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Fractional powers of operators and
Bessel potentials on Hilbert space

by
MICHAEL J. FISHER* (Missoula, Montana)

Abstract. Two candidates for the title <“the Bessel potential”’ over a real separable
Hilbert space are studied with the theory of fractional powers of operators and shown
to define equivalent Sobolev spaces L3 (H). Lg(H) is shown to be equivalent to D (1)

when (—T) is the infinitesmal generator of the Poisson integral and when D(79)
ie equipped with the graph norm. The Bessel potentials of purely imaginary order
are shown to be bounded on the reflexive L, (H) and to form a strongly continuous
boundary value group for the Bessel potentials J¢ with Re(a) > 0. :

Introduction. In [3] we defined the Bessel potential over a real
separable Hilbert space, H, and studied the family of singular integral
operators G*: Lj(H) — L,(H), where L;(H) is the image of L,(H) under

the Bessel potential J° J°(f)=I'(a)™" [ P,(f)t*e~'dt, where P;(f) is
0

the Poisson integral of f; [2]. The norm in Lj(H) is [igll,, = IIfll, When
g = J°(f). The purpose of this paper is to examine the Bessel potential
operators more closely than they were studied in [3]. Specifically, we shall
examine two prominent candidates for the designation of ‘“the Bessel
potential”’ over an infinite dimensional Hilbert space and show that
the spaces Ly(H) defined using these operators are equivalent to the
domain of a certain closed densely defined operator when this domain
is equipped with the graph norm. Secondly, we shall examine the semi-
group J° in Re(a)> 0 and show that the boundary values, J7, form
a strongly continuous group of bounded operators on L,(H) if 1 < p < oo.
The paper closes with a discussion of the infinitesmal generators of J?,
B >0, and J7.

Throughout this paper K, K (a), K (p, a) ete. (M, M (a), M (p, a), ete.)
denote positive (complex) constants which depend only on the parameters
shown. If T is a linear operator on a Banach space X, D(T') denotes the
domain of 7 and R(T) denotes the range of 7.

* Research supported in part by the National Science Foundation grants
NSF-GP-8839 and NSF-GP-24574.
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. Definjtions and Preliminaries. Let H be a real separable Hilbert
spaee, let n, denote the weak normal distribution on H which has variance
parameter ¢/2 and is centered at the origin in H, and let B be a Hilbert-
Schmidt operator on H. Let n = n,, L,(H) = L,(H, n) be the Banach
space of p-power integrable complex vzulued functions on H, and let
y — T, denote the regular representation of the additive group of H
a,ctmg on I,(H). See Section 1 of [2] for the measure theoretic prelimi-
naries. Deﬁne

H(f) = [ TfainoB7(y) and P.(f) = [ H(f)Ni(e)dtft,
p=4 [
where N,(2) = (nt)""zexp(—17"2%). P,(f) is the Poisson integral of f.

The strongly continuous contraction semi-groups H; and P, were studied
in [2]; P, extends as an analytic semi-group to [arg(e)| < /4.

Set
Ji(f) = I'(a)™ fw Py(fyttetat
and ’
T = D)™ | B(featan.

0

In the nomenclature of Komatsu’s theory of fractional powers of operators
(41, 73(f) = A +T)*fand J5(f) = (14-T*)~*", where P,(f) = exp(—=T)f.
We shall show in Section 3 that when a > 0, the (J§)™'J%, 4,k =1, 2,
are bounded operators on L,(H) and that L;(H), whether defined by
using J§ or J3, is equivalent to D(7°) with the graph norm. We ghall
use Komatsu’s definition and theory [4] of the powers 7°.

Our comparative study of the Bessel potentials Jj will require no
information about the operator T' beyond the facts that (—7T) and (— T?)
generate bounded strongly continuous semi-groups P, and H, on a reflexive
Banach space X. In Section 4, where we study J%, we need only the basic
definitions and introduction of [2]; Section 5 has the same prerequisites.
For these reasons we shall not review the formal definitions and basic
measure theory of the spaces L,(H) and Lj(H), see [2, 3]. We ghall con-
centrate instead on listing some of the results from the Balakrishnan—
Komatsu theory of fractional powers of operators. In what follows T'
denotes a closed, densely defined operator on a reflexive Banach space X
such that P, = exp(—2T) is a bounded, strongly contintous semi-group
on X.

