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Analysis on topological manifolds

by )
P. F. Duvall, Jr. and L. S. Husch (9 (Blacksburg, Va.)

1. Introduction. In recent years, there has been a considerable amount

of research in analysis on differentiable manifolds (see, for example [4]).
The concepts of stability and topological conjugacy in the spaces of
- diffeomorphisms and C*-endomorphisms of differentiable manifolds have
been explored extensively [29], [28]. Let f be a diffeomorphism of
a compact differentiable manifold M onto itself such that the tangent
bundle of M splits continuously, T (M) = B, @ E,, so that the derivative
of f, df, is contracting on E, and expanding on E,; i.e. there is a Riemannian
metrie ||-| on T (M) and there exist constants ¢, ¢’ and 0 < 2 < 1 such that

ldf*(w)| < eA™p|, veB, and fdf"l =i ell, vek,.

Anosov showed [1] that such a diffeomorphism is struetural]y stable;
i.e., there exists a neighborhood U of f in the space of diffeomorphisms
of M such that each g in W is topologically equivalent to f.

In this paper, we explore the concepts of contracting, expandmgu
and regular maps of topological manifolds. We are mainly interested in
two questions: (1) what manifolds can support such maps and (2) determine
the topological equivalence classes of such maps.

An n-dimensional manifold is a separable metric space each of
whose points has a neighborhood homeomorphic to Euclidean #-space.
We shall use int and ¢l to mean interior and closure respectively.
N(z,e)(N(4,¢) is the e-neighborhood of the point z (the set A);
Nyz, &) will deﬁwnate the path component of N(x, ¢) which contains .

2. Covering spaces. We shall assume familiarity with covering space
theory as given, for example, in [30]

TemoreM 1. Let w: 3 —M be a covering projection where M is a looally
conmected compact metric space with metric o. Then there ewists a metric °
for I and >0 such that

(*) Research of the second author was partially supported by National Secience
Foundation grant GP-15357.
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(i) if @,y < 3, 3@, y) <, then g[a(2), n(y) = 2 (@, 9);
(ii) the covering transformations are isometries;
(iii) @ s complete;
(iv) if A C IT and the diameter of A is less than 7, then the diameter
of m(4) is less than 7.

Proof. Let U = {Us} be a finite open cover of M such that each U
is evenly covered by =. Let a be the Lebesque number [9] of the cover U.
Hence if 4 C M such that the diameter of 4 is less than a, then there
exists a lift of A; —i.e. there exists a continuous map ¢: A~ such
that sp(z) = x for each x € A. Note that if 4 is connected and if @, and g,
are two lifts of A such that ¢,(2) = @(x) for some #, then ¢, = ¢,,

Let U = {V;} be a {inite open cover of M by connected sety such
that the diameter of each V; is less thaJn 4a. Let 8 be the Lebesque number
of the cover V. Define, for «,y e i,

ininimum {38, o(x(#), n(y)}} if @,y lie in the same
" component of n (V)
elzyy)= for some 4,

iB _ otherwise.

The only difficulty in showing that g is a metric is the triangle inequality.
Let @, y,ze M.
Case 1. If either g (z, y) or g (¥, #) is 4B, then clearly g (¢, ¥) -+ (¥, #)

>0 (w,e).

Case 2. Suppose g (z,y) and g (y, #) are both less than 8. Hence
#,y Vi and y,%e¢V; for some components Vi and V; of »~%V;), n~(v;)
respectively. Note that the diameter of {m(w), =(y), n(2)} is less than f;
hence =(z), =(y), n(z) e Vi for some k.

Let V} be the component of z~(Vx) which contains ». Hence V7~
V3 # @ and thefzefore Vi v ¥V has diameter less than «. There is a unique:
Lift g: Vi v VM such that ¢ (Vi w Vi) = Vi w V9. It follows that y «V;;
similarly, 2 € V5. Since z,y, 2 lie in the same component of =~ *(Vy) and
o'(a, b) = minimum {48, ¢(a, b)} is. a metrie, o (z,y)+2¢(y,2) = ¢ (w,7).
Let 7= 1.

3. Covered and almost covered maps. Let I =[0,1] and (M, o) De
a metric space. Let M* be the space of continuous maps from I to M
with metric ¢ defined by g(f, ¢) = su?{g(f(w), (#))}. The (Nash) tangent

Ze
space of M [23], T (M), is the set {f ¢ M7 either f(x)= f(0) for all weT
or f(z) s f(0) for x = 0} with the topology induced from M7. Define
p: T(M)—~M by p(f) =f(0) and i: M—T(M) by i(x)= c, where ¢,
I—+M is the map defined by ¢, () == for all 4 ¢ I. It M is a manifold,
then p is a fiber map and ¢ is a homeomorphism into.
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If f: M~->N is continuous, then f induces a continuous. mapdf: T (M)
N, defined by df(g) = f - g, the composition of f and g. It af (T ()
C T(N), f is said to be covered. It there exists a neighborhood U of (M)
in T(M) such that @f(W) C T(N), f is said to be almost: covered.

