL, since f is *-free with
respect to all closed subsets. Then U, = {#} v (Us—(*X — X)) is an open
neighbourhood of 2, since *X is a Katétov-type extension, and #f(U;)
= *f() v f(Uz ~n X)C Uy and so *f is proved to be weakly continuous
(in fact, even coutinuons) at points of *X—X also, and this ends the
proof.

Remark. Observe that the proved theorem remains true when the
weak continuity of f and *f is replaced by the agsumption on both to
be s-maps. To see this, note that for each Katétov-type extension *X,
the space s(#X) is homeomorphic with the space *sX obtained from *X
by adding all open sebs of sX as open sets to the topology of *X. Now,
the map s*f in the diagram

[y comm—T{'y §EL X ¢

A7

N> %X
f

st s*f
*f
/W

Y
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is continuous iff sf is continuous, the “if” implication following from
the proof of the last theorem, the “only if” being trivial. Thus f is an
s-mayp iff #f is an s-map. ~

2. The case of 7X. The Katétov extension 7X of a Hausdorff space
X is known from [9] to be an H-closed Katétov-type extension charae-
terized by the following property: for each pair of disjoint open sets U
and U’ of X there is (LU A CLTU’) ~ (X —X) = @. The last property
implies that for each point v et X —X, if 2 CL U for U being an open
set of X, then {zg}u U is an open. neighbourhood of # in zX. Use
Theorem 1.1 to give a description of maps possessing a weakly continu-
ous z-extension. :

TeEOREM 2.1. For a weakly continuous map f: X —Y of a Hausdorff

space X into an H-closed space Y the following conditions are equivalent:

(i) f is ©-free,
(i) N {CIf(Uz ~ X): U” € Wg} i @ one-point set for each v'e TX —X,

(i) for each y ¢ Y and each open meighbourhood Uy of y there emisis
an open neighbourhood Vy of ¥ such that IntOLf~(ClVy) C ClIntf~*(T,).

Proof of (i) = ii. Suppose f is 7-free. From 1.2 it follows that there
exists a weakly continuous zf: tX Y. Now since Cl(U~X)=CLU
for each open U C X and U ~ X is open in X, it follows from 2° of 11
that for each z e zX—X there is .

f(@) = (N {CLTs UseUs}) .
cnN {rf{Cl(Uw s X)): Uz € Wy}
CN{Of(Ts ~ X): Tge Ws).

Then 2.3.11 implies (i) since ‘

NA{Cf(UznX): Uze U} TN {CLT: U e W(f; W)}
and the latter set consists of one point.

?roof of (ii)= (iii). Suppose, on the contrary, that there exist
& point ¥ ¢« ¥ and an open neighbourhood U, such that for each ¥, the
set U(Vy) = IntClf(C1Vy) — OlIntf~(U,) is non-empty. It is eas; o
check that {U(Vy): Vy e Uy} is a centred family consisting of open sets
of X. Thus there exists an adherence point @ e () {CLTU(Vy): Vye Uyh

Since
CLU(V,) C ClIntCLf(C1V,) —Int ClIntf~Y(T,)

= ClIntCLf~(CLV,) ~ ClInt Clf ¥ —T,)

e ©
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it follows on account of formula 1° from 1.1 that
FNEXACLTUVy): Vye Usy})
C ﬂ{f(ClU(V,,)}: V, e W,
C N {f(CLInt CLf(C1Vy)): Vy € Uy} ~ f(CLInt CL (Y -Ty)
CN{CVy: Vye Wy n (X =Ty) = g} (Y —=Uy) =9;

+thus the adherence point is an element of tX —X. Since z ¢ CLLU(Vy)

“for each Vy e Uy, it follows in consequence of the structure of zX that

{w}w U(Vy) is an open neighbourhood of % for each U(Vy). Since

‘ N {Cif(Us » X): Uze U CN {le(U(V,,)): Vy € Uy}
and
FUVy)CCLVy—Ty,
it follows that
N A{CLf(TUz AX): UpeWg) CM{CIVy—TUy: Vye Uy} = 9,

contrary to (ii). Thus f not satistying (iii) leads to a contradiction.

Proof of (iii) = (i). To prove that f is 7-free let y be a point of ¥
not belonging to a closed set A C Y, and suppose that & €[ {CLfHC1Ty):
Uy € Wy} for some e X —X. It remains to prove

(34) @ ¢ CLf(4) .
Take Uy= ¥—A. Then for ¥y chosen according to (iii) we have
2 e (tX — X) A CLFHCLV,) = (zX —X) ~ CLTntf(Ty),

the equality being a conseQuence of the choice of Vy: the set CLf(C1Vy)
differs from Intf~(Uy) by a nowhere-dense closed set, and of the pro-
perties of vX. Thus Uz = {a} o Intf~}Uy) is an open neighbourhood
of z such that UsnfY4)=Intf Ty ~f (XU = @ and (34)
ig proved.

Remark. In virtue of 1.2 the property of f: XY to be z-free is
equivalent to the existence of weakly continuous v-extension when fis
weakly continuous and Y i8 H-closed. So the above theorem is the
announced solution of the question how to extend weakly continuous
maps on 7X. In the case where f is a continuous map, the extension *f
described in 1.2 becomes even continuous — a consequence of the struc-
ture of a Katétov-type extension. Fox continuous f, conditions (i) and (iif)
have been proved to be equivalent with the existence of a continuous
extension zf in [8] and [9], respectively. Theorem 2.1 is a common generali-

" zation of those results.
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A short proof of Hausdorff’s theorem
on extending metrics

by
H. Toruhczyk (Warszawa)

The aim of this paper is to give a short proof of the following
theorem:

TreorREM. Let X be a metrizable topological space and let A C X be
a closed set. Then, for every metric p on A which induces the relative topology
on A., there is a métric o on X which is an extension of o and is compatible
with the topology of X. If moreover X is complete-metrizable and o is ¢ com-
plete metric on A, then the extension g above can be obtained to be a complete
metric on X.

The first part of the theorem was proved by F. Hausdortf [5] in 1930
(cf. also [6]) and independently by R. H. Bing ([3], Theorem 5) in 1947,
whereas the remark concerning the “complete” case was made-by P. Ba-
con [2] in 1968. Let us note that R. Arens ([1], Theorem 3.3) gave in 1952
a relatively simple proof of Hausdorff’s theorem; his arguments were
based on a close examination of “Dugundji’s retraction”.

The proof we are going to present involves (besides other well-known
facts) the mse of the following lemma of V. L. Klee ([7], pp- 36).

TEyya. Let B and F be normed linear spaces and let ECEx{0}
and L C {0} X F be closed subsets of B X F. Then, for every homeomorphism

b . - . - t
f: K =5 L, there is an extension of | to a homeomorphism f: ExFESExF.

Proof. Denote by py and py the natural projections of B x F onto E
and ¥, respectively. Since ' is an ANR(I) ([4], Theorem 4.1), the func-
tion ppof: K-+F can Dbe oxtended to It Bx {0}—F. We put fi(a,p)
= (o, B-+Ma, 0)), (e, f) e EXF; f, is then a homeomorphism of B x F
onto itself satistying fula, f) = (a, pp o fla, B)) for (a, p) e K. Similarly,
there is a homeomorphism fp: BExXF "% ExF such that fia,p)
= (pg o fa, B); ) for (a, p) e L. WWe then have f; < fla, B) = fila, B) for
(a, B) € K, whence f= f;*of, is the desired extengion of f.

Now we pass to the proof of the theorein; Bacon’s remark will be
considered in Dbrackets. :

12 — Fundamenta Mathematicae, T. LXXVII
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