Barly work on the theory of fractional powers of operators is sur-
veyed in [7]. Balakrishnan [1], defined fractional powers 77 0 < a <1,
for an operator (—T) which generates a bounded semi-group. In [1]

icm°®
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the semi-group generated by (—7) is studied, formulas for the resolvent
in terms of exp(—=27') are given, and properties of 7' which are inherited
by T* are listed. Komatsu [4-I, II, III, IV] has developed an extensive
theory of fractional powers of operators. In [4-I, II] it is assumed that
A is'a linear operator (not mecessarily densely defined) such that the
negative half line is in the resolvent set of A and [f(+A)YY <M
for all £ > 0. A° is defined for all eomplex o in Section 4 of [4-I]. For
our purposges it will be sufficient to recall some of Komatsu’s results for -
—A) generates a bounded, strongly continuous semi-
group on a reflexive Banach space X.

K1 sinwa

If0 < Re(a) < 1, A% = f 114 (14 A)  adi when zeD(4),

the domain of A4; [4-I, p. 999]
K-2. If 0<Re(a)<o<m n a positive integer, then

Ao = T [ a4y oa

I'a)I'(m—a) J
for a;eD(AN) when N >m >n; [4-II, P. 92].
If (—A) generates a bounded strongly continuous semi-group Tt
on X, then if zeD(4) and 0 < Re(a) < o < 1,

Aty =

(—a) lf (T,w—2)t~°"tdt;  [4-T, p. 325].

ot

More formally, K-1 and K-3 define an operator A7 on a subspace D°
of X; D° is defined in [4-I]. If 4% denotes the smallest closed extension
of A%, whose existence is proved in [4-I, Prop. 4.1], then A® = 4%.
Similarly K-2 defines an operator on a natural subspace of X and its
smallest closed extension iy 4% = A° ag is shown in [4-IT]. When Re(a)
< 0, A% is defined by equation 4.10 of [4-I, p. 304] and 4%, is shown
t0 have a smallest closed extension A% which is independent of ¢. When
Re(a) = 0, A%z is defined by equation-4.11 of [4-I, p. 305] for zeD” N E".
There is the important
K-4. For every complex a, A2, has the smallest closed extension A4j

which is independent of 0 and T when — 7 < Re(a) < 0. If Re(a) > 0,
45 = A5 on D(4%) nR(4) and if Re(a) <0, A7 = A%,

If A has a bounded inverse, B° = X and 4% is everywhere defined
and analytic if Re(a) < 0. If e« D°, A%z is analytic in Re(a) < 0. If — (n+1)
< Re(a) <0

—sinra - onl

AL =—0 (a+1)..

f (4 A
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and
K-5. If Re(a) >0, then A% = Aj is the inverse of A7“ = A% the

D(4%) is contained in the R(AZ%). See Section 5 of [4-I].

(i) If Re(a)-Re(8) >0, then A% A% = A5A%L = A% in the sense

of the product of operators. )

(i) T « and § are any complex numbers, then [A5A45], =A2+?,

where [T], denotes the smallest closed extension of 7'

(i) T¥ A has a bounded inverse and if Re(a)>0, then Aj4]

= A8 See Section 7 of [4-I].
From the assumption that [[#(t+4)7Y < M for ¢ > 0 and the regoly-
ent equation it follows that (1--4)7' exists for ¢ in the sector |arg(f)|
< Aregin(M~') and that t(§+4)™" is bounded on each ray of this sector.
Let M(0) =sup{t(t-+4)7Y: |arg(t)] = 0}, 6 >0; M(0) is an increasing
function of 6. An operator A is said to be of type (w, M (6)), 0 < w < m,
if 4 is closed, densely defined, the resolvent set of (—.4) containg the
sector |arg(f)] <m—ow, and sup{E(t+4)7Y: Jarg(t)] = 6} < M (0) < o
holds for all 0 < 6 < m—w. An operator 4 is of type (w, M ()] for an
w < w2 if and only if (—A) generates a semi-group T, which has an
analytic extension to the sector [arg(f)] << =/2 — w such that the extension
is uniformly bounded on each sector |arg(f)] < n/2—w—s¢, for & >0.
K-7. If A is an operator of type (co, M(@)) and 0 < aw < ©/2, then
(—A%) is the generator of a strongly continuous semi-group
exp(—1tA%) which is analytic in the sector |arg(¢)| < =/2 —aw and
uniformly bounded on each smaller sector |arg(t)] < =/2— aw —s,
for ¢ > 0. See Section 10 of [4-I].
Let 4 Dbe of type (w, M(f)). Then (4%)°
and Re(f) > 0.
I 0<ax<1 it T, =exp(—tA)

—f’_l’ 2N (a,t,8)ds, where N (a,t,8) =

K-6.