PROPOSITION 2. If either (1) M is an arcwise commected compact metric
space and N i a non-degenerate metric space or (i) M and N are eonnected
n- dimensional manifolds, then an onto map f: M- N is coveréd if and only
if f 48 a homeomorphism.

Proof. Clearly if f is & homeomorphism, then f is covered. Suppose
f is covered and let @ ==y be points in M; there exists an embedding
@: I->M that ¢(0) =« and ¢(1) = y. By hypothesis, df(g) ¢ T(N); hence
flw) # fly) and f is one-to-one. Compactness in (i) and invariance of
domain [13] in (ii) imply that f is a homeomorphism.

ProrosITION 3. If either (i) M is o locally compact, connected, and
locally connected metric space ov. (ii) M and N are connected n-dimensional
manifolds, then a map f: M >N is almost covered if and only if f is a local
homeomorphism.

Proof. Suppose f is a local homeomorphism; —ie. for each z ¢ M,
there exists a neighborhood ¥ of # in M such that [V is a homeomorphism
into. If ze M, let ¢ >0 Dbe chosen so that N(x,2e)C V. Consider
N(i(2), e,) C T(M) and let ¢ e N(i(x), &,); note that the image of ¢ lies
inV and hence, df (p) e T(N). U= | N(i(2), &) is the desired neighborhood.

zeM

Suppose f: M- is almost covered; let U be a neighborhood of 4 (M)
in T(M) such that df(W) C T(N). Let #e M and let ¢ >0 be given so
that N(i(«), ¢) C W. Let V be a connected neighborhood of # such that
cl(V) is compact and ¥ C N (@, &). If y 5= 2 « V, then there is an embedding
@: IV [9, p. 118] such that ¢(0) = y and ¢(1) = 2. ¢ « W and we proceed
as in Proposition 2 to show f|V is a homeomorphism.

ProPOSITION 4. Let M be a Peano continuum, then an onio map
f: M—>XN is almost covered if and only if f is a covering projection.

Proof. Suppose f is almost covered; from the compactness of M
and the previous proposition it follows that it z < N, then fY(=) is finite,
say [~ (@) = {@,, ¥, ..., #x}. Let Vi be a neighborhood of z such that
fIV: is a homeomorphism and Vi ~V;=@ for i + j. Let W= ﬂ V)

q=l
then it is easily seen that W is evenly covered by f Hence f is a covering
projection.
The converse follows from Proposition 3.
ProrosrrionN 5. Let M be a Peano continuum and let f: M—~M be an
almost covered onto map. f induces a map T T =TT on the universal covering
space of M (T is called a lifting of f) such that T is a homeomorphism.
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Proof. T exists by [30, p. 76]. Let m: M M be a covering projection.
By the previous proposition f is a covering projection and. hence fox ig
a covering projection. Since fom = m o, J is a covering projection by
[30, p. 64]. Sinee JI is simply-connected,  is a homeomorphism.

DEFINITION. Let f and g be continuous maps of M onto itself. f is
topologically equivalent to g if there exists a homeomorphism % of M onto-
itself such that if = gh. ‘

PROPOSITION 6. If f: MM is an almost covered onto map, if g: MM
is onto and if f is topologically equivalent to g, then g is almost covered.

4. Contracting maps. Let M be a metric space; if ¢e M*, define
£(p) = 0(@, €yq)- A map f: M—M is contracting if there exists a neighbor-
hood W of 4(M) in T(M), 0<i<1 and ¢>0 such that £(df*(g))
< AL (p) for all n >0 and ¢« W. (Note that f is actually a “local con-
tracting” map.)

ProposITION 7. If M is a locally compact locally connected metric
space and f: M—>M is a contracting map, then there ewisis 0 < A < 1 and
¢>0 such that if we M and ¢ > 0, then there ewists 0 > 0 such that if
y e Ny(z, 8), then o(f™(x), f™(y)) < A"ce for all n > 0.

Proof. Choose 4, > 0 so that N (i(z), 6;) C W. Let 6 = minimum {3, , &},
let y € Ny(=, 6) and let : I->Ny(z, 6) be an embedding such that ¢(0) = »
and ¢(1) = y. Note that

o(f™(@), f1(y) < L(f™ ) = L{@f(9) < Aol (p) < Aee.
Prorosition 8. If f: M —~M is a contracting map, where M is a con-
nected, locally connected, locally compact metric space and if »,y ¢ M, then
for each e > 0, there ewists N such that n > N implies g( (@), f”(y)) < e
Proof. The proof is essentially given by H. Maki in [21]. Since [21]
has not yet been published, we include the proof. Define z ~y if # and v
satisfy the conclusion of the Proposition. Note that “ ~” is an equivalence
relation on M. Fix  and let A= {y ¢« M|z ~y}. It follows from Propo-
sition 7 that 4 is open in M. Suppose {ya}C A such that lim y, =y.

