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T-sequential topological spaces
by
Ray F. Snipes (Bowling Green, Ohio)

Let (X, J) be a topological space. If A C X, the sequential adhermcg
of A, written Ads(4), is the union of 4 and the set of all points in X which
are limits of sequences in A. If we define a set function Ads: P(X }—>P(X)
such that Ads(A4) is the sequential adherence of 4 for each 4 in P (X),
then (X, Ads) is a closure space ([1], p. 237). We shall call (X, Ad;) the
sequential closure space generated by the topological space (X,J). In
general, the closure space (X,.Ads) is not a fopological closure space
({1], p. 250), ie., it is not the case that Ads;(Ads(4))= Ads(4) for each
subset 4 of X ([5], p. 109). A topological space (X,J) will be called
topological-sequential or T'-sequential if the sequential closure space
(X, Ads) generated by it is a topological closure space.

Before giving a number of equivalent charaetenzatm@ of T-§e-
quential topological spaces, we need the following definitions which
are special cases of those which occur in the study 0# closure spaces.
Let A C X, The sequential interior of A, written Inty(4), is th(? set Inty(A)
= ANAQ(X\A). Thus, if # e X, then x e Int,(A4) if and only if # ¢ 4 and
there is no sequence (w,) in X\ A such that (z,) is eonvergeni': to x. The
set A is sequentially closed if Ady(4)= A. Thus 4 is seql}entlaﬂy closed
if and only if 4 contains all the points of X which are limli-ss of sequences
in A. The set A is sequentially open if its complement is sequenifla,]ly
closed. Thus A is sequentially open if and only if every sequence in 'X
which converges to a point in A ig ultimately in 4. The set A i:at a seguentml
neighborhood of a point a in X if @ € Ints(A). Thus 4 is a sequential nelghbop
hood of ¢ if and only if every sequence in X which converges 130‘5.¢ is
ultimately in 4. Theorem 1 is an easy consequence of these de'f'LgxtlonS
or of a listing of some necessary and sufficient conditions for a’closure
space to be a topological closure space. )

TuworEM 1. Let (X,3) be a topological space. Then the following
statements are equivalent:

(1) (X, 3) is T-sequential. ;

(2) The sequential adherence of every subset of X is sequentially closed.
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(8) The sequential inierior of every subset of X is sequentially open.

(4) The sequential adherence of each subset A of X is the intersection,
of all the sequentially closed subsets of X containing A.

(8) The sequential interior of each subset A of X is the union of all
the sequentially open subsets of X contained in A. -

(6) At each point @ of X, the collection of all sequentially open se-
quential neighborhoods of » is a local base, i.e., given any point » of X and
given amy sequential neighborhood U of w, there exists a sequentially open
subset G of X such that @ e @C U.

(7) Buvery sequential neighborhood of a point @ in X is a sequential
neighborhood of a sequential neighborhood of w, i.6., given any point x in X
and given any sequential neighborhood U of @, there emists a sequential
neighborhood V' of & such that U is a sequential neighborhood of every
point of V.

A topological space (X, J) is said to be sequential if every sequentially
open subset of X is open. It is said to be neighborhood-sequential or
N-sequential if. every sequential neighborhood of a point is a neighbor-
hood of that point. Sequential and ¥ -sequential fopological spaces were
first introduced and studied by S. P. Franklin, [3] and [4]. Incidentally,

Franklin calls ¥ -sequential topological spaces Fréchet spaces. A. Wilansky

calls then closure-sequential spaces ([8], p. 30). Franklin ([4], p. 54) hag
asked the question: when is a sequential space N -sequential? An answer
is given in the following theorem.

. THEOREM 2. Let (X,3) be a topological space. Then (X, 3) is N -se-
quential if and only if (X, 3) is both sequential and T -sequential.

Proof. Assume (X,3) is N -sequential. Since every sequentially
open set is a sequential neighborhood of each of its points, (X, 7J) is
“sequential. From Theorem 1, Part 6, we see that (X,3) is T -sequential.
Conversely, if (X, 3) is both sequential and 7T-gequential, every sequential
neighborhood of a point is, by Theorem 1, Part 6, and the definition of
a sequential space, a neighborhood of that point, Thus (X, 3) is N-ge-
quential.

Every first countable topological space iy N -sequential and hence
both sequential and T-sequential. 8. P. Franklin ([3], p. 113) and
J. H. Webb ([7], p. 362) have given examples of topological spaces (and
topological vector spaces) which are sequential but not N -sequential.
Clearly, these examples are examples of spaces which are sequential but
not T-sequential. We now give two examples of topological spaces (one
a topological vector space) which are T-gsequential but not sequential.