K-8. =A% f 0<a<n/o

K-9. and _’Z’Zw =exp(—t4L)w

(2mi)~ lf exp(us—m“)du; [71.

o~—1200
Let P, = exp(—=#T) be the Poisson integral defined in the intro-
duction; P, and T have the following properties:

P-1. P, is a strongly continuous, contraction semi-group on I, (H); [2].

P-2. P, admits an extension as an analytic semi-group the sector |arg ()|
< n/4; P, is uniformly bounded in each smaller sector.

This follows from the fact that N,(z) is analytic in Re(e) > 0 and
the fact that the integral P,(f) = }O H,(f)
0

in compaets of |arg(s)] < w/d—e, for & > 0.

P8, IHf= [ T,fano B(y) = exp(—t4)f, then T =

N, (z)dt[t converges uniformly

(A5 [7, p. 264]

icm°®
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P-4. If Bis a one-one Hilbert-Schmidt operator, 7' is one-one on L, (H)
and the range of T, R(T), is dense in L, (H).

If T is one-one on L, (H), the R(T) is dense in L, (H) by Theorem 3.1
of [4-I]. To show that T is one-one, it suffices to show that 7 is one-one.
I T2f = 0, H,f = ffor all £ > 0. If 4, denotes the infinitesmal generator
of Ty, t >0, then A, Hp(f) = 4,f for all k in H. From the formula

14
for 4, Hp given in [2], it can be seen that Z,,(f) = [ A, Hpa(f)dt =
s

= A;f(o— &) is a bounded operator on L, (H) with norm at most Klog(g/d).
After dividing by (o—d), one shows that this inequality implies that
A,f =0 for all » in H by letting ¢ — co. 4,f = 0 for all & in H implies
that Tygf = f for all ¢ > 0. A well-known result due to Hormander
implies that for tame functions g, |Tyzg -+ 9l — 2@ llgl, a8 ¢ tends to
-+ oo, Since the tame functions in L,(H) are dense in L,(H), this limit
holds for all f in IL,(H). For the f with T°f = 0, 2|ifl, = [Tisnf+fl»
— 242||f||,. This implies that f = 0 and T is one-one.

2. Basic properties of Bessel potentials. In Section 3 of [3] we studied
the Bessel potential J° whieh is mentioned in the introduction of the
present paper. We showed that for Re(a) >0, J* is bounded on L,(H),
J* i3 strongly amalytie, Lm{J°f: larg(e)| < 0 <=2, a—>0}=f, J“J”
= Jo# J° is the o-th Komatsu power of J', J* is one-one on L,(H),

R(J%) is dense in L,(H), T°J° is bounded on L,(H), and (—4, )“J" is
bounded on L, (H) When 4, is the infinitesmal generator of the translation
semi-group Tz, t >0, and B is the one-one Hilbert—Schmidt operator
of Section 1. In Sections 2 and 3 of the present paper we shall study
abstract Bessel potentials by using the theory of fractional powers of
operators.

Let T be a one-one, closed, densely defined operator on a reflexive
Banach gpace X such that (—T') and (—T?) generate strongly continuous,
contraction semi-groups P, = exp(—=2T) and H, = exp(—1T?). Then P,
can be written as an integral of H, as in Section 1 and P, is analytic in
Jarg(2)| < /4. Let J§ and Jj be as in Section 1 when Re(a) > 0. Recall
that since X is reflective, it T, = exp(—1t4) is a bounded strongly con-
tinuous semi-group, then X = N(4)Q®@R(A) by Theorem 3.1 of [4-I].
Since T' is one-one, R(T) and R(7?) are dense in X. We begin by listing
some of the basic properties of the J3.

THEEOREM 1. Let a and B be positive real numbers. Then for k =1, 2

1) Wil <1
o

(2) Im{Jif: a >0} =1
(8) JE = (J1), the B-th power of J%.
(4) Ji = (1+T%
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(5) R(Jg) is dense in Ly,(H).

(6) JEJE = It

(7) Jj is one-one on Ly (H).

Proof. Let T, denote a contraction semi-group, T; = exp(—i4),

V[Tt .