N 00

Again from Proposition 7, it follows that there exists K such that k¥ > K
implies yy~y. Hence y ¢ 4; since M is connected, 4 = M.

CorOLLARY 9 (H. Maki [21]). If M is a complete, connected, locally
connected, locally compact meiric space and f is a contracting map of M
into M, then there ewists a unique fized point of f.

Proof(*). Thisisa consequence of Proposition 8 and Theorem 12 of [17].

(*) (Added in proof.) There is an error in [17]. To correct the proof of Corol-
lary 9, replace “'_I‘heorem 12 of [17]” by “The main theorem of I.8. Husch, Fized
points of k-regular mappings (to appear)”. The error is explained in H. Maki,
“Generalizations of fixed point theorems II” (preprint Fukuoka Univ.).
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Remark. If we had defined f to be a contracting map i 7 satisfied
the conclusion of Proposition 7 with “Ny(z, 6)” replaced by “N{(z, 8)",
we could remove the hypotheses that M be locally connected and locally
compact and still obtain the conclusion of Corollary 9. We will need this
fact in section b.

From the proof of Proposition 8, we also obtain

CorOLLARY 10. If f is contracting and f(x) = m, then lim fily) =&
for oll y e M. e

OoroLLARY 11. If f is comtracting, f(x) = & and C is a compact subset
of M, then lim fi(C)= .

T->-00

Proof. Let ¢ >0 be given. If y ¢ C, then there exists d,>0 such

that if 2 e No(y, d,), then Q(fn(f'/)7fn(z)) <% (‘;_c) . Pick 41,92, .y 9, €C

n
such that CC U No(y;, 8,,). For each 4, there exists N; such that n> N;

qe=]
implies o(f™¥:), #) < }e. Let N = maximum {¥;},_, and let » > N, then
it ¢eC, then o(f*(c), ) < ¢ and the corollary follows.
CorOLLARY 12. If M is a connected absolute meighborhood retract with

a complete metric ¢ and if f is a contracting homeomorphism of M onto iiself,
then M is contractible. ,

Proof. Let « be the fixed point of f. By [12, p. 219], it suffices to
show that the ith-homotopy group, ms(M, z) is zero. Let ¢: 8°->M De
a mapping of the <-sphere into M representing an element of m(M, ).
If 7, is a neighborhood of x in M, then there exists a neighborhood V,
of #, V,CV,, such that V, is contractible in V; [12, p. 96]. Choose & >0
s0 that N(w, &) CV,. By Corollary 11, there exists n such that fe(s%)
C N (=, ¢) and hence f"p(8?) is homotopically trivial in V; and hence in M.
Since f* induces an isomorphism of (M, @), w( M, ) is trivial.

Proposrrion 13..Let M be as in Proposition 8 and letf: M—>M be a con-

tracting onto homeomorphism; then for all y e M, {f¥(y)li < 0} is closed in M.

Proof. If y is the fixed point of f, the proposition is true. Suppose

y is not the fixed point and suppose z = Lm f™(y), in <0, i # im for
\ firroo ) i .

n 5% m. Tt follows from Proposition 7 that y = lim f~**(2); this contradicts

P—++00
Corollary 10.

TurorEM 14. If M is a connected n-manifold with a complete metric o
and f is a contracting homeomorphism of M onto diself, then M is-homeo-
morphic to n- dimensional Buclidean space. If n # 4, 5, then fis topologically
equivalent to.the dilation 2— 4. : ~
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Proof. Let M = M v {oo} be the one-point compactification of M,
Tt follows from Proposition 13, that for each y ¢ M, ¥ # x, where « i
‘the fixed point of f, lim fYy)= co. By an argument similar to that

n—>—00

-given for Gox’-o’ﬂwfy 11, for each compact set €.C M — {}, lim f™C) = oo.

. W =00
Tet B be a closed n-cell in M such that . is in the interior of B. Hence,
lim f*(bdry B) = oco. Thus, we can find a sequence of integers, ny, > n, > ...,

gli(;f:thajt BCintf™(B) C f™(B) C intf™(B) C o and M = Q S™(B). By [3],

M is homeomorphic to Euclidean »-space and by [16], f is topologically
equivalent to the dilation. .

Remark. If we assume in Theorem 14 that f is a homeomorphism
into, then the conclusion does not mecessanily follow. Whifehead [31]
has given an example of a contractible open subset W of Buclidean 3 - space
which is not homeomorphic to Euclidean 8-space. It is easy to define
a homeomorphism f of W into itself such that f is contracting.

f: MM is properly discontinuous at » « M if there exists a neighbor-
hood V of & in M such that V.~ fi(V) = @ for all 4 > 0. f is wecurrent at
#e M it for each &0, there exists ¢ >0 such that o(z, f{x)) < e.

PropoSITION 15. Let M be a locally compact -locally conmected melric
space and let f: MM be coniracting such that f is not properly discontinuous
at z, then f is recurrent at .