BExaMPLE 1. Consider the rea] line R (or any uncountable set) with
the cocountable topology 3. Then I consists of R, @, and the complements

icm®

T -sequential topological spaces 97

of countable sefis. A sequence (a,) in R is I-convergent to a point @ in B
if and only if ultimately a, = a. Since every subset of R is sequentially
closed, (B, d) is T'-sequential by Theorem 1, Part 2. Given any point &
in R, the singleton set {a} is sequentially open but not open. Thus (B, 3)
is not sequential. ‘ :

ExAMPLE 2. Consider the sequence space I* = {& = (&,): 2 |&a] < 400}
n=1
with the weak topology o(l%,1®). Of course, (I3, |]) is a Banach space
400
with norm {|-[|: R defined by [zl = } [&]| for all = (&,) in I The

n=1

topological dual of I* with the norm topology J is the space of all bounded
sequences 1° = {y = (pa): sUp|pa| < 4 o0}, i.e., every J-continuous linear
n

functional  on I' can be represented by a bounded sequence y = (gn)

L +00 )

in 1* and in faet u(®) = 3 &xgn for all 2 = (&) in I'. The space (I, o (I, 1))
n=1 .

is a locally convex topological vector space with o (I, 1) being the vector

topology on.I' generated by the family of semi-norms {P,: y €I°} where

P,

v =
¥ = (&) in P with y = (@») in 1. o(%, I*) is the weakest topology on I*
for which I is its topological dual. Our example depends upon the following
properties of these two spaces:

(1) Since (I, ||-]}) is an infinite dimensional normed linear space, the
weak topology o(P, 1) is strictly weaker than the norm topology J ([6],
p. 235; or [2]). Thus the norm ||-||: *—R is J- continuous but not o (I, I*°)-
continuous.

(2) Weak convergence and norm convergence of Bequences in lf are
the same ([6], p. 281; or [2]), i.e., if # ¢ I* and if () is a sequence in 7,
then () is 3- convergent to « if and only if (x,) is o (I, 1°) - convergent to #.

Using these facts, we can now show that (ll, o(l4, l°°))_is T -sequem.;ial
but not sequential. In order to prove that (I, o(I%,1®)) is T -sequintla;l,
we need only to show (see Theorem 1, Part 6) that every ol lm)-se-
quential neighborhood of the zero vector 0 in I' contains a o(I, ll)- csoe-
quentially open o(P, I*°) - sequential neighborhood of 0. Let. U be a o(l%, 1%)-
sequential neighborhood of 0. Then U is a J-sequential neighborhood of 0
Since (1%, J) is a normable locally convex topological vector space, U is
a J-neighborhood of 0. There exists a 3-open ball B,(0)= {z ¢ Z_'lz llell < &}
such that 0 ¢ B,(0) C U. Since B,(0) is J-open, it is J -sgquentl&ﬂYMOPen
and hence o (I}, 1)-sequentially open. Of course, B(0) is a o(*,! )-se-
quential neighborhood of 0. This proves that (ll, o (i l°°)) is .T -sequ(:alnt;a,l.
In order to show that (I%, o (I, 1)) is not sequential, we must find a 7(l ) b ]i
sequentially open subset of It which is not (i, )-open. Consider the

3

+0o
>R is defined by the correspondence P(z)= |} &g, for all
' . n=1
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nit ball B,(0) = {x  I': [jz]] < 1}. Since the norm|[-||: *—» R is J—continuous,
By(0) is J-open and hence (I, I*)-sequentially open. However, the
norm [|-f: 'R is not o(%, I*)-continuous. Consequently, B,(0) is not
o(f, 1°)-open. Thus (I, o(T, 1)) is not sequential.
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An atriodic tree-like continuum with positive span
by
W. T. Ingram (Houston, Tex.)

1. Introduction. Tn 1964 A. Lelek defined the span of a metric space,
and he proved that every chainable continium has span zero [5], section 5.
In this paper we construct an example of an atriodic tree-like continuum
with positive span. The continuum is obtained as an inverse limit on
simple triods using only one bonding map. The question of the existence
of an atriodic tree-like continuum which is not chainable was mentioned
by Bing [2], p. 45, and Anderson [1] claimed in an abstract that such
an example indeed exists.

Throughout this paper the term space refers to metric space and the
term mapping to continuous function. The projection of a produet space
onto its ¢th coordinate space will be denoted by ;.

Suppose X and ¥ are spaces, d is a metric for ¥, and f is a mapping
of X into Y. The span of f, denoted by of, is the least upper bound of the
set of numbers ¢ for which there is a connected subset Z of X x X such
that my(Z) = my(Z) and d(f(@), f(y)) = & for each (z,y) in Z. (Of course of
may be infinite). The span of X, denoted by cX, as defined by Lelek, [5],
is the span of the identity mapping on X. )

Suppose X, X;, ... is a sequence of compact spaces and fi, fy, ... i8
a_ sequence of mappings such that f: X, +1—~X ;. The inverse limit of
the inverse limit sequence {Xi,fi} is the subset X of [] X; such that

>0

(1; @y, ...) is in X if and only if fyz,,) = @, for each 4. We consider
Il (X1, d;) metrized by

i>0
d(@,y)= D' 27 i, i) -
i>0
2. The mapping f and the continuum M. Let T denote the simple friod
0,0 0 o1 and 6 =0, 6 = 4w or 0= n} (in polar coordinates in
the plane). Define f: T-—+T as follows:

(1—dz, =) it o<a<i,
e-11m # i<o<i,
T@3m) =y 3 _yp im) it i<a<i,
(45—3,0) i f<o<l.
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