0

(1) follows from Minkowski’s integral inequality. For (2) let feX,

e>0, and §>0 such that if 0 <?< 4, |T}f—fll <e Choose 5 >0
0

such that if 0<f<n, I'(B)"'[ ¥ e 'di<e. Then i p<u, [J*—f|
L]

which stands for H, or P, in the proof. Set J7f = I'(f)~

< Hl"(ﬂ)"ofd(th—f)tf’“6"’01#]! + !!T(ﬁ)”lﬁl’af—f)t”'l et il < s+ 2¢|)f|l. This

proves (2). To prove (3) and (4) let >0 and set Jf=J'f= [T fe~'d
0

= (1+.4)7Y; we will show that (14+.4)~*f = J?f. Let 0 < § < 1; then
for ¢ in X

Iy = F(ﬁ)“f wle™ T wdu

=TIy f(ft—ﬂ e‘“e“mdt) T, 2 du

o

= () I'(1—g)} f(jc(t—l)-ﬂe—‘“dt)fumdu

— T Ta—p) | -
1

=TE7Ia=p)7 [ ¢—1)P0+4) " odt
0

1)~# f e o dudt
0

— P TA=p)" [v?(o+14 ) tado.

Since (v+1+A4)7" =dJ(d +1)7Y set w = v~ to get

Ty — SIT‘? f WL (w -+ ) daw

by K-1. This completes the proof of (3) and (4) for 0 < f < 1; the general
result now follows from K-6. (5) follows from K-5 since J% = (1 - %)=/t
= [(1+T%)%]~1 and D(L+T% = R(JTE). (6) is a congequence of (4)
and K-6; an elementary direct computation also verifies the desired
identity. If Ji(f) =0, JZ(f) = 0 for » > 0 by (6). Since %(f) extends
to an analytic function in Re(a) > 0, the tniqueness prineiple for analytic

icm°®
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functions implies that J;(f) = 0 for all Re(a) > 0. By (1),.f = 0. So (7)
holds and Jj is one-one.
Let T% a >0, be as in K-1, X-2, or K-3; we shall examine 7°J2.
TEEOREM 2. T°J% is a bounded operator on X for k = 1,2 if a > 0.
These operators are given by:

sinma

T Jog = o— fJam(l wdu  for O<a<l,

and

1
in (ma 2
1°J30 = o S2Te2) [ Huout 1 —wyau
T
[]

(=] o0
for 0 <a<2, where Juo = [ e“Padt and K,z = [ e “H,zdt.
0 L]

Proof. To prove the theorem for J5, ¥ = 1, 2 note first that 7' (14 T7)~*
=1—@+T7)" and T*(1+T*" =1—(1+T%~* are bounded operators,
so that we need only prove the theorem for 0 < a <% for Ji; K-6
can be used to complete the proof of the boundedness of T¢J%. Let
T, = exp(—t4) be a bounded, strongly continuous semi-group on X. We
shall show that

A1+ APy = 2—B ‘puf (1—u)"du

By 1—p) [ (w+4)~

for 0 < < 1. Here B(z, y) is the 5 -function.
For 0 < ﬁ <1, Jfx = I'(§)~ f Tt~ te P dt =
=I(— f(T z—2)y~ 1P dy. If zeD(4),

(1+4)%2 and A’

APy = —T(1—p)! f Tywy~* dy,
0

where Tz = —g—T,,m. Let Lg(u) denote the Laplace transform of ¢ at u.
Y .
Then

AP — —-S—m:’ff L AT, ) (w) du,
¢ 1
where A5 = I'(—f)A?. Then

tﬁAﬂ(T,w)»—tﬁf 3y T, ,zy~ dy—fa T, oty Py = ftT T,y Fdy.
ot
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. 0
But T;T,» = (y+1)”lﬁ Tyyny% Then

oo a _
L 44 T0)w) = [ <y+1)—1(—%u)L(Tmuw)(%)y Py
o+
o a —ﬁ
= f(?/-!—l)'2 s Juen -1 @)y " dy,
+

0

SE({y+1)w o,

oo ) a
where J,2 = f g—”tTt%‘di. Since (—— -5;%) Ju(,,,H)_1(m)
ot
R

we consider an interchange of integrals in [ L (f AjT,(2))(u)du.
1

R
4 ~
f (149 ( - %“) Ju(l-H/)‘*l (z)du = (y+1) 2[J(1+u) -1 _RJR(I-HI) —1](=).
1 .
Since ||RJ gyy-1(2)]| < K (y+1)|2ll, the dominated convergence theorem
implies that

sinf
n

AP = —

[ Tosnr@ =g+ 1))y (1 +9)ay
ot

sin

1
i f(Jum—%_lw)uﬁ(l—u)"”du
T
0

sinnf
n

1
f Jouf (1 —u)"Pdu.
0

Since |7, 2l < Ku~'|2||, [|[A?J?z| < (1+ K)|jx| by the triangle inequality
for integrals. This completes the proof of Theorem 2.