Proof. For each positive integer =, let U, = Ny(x, 1/n); there exists
for each n, 2ne Uy f(TUn), 2n=f"(n), Wne Un, f0or some iy # 0.
Let &> 0; by Proposition 7, there exists 0 <1< 1, ¢>0, § >0 such

“that if y e No(=, 8), then o(f™a), ™)) < A‘”c‘(—;—c) for -all #-> 0. Choose N
:guch » > N implies 1/n < minimum {8,%¢}. It m > N, then
ol f(@) < o(@, n)+o(f(wa), f (@) < & -
PrOPOSITION 16. Let M be as in Proposition 8 and let f: MM be
-contracting such that f 4s recurrent at w, then f(x) = .
Proof. (We note that this is essentially the content of Propositions 6

-and 7 of [14]; note, however, the proof of Proposifion 6 in [14] is in-
correct.) We wish to show that lim fi(z)= #. Let £> 0 be given and
1-+00
let a = ¢/4¢ where ¢ is given in the definition of contracting. There exists
6> 0 such that 6 <ca and if y e Ny(x, ), then of"»), ™y)) < A"ca.
Choose 7 > 0. such that f™() e Ny(x, ) and A* < §; then for all 4> 0,
ele, ™)) < efz, fH(@))+ o(f™@), FM@))+ ...+ o[ fw) , (@)

i
<ecat+ Moo 22ea 4 ...+ AP0a = ca (Z l’”) < 2¢a < %e.
i=0
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By Proposition 8, there exists for 4=1,2,..,2—1, an iﬁtseger N; such

that it 3> Ni, then o(f"(#),f™*¥(#)) < }e. There exists N, such’ that
it 7> Ny, then el@, f(@)) < }e. Let N = maximum{N,, ¥y, ..., N,_}
and let # > nN; say = np-¢ where 0 ¢ <n—1. Hence p > N and

of@, (@) < o, (@) 4 o(f*(), f**+4w)) < & .

Hence
'liin'fi(m) = and f(x)= f( 15,111 fi(m)) = lim f*i(2) = x .
T+ 00 F—r+00 i—»+to0

ProPOSIZION 17. Let M be as in Proposition 8 and let f: M—>M be
a contracting map such that f has no fized point; then for each compact set
CC M, the set {i|C ~ fH(C) s @} is finite.

Proof. Suppose there exists n, < n, < ... such that G~ f™(C) = @.
Let 2 e G fM(C), 2= f™(ws). By taking subsequences, we may assume
that lim 2 = 2z and lim w; = w. ‘

{00 Gr-p00

Let > 0 be given. By Proposition 7, there exists é >0 such that
if y € No(w, 8), then o(f"(y), f'(w)) < cA'(&/3c) for all r > 0. There exists N
such that 4> N implies o(e,2) < 3¢, olw,w;) <8 and o(f™(w), f*(2))
< }e. Hence if ¢ > N, then

olz, f™(2)) < (&, 21)+ o{f™(we), f**(w))+ o F™(w), f*(2) < e.

Therefore f is recurrent at z; but this contradicts Proposition 16.

THEOREM 18. Let M be a connected manifold and let f be a contracting
homeomorphism of M onto itself such that f has no fized poinis. If M has
a finite number of ends [8], then the number of ends is one or two.

Proof. By Corollary 9, M is not compact and hence has at least
one end. Let M* be the one point compactification of M and let 1 be
the induced map on . M*. By the previous proposition and [20, p. 233],
f* hag equicontinuous powers at each # « M using the metric o* induced
from the one point compactification of M.

Tet M** be the Frendenthal end point compactification of M and
let f** be the induced map on M**. It ¢** is the metric on J**, it follows
from Proposition 2 of [A], that f™ has equicontinuous powers at each
@ e M. By [10], M*-M has at most two points and, hence, I has
either one or two ends.

Remark. In [5], we investigated actions of open manifolds which
have equicontinuous powers everywhere except at co. We refer the reader
o [5] to obtain theorems about the structure of M as a consequence of
the proof of Theorem 18. We list one of the corollaries.

COROLLARY 19. Let M be an open connected n-manifold with two ends
which has the homotopy type of a finite complex, n # 4,5. If n = 3, suppose
8 ~ Fundamenta Mathematicae, T. LXXVIL
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that M contains no fake 3-cells and if n > 5 suppose that the thtehead
group of my(M) is trivial. Let f be a contracting homeomorphism of M onito
itself such that f has no fized poinis.

Then there exists a closed submanifold N of M and homeomorphisms
A: M= N xR (R =real numbers) and n: N—N such that f is topologically
equivalent to the homeomorphism A~ of M where ¢ is the homeomonphism
@@, %) = (y(x),1+1), ze N, t ¢ R.

Remarks. Let B2 be the plane with its usual metric and let d: B*— R?
be the dilation d(x) = 2. Then d|R*— {0} is a contracting homeomorphism
with no fixed point and R*— {0} has two ends.

Let A = {(#,0)|z = 0 or = 2™ where n is an integer}; then d|B*— 4 is
a contracting homeomorphism but B*— 4 has an infinite number of ends.

5. Expanding maps. Let M be a metric space and let f: M->M be
a map; f is ewpanding if there exists A>1, ¢>0, K > 0 such that
£{df™(p)) = minimum {2"cL(g),
to the definition since if M is compact, then t(df”(qu)) will be bounded
by the diameter of M.

Let M be a locally connected compact metric space such that there
exists a universal covering m: M M of M. Let &= {g: M—I|y is
a lifting of some map from M into M and gp = gg for all covering
transformations ¢}. If o is a metric for M, let o be the metric given for M
by Theorem 1 and define ¢’ on @ by ¢'(g, h) = sup {olg(@), h(m)}. Tt is

welM
easily seen that @ is a complete metric space with respect to. ¢’. Let @, be

the path component of the identity.

ProrosITION 20 (see Theorem 2 of [28]). Let M be a connected, locally
connected compact metric space and let m e M. Let f: (M, m)—~ (M, m) be
an exponding almost covered onto map and suppose f is homotopic to & map ¢
keeping m fized. Suppose f and § are liftings of f and g respectively such
that if for some m’, w(m') = m, F(m’) = §(m'). Then there exists a unique.
T e cl®, such that Th = hy. B -

Proof. Since f is homotopic to g keeping m fixed, it follows from
standard covering space arguments that F(m'’) = g(m’") for all m’’ ¢ z~*(m).
Since a covering transformation is completely determined Dby its value
at a smgle pomt if p, & are covering transformations such that 7 &F,
then go = £7. 11mthermole, since T is a homeomolphwm (I’10p0s1t10n 5)
afef = fapl ™ l= fn] ~lp = m, so that FoT ~* is a covering transformation.
Thelefme, glven p, there is always a covering transformation & such
that Fop = £F.

For ke®, define T(k)= F~ky. If ¢ is a covering transformation,
we get & by the remarks above and we have

pT (k) = ¢f 7'k = F 6k = F-'keg = Fkgp = T (ko

icm
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The map a= #T (k)x~" is then well defined and since T(k) is a lift
of a, T(k) e D. ‘

To obtain k, we want to use the remark following Corollary 9. We
want to show that T takes @, into itself. Leb fi: (M, m)—(M ,m) be
a homotopy, ¢ ¢ I, such that f, = ¢ and f,= f. By [30, p. 67], there exists
a unique homotopy ft (M m)— (M, m) such that fo =7. Smcefl( =m,
it follows that f;=7. 777, is then a homotopy such that i ‘Ifo Fg
and ¥i = 1dent1ty Note that.if X is a covering transformation, then
T Fp = ¢F 7, for all t; hence 77, defines a path in & whose endpoints
are identity and T (1dent1ty)

Let ¢ be the constant given in Theorem 1 for the metrie g; let A, K
and ¢ be given from the definition that f s expanding. There is no loss
of generality in assuming that ce < K by choosing, if necessary, a smaller «.
Let ¢ e N(i(1), ¢'); where

¢ = min(e, ¢&) L) = L(ag) = L(f"x] ~"p) = L(df"(=] ")
> Mot (owf ) = Mot (Fmg) = mel(df ~(g))
provided £(nf "p) = L(F"g). However, since £ (@) < ¢z, E(xf "g) < e/l‘"< €
and we can apply Theorem 1 to get £(nf "p) = £(F "¢). Hence £(df ™) )
< (1/A)™(1)e)L(p) and we have the following.

ProPoSITION 21. If M is locally connected compact metric space and
fr MM is an almost covered expanding onto map, then T—': MM is
a contracting homeomorphism.

We now complete the proof of Proposition 20. Given a ¢ ®, we will
Show that given y > 0, there is a d-> 0 such that if b e N(a, 6) (in &,)
then o'(T™a), T"b)) < (1/A)"(1/c)7. -

Let 6 Dbe less than c¢e and such that if z,y e M are points such that
e(z,y) < d, then z and y are connected by an arc of diameter less than
min{z, ce}. Then if b ¢ N(a, 8), we have for each z,

e(F"a(@), F~"b(x)) < £(dF @) < (LA™L/e)L(g) < (L/A™(L/e)n

where g is an arc from a(z) to b(z) of diameterless than min{z, c¢}. Taking
the sup, we have o'(F"a, T"b) < (1/4)"(1/e)n, and thus

o(Ta), T"b)) = o'(F~"ag", T704"™) < o'(F~"a, T~"0) < (1/A)"(1/e)7.

T has a unique fixed point in cl®, by the remark following Corol-
lary 9, and the proof is complete.

The following theorem was proved by M. Shub [28] with differ-
eutiability hypotheses; in fact, the proof is essentially his. Our contri-
bution is that when Shub appeals to differential techniques we appeal
to results we obtained above and hence drop the differentiability hypo-
theses. '

6*
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TeaporEy 29 Let M be o compact -connected absolute mneighborhood
retract and let f be an almost covered expanding Mmap of M onto M. Theh f his
o fiwéd point and the universal covering space of M is contractible. If M is
ai - dimensional manifold, then the whiversal eovering space of M s homeo-
morphic to Budlidean n-space. If f(m)=m and g 18 an almost covered
expanding map of M onto M such that g(m) = m and g 18 homotopic to f
keeping m fiwed, then g is topologically efuivalent o f.