Remark 2.1. When P, and H; are semi-groups on L, (H) of the
type given in the introduction, 7°J% is given by convolution with a meas-
ure on H for all a > 0; see [3]. It X = L, of an Abelian group and if P,
and H, are given by convolution with measures, it is easy to see from
Theorem 2 above or from Theorem 4 of [31, that T°J% is given by con-
volution with a measure.

Remark 2.2. Many of the properties of the J¢ in Theorem. 1 also
hold for complex o when Re(q) > 0. Theorem 2 holds for these complex «
with no change in proof or notation.

Remark 2.3. For any &k in 0 < k<2, J¢ = (1+T%~ defines
a strongly ‘analytic semi-group in « when our present assumptions on
P, = exp(—=2T) are in force. It will not be hard to see in what follows

) ©
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that any of the Ji, &k =k, %, are equivalent for 0 < kyy By < 2. The
basis for this assertion is the set of results presented in Section 10 of
[4-I7 regarding the semi-groups generated by fractional powers of op-
erators. .

3. Equivalence of J% and J. By statement (7) of Theorem 1, J% is
one-one on X for k =1, 2. Define X = R(J}) with the norm 1Ylla, %
= [lo]| if Jio =y. In this section we ghall complete the proof of the
equivalence of the norms l,z by proving that (J5)'J? is a bounded
operator on X for k, ¢ = 1, 2 and a > 0; this leads to the conclusion that X3
is equivalent to D(7°) when this domain is equipped with the graph norm.
The following lemma will be useful.

Lewma 3.1. Let (—A) be the infinitesmal generator of o bounded,
strongly continuous semi-group on X and let 0 < a < 1. If zeD(A4), (1-+4)°
z = A%s + Bz, where B is a bounded operator on X.

Proof. By K-1

o0

f A +1) 1+ 14 4) wdt

0

sinwa

(1-+Ays=

- —S"‘—:Ef t“‘l(t+l+A)‘1mdt+s—l—nﬂf 1514 (4 1+ A) it
T
[ 0
Since [[(t+1+4)7Y < K (t-+1)"%, the first integral on the right represents
abounded operator on X. By the resolvent equation, (£+1 +A4)t—(t+4)
= —(@+1+A4)(t+A)". Then

M[ PrAC+ 1+ A) wd
™ H .

— Asy_ SBTC f FTA @14+ A) 1+ A) it
™
[

Since [|A(t+4)7 | <K and [(t+1+4)Y < K(E+1)"Y, the lash integral
on the right represents a bounded operator on X. Thus (14 .A)* has the
desired form.
TeEROREM 3. If a > 0, (J5)~'JF are bounded operators on X if Wk =1,2.
Proof. Consider (1+7%)**(14-T)"% and write o = 2n+8, where
0< <2 Then by Lemma 3.1, (1+7T%? = (T%*"4+ B, where B is
a bounded operator. By K-8, (I*}® = T%. Since (1-+T%"* = (1-+T4"
(I? + B) = 3 A, T%+ 3 B,T%*+9 where 4, and B, are bounded operators
k=0 k=0 .
on X, and since 7% (L T')~* = T7 (1 + T)~* (1 4+ T)~ " for y < a, Theorem 2
implies that (1-+T*)**(1+7T)"" is a bounded operator on X.

Studia Mathematica XLI.2 . 6
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Similarly, write a = ¥ +y, where Nisa non-negatlve mteorer and
0<y<1. Then (1+T)*=1+Iy(T"+B) = 2 A, TF+ 2 B, T,
where 4, and B, are bounded operators on X. Sl,nce 1f < T”( - Ryel

(T—)"/2(1+T2)“"’2(1+T2) (a=O2 hy K-8 and Theorem 2 implies that
(14 T)*(1+T%)~*" is a bounded operator on X. This completes the proot
of Theorem 3.

Our methods give the following

COROLLARY 3.1. X3, k=1,2, 4s equivalent to D(T*) when D(T*®) is
equipped with the graph morm.