Proof. Let T be a lifting of f to the universal ¢overing space M oof M.
By Proposition 21, F~'is a contracting homeomorphism and by Corol-
lary 9, 7~ bas a fixed point © and hence f has a fixed point = (x). M is
contractible by Corollary 12. If M is a manifold, the conclusion about M
follows from Theorem 14.

Let m' € 7~*(m) and let § be a lifting of g such that Fm'y =F(m).
By Proposition 20, there exist unique By, By € @y such that

Fho=hyg and ghy=hJ.

icm

Thus 7 hy = Byl and ByGhy = hi ] and wo get Fhuhy = hsf and Ghyhy

= hyhyg. Sihce cl®, is closed under composition and by the umiqueneéss
part of Proposition 20, hyhy = hyhy, = identity, hy is the lifting of a continu-
ous function kg M ->M, i =1, 2, such that fk, = k;g and gk, = k.f and
Ty ky = koky = identity.

6. Regular maps. Let M be a locally connected metric space and let
fr M—>M. f is regular at o if for each ¢ > 0, there exists 8 > 0 such that
if peT(M), p(0)=2 and L(p)<d, then g(dfe) < e for all n>0.
B. v. Kerékjérté [18] introduced regularity to study homeomorphisms
of the 2-sphere (*). He showed that if 2 is a homeomorphism of theé
2-sphére such that » and A™' are reguiar except possibly for a finite
number n of points, then & is topologically equivalent to a linear action
and the number » is 0, 1 or 2. If m=0,1,2, then % is topologically
equivalent to the extension of 4 rotation; translation or dilation,
respectively, of the plane to its one-point compactification. Homma and
Kinoshita [11], Kinoshita [19], [20] and Huseh [14], [15], [16] considered
the extension of these results to higher dimensions when #n =1 or 2. An
example of Bing [2] showed that, in general, Kerékjirto’s work could
not be generalized to higher dimensions in the case n = 0. In this section
we shall explore the case when n = 0.

We say f: M—M is uniformly regular if for each & > 0, there exists
5> 0 such that if ¢ ¢ T(M), £(p) < 6, then £(df(¢)) < e. Clearly if M is
compact, then f is uniformly regular if and only if f is regular at each.
point of M. '

(%) Kerékjarté’s definition is slightly different from ours.
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It f: MM, define O(z) = c{f{z)] > 0} and K(z) =) O(f‘(az))
20

for « « M. In Propositions 25 thru 28 below, we assume that O(z) is
complete. This will be the case if M is complete or O(z) is compact.

PROPOSITION 24, If f is wniformly regular (regular ot z), then for
each &> 0, there is § > 0 such that if y e Ny(z, ), then of™a), f"(y) < ¢
for each m = 0.

PROPOSITION 25. If f is uniformly regular on O(z) and y,zeO(x),
y = Lm f™(x), z= lim f™(x), then lim f™¥™(x) exists.

t—>+oo

>0 i->-+00 :

Proof. Let ¢ > 0 and let 6 > 0 be given from the definition of uniform
regularity for fe. There exists K (K,) such that 4,j > K (K,) implies
F(@) € No(fr(@), 6)(F™(@) e Noff™(x), 8)). Hence

o(fmt™(@), U mi(@) < o™ (w), fr (@) 4 o fH (@), fH(a)) < e .
Define y-z= lim f™*+%(z). Clearly, O(z) is algebraically a commu-

1~>--00
tative semigroup.
PROPOSITION 26. If 2i,%2,y € O(x) such that lm z; = 2, then lim y -2
- f—>too t—>too
=y-z ’
Proof. Suppose y=lim f*Yz), z=lm f™(z), 2z = lim f™N(g).
j>to0 j=>+o00 j—+4-00
Let ¢ > 0 be given.and choose § > 0 so that a e Ny(b, 8) implies (f7(4), /(b))
< e for all r > 0. There exists
(i) K sueh that ¢ > K implies z; € Ny(z, 9),
(i) K, such that j > K, implies o(y -2, "™ z)) < {e,
(ili) X, such that j > K, implies f™)(z) € Nz, 8),
(iv) K, such that j > K, implies f™*)(z) ¢ N(2,0), -
(v) K, such that j > K, implies o(f"™*m&z), y-2) < fe.
(Note Ky, K,, K;, K, depend upon 3.)
Let i > K and j > Ky, K, K;, K. Then

0y -2, y-) < oly-2, fX7F @)+ o f40 TN a), V() +
+ ol (@), F )+ o er), Oz 4
+ Q(fn(a')+m(i,f)(m)’ y~zi) <e.

PROPOSITION 27. If 21, 41,2,y €O0(x) such that lim zy=2 and
. i->4-00

lim y; =y, then for &> 0, there ewisis K such thal i>K implies
=00
oy 2, Yo-2) <e.

Proof. In addition to the notation in the previous proof, let zg
= lim f*9(z). Let ¢ >0 be given and choose 6 >0 so that a e Ny, 8)

j>+oo )

implies o(f"(a), f7(b)) < +& for all 7> 0. There exists
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(i) K such that ¢ > K implies y; e No(y, ), .

(ii) K, such that j > K; implies g(y 2q, frOTmEN ) < Le,
(ili) K, such that j > K, implies f"(z) eN oy &)
(iv) K, such that j > K, implies f"“(x) ¢ No(y1, 0),

(v) K, such that j> K, implies of ]””“’7)'“”(1 D a 2), yir 2z) < Le.
Let i > K and §j > K, K,, K3, K,. Then

o(y 2, Yi-2) < @(?/ -Zi,f”'(f)+m(i,7)(£$))+ 0(f"<(1')+m(7',7')(m) ) fm(i’j)(y))—f—
+ ol ™), Sy + o F™H Ay PN @) 4
+ o P ), i) < .

COROLLARY 28. If f: M—>M @s uniformly regular on (m), then O (z)
is a topological semigroup.

COROLLARY 29. If f: M—~M is regular on O(x) omd O(z) is compact,
‘then K () is an Abelian topological group and a minimal ideal in O(x).

Proof. This is a consequence of the previous corollary and [25],
p. 109, (Recall an ideal A in a semigroup § is a subset of 8 such that
ag ed for ae A and se8.)

PROPOSITION 30. Let f and « be as in Corollary 29. If yeK(x ( ), then
O(y) = K(y) = K(z). ‘
Prootf. Clearly K(y)CO(y) C K(x). If y = lim f™(z), then

43400

y-f(@) 1J~'ﬂﬁ1f"‘+1 fv)—f(llm (@) = fy);
by induction, it follows that for r > 0, y-f"(2) = f"(¥).
Suppose g € 0(x), b e KE(y); ¢ = lim f*(z), h = lim f“"(J) Hence
i—>+00 i—>+00
hog = (lim ) (.lift1 )
= ( h'm 2y f 3‘(90)}( 1im f (@)

=y- (hm Fo(w)) (11m @)

i—>+00

=y lim f3i+"'4 )

it
= lim y_fsi-l-rs( )__ lim sz—n eK(J)
f>t00 >0

Therefore K (y) is an ideal in O(z) and K (y) = K (x) by minimality of K ().
CoROLLARY 31. K(2)~K(z) %@ if and only if K (2)= K(z).

PrOPOSITION 32. Let f and .z be as in Oorollawy 29. Then [|K(x):
K (@)K (z) is a homeomorphism.

_one-to-one and onto. Let e be the identity element of K (z).
g, h eK(a}) such that f(g) =
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Proof. Since K(z) is compact, it suffices to show that flK(z) is
Suppose

g =9f(®)=(g-e) 'f(w) = g-f(e);‘hen_ee g-f(e) = h-f(e) and since
j(e) ¢ K(x), & group, g = h and f|K(z) is one-to-one.
Suppose ze K (z), 2= lim f*z), 00n31der {f**x)} C O(#) which is

n—>+4co
compact; hence, some subsequence converges, say, lim fmj(g)= s,
j—>+o0

“Thén fr)

THEOREM 33. Let M be a Peano. continuuwm and let f be a reqular map

'of M onito. itself. Then f is a homeomorphism (1).

: Proof By Proposition 32 and Corollary 31, it suffices to show that
M = |J K (). For this we recall an idea of M. K Fort [7]. If X, Y are

zeM

“spaces, F: X—>2Y is a US_C (upper semicontinuous compact set-valued)
"function if for each w e X,

1) F(x) is compact; ) ‘
"2) if U is a neighborhood of F(x), there is 2 neighborhood V of z

csuch that F(y) C AU for each y e V.

A glight modification of the arguments in [7] shows that if {Fi} is
a collection of USC functions from X to 2% with X compact Hausdorff

‘and Y Hausdorff such that

3) for each ¢, ¥ = | Fy(z
. zeX . '
4) for each 7 and z e X, F; () C Fi(z), then H, defined by H(x)

= ﬂ Fi(z) is a USC function and ¥ = UH x).
If we define Fy(z) = O fiw)}, then K (x) ﬂ Fi(x) and the F; clearly

satisty 1), 3) and 4). 2) follows immediately i‘rom regularity.
COROLLARY 34. For each x ¢ M, zeK ().
Proof. # < K(y) for some y; by Corollary 31, K(z)= K(y).