Proof. By Theorem 3, it suffices to prove that X7 = D(T"). I
y = Jio,  then [y|+|T°Jiall < K (a)|@] = K(a)[yl., by Theorem 2

Wmte 9lla,2 = Il = L+l (141 kzo’ AT
—{—2 B, T*F by Temma 3.1. By Theorem 6.5 of [4-1], D(I%) < D(I?)
Thus |(1+ 7)Yl < E(a){(lyl+[T°y]) and the

and expand

oontmuously if y<a
proof is complete.
COROLLARY 3.2. X consists precisely of those elements © of X for
which T°x is also in X.
Stein [6] has studied the questions dealt with in this section over
finite dimensional Huclidean spaces. Fourier multiplier techniques are
used in [6] to prove the above results.

4. BoUNDEDNESS OF J%. In this section we shall prove that J7,
y real, is a group of bounded operators on L,(H) if 1 < p < oo, and we
will study the relationship between J% and the closed operator (14 .4) .
If y =0, J¥ is the identity on L,(H) and if p # 0, seb

Jirf = [lj_t?l’(iy)‘l [ Pftr=tetas+ Dy +1)7'67 ).

Here P,f is the Poisson integral of f as defined and studied in [2], and
which is briefly deseribed in Section 1 of this paper. In [2] it was shown
that there is a unigue Borel probability memsure p(H) on H guch that
if p,(B) =p(Bft) for t >0, P,f—-f T,fap,(y _j T,fdp(y) for all

fin L,(H); y - T, is the regular representatlon of the additive group
of H acting on Lﬁ(H).

For a = f+iy, >
Rea # 0 define

0 and y real, define Jif =f if « = 0 and if

Jef = I(a)? f Pftetetdt+ 2 Ma+1)"tf  for & > 0.

icm°®
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Then for Rea > 0, J; converges strongly .to J°f as ¢ tends to zero. Define
Jof = Hm{J3f: & —>O+} for Rea> 0 if this limit exists. Let 1 < p < co
and 1/p+1/g = 1.

THEEOREM 4. J% is a bounded operator on L o (H) for all real y and
177 < Epg (1] +1) [Ty +1) 7.

Proof. First consider (T%)(x) = [ f(z—1t)exp(—t/a)t” 'dt on

L,((—eco, o0), dz). Let g(¢) =7 if t>0 and g(¢) = 0 if ¢t < 0. Then
for a >0,
(Tef) (@) = [ fla—t)exp(—I|t/a)g () dt.
l>s
Since g
exp(—[t]/a) = (=) f . .
1+y2a? 4
set h(a,y) = a(n)" (1 +y*a®)"" and write

(Tef) (@) f e [ fle—1)d= Wy (1) dih(a,y)dy.

fti>e

By Minkowski’s integral inequality and by Theorem 1 of [5],

1720, < Epg(lyl+1)2[y|7*  for all ¢>0.
We may write
TEf = Tliy)” f[f 1,f =i aw.

If fis a bounded tame function on H, then the rotational invariance
of the normal distribution can be used as in the proof of Proposition 3
of [2] to show that as a consequence of the above inequality for 7WI,

If Zustrretal) p < K, )1,
for all £ > 0. The bounded tame functions are dense in L, (H). Minkowski’s
integral mequahty can be used to complete the proof that [ TZfl,

< Epq(ly|+1)?| I (@y+1)7* for all ¢ > 0.
To prove convergence as & - 0%, write

0 1
J7f = Iliy)™ [ Tuftr e @+ | Ty ft= (et —1)di+
JU st [,

+ ( f wat*'—‘dwj—f)] ().
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The first and second integrals on the right converge absol.utely. If fis
2 bounded tame function with bounded derivatives, write the third
quantity as

1 iy ! f
iy S — )= @
thyfiV ldt—l—z;f —I (T f =107 dt - o
Since [Ty, f—fll, < Kt|lyll and since f Iyl dp (y) < oo, the third qus’untitj
H

on the right above converges as & — 0F. Thus J% converges strongly to
a bounded operator J¥ and ||| < Epg(ly|+ 1) [ I(iy+1)*

The next theorem shows that [ P,ft”~'di converges with respect
to a certain summability method. )

THEOREM 5. J7f = lm {J?*%f: § — 0%} for all f in L,(H).

Proof. The integral I'(a)™* }OP,ft“‘le“dt, a = iy, converges
uniformly to F(iy)“lf P,fti"‘le"oit as § — 0. Tt is sufficient to consider
the limit of . fl Ptft"‘lle"‘dt. This last integral is '

1 1
[ B2 [ Piftrt e dtda.
(] @

The function fzf~* gives a regular summability method on 0 < @< 1.
1

Since the integral [ P,fi*"'(¢e~'—~1)df converges strongly to
o+

1
J Pftr—Ye '—1)dt as f — 0T, we consider
oF

1 1
lim [ o= [ Pyft=*dtde.
@

f—>o0 0
From Section 3 of [5], we have that this lagt limit existy if
1 ) 5‘“’
lim U P, i7" dt+ f-f]
eoo L vy
exists; when the last limit exists these limits are equal. Theorem. 4 shows
that the last limit exists, so that
JVf = Lim {7 f: g - 0t}
COROLLARY 4.1. If « is a real positive number, J*J? = J*+%,
Proot: For 0<s<a, [J°J"f—Jottf|, < [J*T7f—J*¥f], by
statements 6 and 1 in Theorem 1. By the triangle inequality |J*Jf—
=l S N TV =T fll, + [T% f — T*+¥f]||,.. By statement 2 of Theorem 1

and by Theorem B, the terms on the right tend to 0 as ¢ — 0". This verifies
the required identity.
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COROLLARY. 4.2. T = J**%, o> 0, forms a bounded, strongly contin-
uous family of operators on L,(H) with |[T%| < Epq(|y|+1)%| T(iy+1)~L

Proof. Since T° = J*J% and J° is strongly continuous for a > 0
and J is bounded, 7° ig strongly continuous. The estimate for ||77| follows
from the estimate for J° [[J%| < 1. and the estimate for /%) which is
given in Theorem 4.

COROLLARY 4.3. J#J% = J0+8 for ol real y and B.

Proof. It >0, J¥H7JP = J¥gutif — ge+irif) by part 6 of
Theorem 1 and Corollary 4.1. By Theorem 5, if we take the limit as ¢ — 0™
in this equation, we get the desired result.

COROLLARY 4.4. J%, y real, is a sirongly continuous group of operators
on L,(H) with J° = the identity and (J7)™! = J~,

Proof. Because of Corollary 4.3 we need only show that lim {J¥f:
y =0} =f for each f in L,(H). The bound on ||J¥| is

Epg(ly1+ 10| iy +1) 7 = Epg(=|y])™ (sinh = |y]) 2 (jy| +- 1)%,
since |I'(iy)] = (=)*(ysinh wy)~Y? ag follows from the well-known identity
for I'(2)I'(1 —#). Thus ||J?|| is bounded on any compact neighborhood of
7 = 0 and Hm {J**¥f: ¢ - 0%} = J¥f uniformly on —1 < y < 1. Because
of the strong continuity of J* in Rea > 0, the following equality completes
the proof:

lim J?f = lim lim J*%f = lim lim J**%f = lim J*f =f.
=0 y—0 &0 >0 y—0 80

COROLLARY 4.5. Jf = (14+T)"#f = [(1+T)*Tf, for all f in L, (H),
and (L+T)™% is a bounded operaior on L,(H) for all real y.

Proof. By Corollary 5.3 of [4-I], J*** i the inverse of (1 7)*+7
if a > 0. Because the fractional powers are strongly continuous on a dense
set of L, (H) in a strip —v < a< o, —oco<y < oo, by Theorem 8.2 of
[4-I], we have that J7f = (1+T)""f = [(1+T)*]"'f for a dense set
of f’sin L, (H). Since the J**™ = ((1+T)7)*+* = (1+ T)~*"* are uniformly
bounded in « >0, a corollary of the Uniform Boundedness Principle
implies that (1+7)™ = [(1+T)*]™ is a bounded operator on I,(H)
and the desired equality holds.

COROLLARY 4.6. J7 s the iy-th Komatsu power of J = J* for all real Yo

Proof. Denote the iy-th Komatsu power of J by (J)*. By Theorem 8.2
of [4-I], for a dense set of f in Iy, (H), (J)?f = Hm (J)*+7f = lim J*+¥f

a0

a0t
= J¥f; the second equality follows from part 4 of Theorem 1 and the
strong analytieity of (J)* and J° Since J**? = (J)** are uniformly
bounded in « > 0, (J)* is bounded by the Uniform Boundedness Principle,.
so that J¥f = (J)f for all f in L,(H).
CoROLLARY 4.7. For any complex number ain Rea >0, Lg (H) = LE**(H)
with equivalent norms.
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Proof. Let o = f-+iy. Then beea,use of the boundedness and in-
vertibility of J7, [J7fl, < E@)NJ°fllp < Kily NIl