ProrosirioN 35. If M is a Peano continuum and f: M-~M is an onfo
regular map, then O(z) = K (x), where ((x) = cl{f¥(a)] —oo< i< + oo}

Proof. Note K(x)C C(x) and let y ¢ 0(2). If y = f¥(«) for some 4, then
Y e K(y) = K (x). Suppose y = lim f*(z) where i, < 0. Let ¢ > 0 be given;
N i~ 00 .
there exists 6> 0 such that a e Ny, 8) implies o(f%(y),f¥(a)) <& for
all ¢> 0. Choose K such that » > K implies fi(z) < Ny(y, 8). Hence
o(f~™y), #) < e and lim f~'(y) = z. Therefore y < K (z) and C(z) =X (x).

n—--c0

(*) (Added in proof.) Since this paper was written, the authors have ledrned
that Theorem 33 was essentially proven by A.D. Wallace. See Inverses in Eucli-
dean Mobs, Math. Jour. Okayama Univ. 3 (1953), pp. 1-3.
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THEOREM 36 (see [6], p. 25). If M is @ Peano continuum and f: MM
is an onto reqular map such that f~* is also regular, then A(f) = el{ f‘] — o
< i< o0} in the space of continuous maps of M into M with the compact-
open topology is a compact Abelian group.

Proof. Suppose k= lim fi ¢ A(f) and suppose k(x) = k(y). k(x)

N—>++00 s
— lim fi»(2) and hence, as argued in Proposition 35, lim f™*k(z) = .
N o0

n—>400

>t
Hence z = ¥, k is one-to-one and % is a homeomorphism of M onto M.
Therefore A(f) is an Abelian topological group. )

Note that A(f) is a regular transformation group; —i.e. if >0,
then there exists 6 > 0 such that if ¢(2,¥y) < d, then g(g(w), g(y)) <e
for each @, y ¢ M. It follows from Ascoli’s theorem [27, p. 155], that A(f)
is compact.

Remarks. In attempting to determine the topological conjugacy
classes of homeomorphisms of manifolds by means of regular homeo-
morphisms, we run into difficulty with the Hilbert-Smith conjecture
that a compact group which acts effectively on a manifold is 2 Lie group.
However, if we are willing to make additional hypotheses we can apply
the theory of compact Lie transformation groups. Define o () = {g(z)}
g € A(f)}; it is easily seen that o(x) = C(«) and, by Proposition 30, ¢(z)
= K (). If we assume that if K () is locally connected for each @ ¢ M,
then A(f) is a Lie group [22, p. 244]. We give one example of this appli-
cation. ;

"Consider the 3-sphere §° as the boundary of the 4-cell, I* X I°. Leb ry
and 7, be zotations of the 1-sphere and extend by coning to I*; they
induce a regular homeomorphism 7, * 7, of §* whose inverse is also regular.
Let o be the reflection of 8* about §° :

COROLLARY 37. Let f: 83 ~8® be an onto reqular map such that f~ is
also regular. If f is mot periodic and for each x e §*, K (x) is locally connected,
then there exist rotations v, and 7, of S such that f is topologically equivalent
to either vy * vy 07 a-(ry * 7y).

‘ Sinee 4(f) is a compact Abelian Lie group, A(f) is isomorphic to
§'x G or §'x8'x G where @ is a finite Abelian group. But the actions
of such groups have been studied in [24] and [26] and were shown to be
topologically equivalent to standard actions which reduce to that listed
above when restricted to f.
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Examples relating to mesocompact and sequentially
mesocompact spaces (*)

by
James R. Boone (College Station, Tex.)

Introduction. It is the purpose of this paper to present examples,
which relate to the structural properties and mapping properties of the
mesocompact and sequentially mesocompact spaces [1]. In particular,
a Tychonoff sequentially mesocompact space which is not mesocompact,
is presented in Example 2.1. Bxample 2.2 establishes that sequential
mesocompactness is not invariant under perfect mappings.

To put these examples in proper perspective, § 1 contains the defini-
tions and statements of the main theorems which are contained in [3].
The examples are presented in § 2. All spaces are assumed to be Haus-
dorff and all functions are continuous surjections in this paper.

1. Characterizations and mapping theorems. A topological space is said
to have property (k) (property (o) [2]), if for each discrete collection of
closed sets & = {F,: ae A}, there exists a compact-finite (es-finite) [1],
collection of open sets U = {U,: a e A} such that F, C U,, for each ae 4

‘and U, ~F, =0, if ap.

THEOREM 1.1. A normal space is mesocompact (sequentially meso-
compact) if and only if it is a metacompact space with property (k) (pro-
perty (w)).

THEOREM 1.2. The perfect image of a normal mesocompact space is
a normal mesocompact space.

A mapping f: XY is said to be presequential, if for each convergent
sequence {p;} in'Y, p;->p, which is not eventually equal to p, [ {f~ Yps):
1e€N, p; + p} is not sequentially closed.

TrEmoREM 1.3. The closed presequential image of a normal sequentially
mesocompact space s a normal sequentially mesocompact space.

Theorems 1.2 and 1.3 depend on the facts that property (k) is in-
variant under perfect mappings and that property (o) is invariant under

(*) This' work is dedicated to the memory of Professor Hisahiro Tamano.
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