Remark 4.1. The method used in Section 4 can be used to ghow
that J? is a bounded operator on L,(H). The basic fact used above was
that if

U9 = I'(a)™ f T et di+ ———— f,

I'(a +1)
and if

vef = r(a)-lf T,ft*" e~tdt  for Rea >0,

then st converges strongly to a bounded operator U? as & - 0%,
Furthermore, U”’ is the strong limit of U"“" Thus only minor modifi-
cations in the mgument are needed to prove that J¥ is bounded. Write

Y exp (— ) dt

J3(f) = 2I'(a/2)™ f Ha(f)
0

= 2D(af2)™ [ [ Tyft=te " dtdno B (y).
H 0

exp(—1?) is the Fourier transform of a bounded measure on the real
line and t“l(exp(—t“)—l) is bounded near zero, so that

= 2I(a/2)™ [ f Ha(f)ee e~ dt+ % f]

is uniformly bounded and converges if Rea>>0. As above J¥f=

...hm{s Yf: ¢ 0%} and one shows that J¥ =lim J5*#f. Again
pr0t

= (14 T%"” and the J% form a strongly continuous group of bounded
operators on L,(H) whose norm depends only on y and p. An estimate
for ||J¥| can be written easily from the estimate, given above, for J¥.

Remark 4.2. If 2 > & > 0 i3 a real number, one can reason as above
to show that J% = (14+7%)~** has boundary values J% bounded on
L,(H). Here one has to use the special function fy(t, u) given in [7] to
represent exp(—tT") as a semi- group given by convolution with a Borel
probability measure.

5. The semi-groups J* and J%. We shall study the spectrums and
infinitesmal generators of J%, 8 > 0, and J*%, v real. Since J* is an analytic
gemi-group with bounded boundary values, J%, a well-known theorem
in gemi-group theory states that if 4 is the infinitesmal generator of J?,
B >0, then J = exp(iy4). In what follows A denotes the infinitesmal
generator of J%, 8> 0.

icm°®
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TrroREM 6. 4 function f in L,(H) is in D(A) if and only if
fo = [ Pifetlogtat
0

is i D (T) when Py = exp(—tT). When this is the case Af = Of +(1+T)fs,
where C is Huler's constant.

17
‘ﬂ“ Jﬁ f)lﬂ'xl

£+ [ Pif)etlogt dt. Sinco JAf and Jf are in D(T), fi
is in D(T) and 0Af=0f+(1+T)f*; 0 = —TI"(1) is Euler’s constant
= ]im(zn' k' —logn).

Ookgxlfersely if fx is in D(T), then

Proof. Let J = J% If fis in D(A), AJ(f) = JA(f) =

= —I"(1)J(

b b
[ Pler+asmpja = [ Fa+m©rr+roa

b b
0 " 7 +1
=ath<1+T)%J (Dhamst = A1) [ o518

= (1+D)I"(f)—
Thus lim i THOf+(L+T)fi)dt =

JHA
J*(f)—f, and f is in D(4) since

b
lim 57 [ JHCf + (1+ T)fu) @t = Of+ (1 +T)fu.
b—ot H

COROLLARY B5.1. The infinitesmal generator of the group J¥ acting

on. L,(H) is id, where Af = Of+(1+1)fs when fu = [ Py(f)e logtdt
[
is in the domain of T; C is Buler's constant.

Proof. By a well-known theorem in semi-group theory, J¥ =
= exp(iy4d) when J_ﬁ =exp(pA4) for p>0. The properties of 4 are given
in Theorem 5.

If g > 0, the spectrum of J? is contained in the umit disk. For J¥
there is:

THEOREM 7. The spectrum of J¥ lies in the annulus exp(—x|y|[2)
< |4 < exp(=]y] [2).

Proof. By Theorem 4, [|J%||< Kpq(ly|+1)?I(iy+1) . Since
[I'(iy)| = = (ysinhmy)~'?, Corollary 4.3 implies that the spectral radius
of J¥ i r(J%) = hm ]|(JW)"[]“”—hm 7Y < exp(x|y|/2). Since J?

is invertible and smce G(J”’) is a compa,c’n set in the complex plane, there
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is a real number 4 such that o (J%) lies in the annulus 4 < |A] < exp (=|y|/2).

Since Z‘wﬂ*“‘lJi”” converges to (A—J%)™* on |A] > exp(x|y|/2) and
n=0
since — 3 AJ M+ converges to (A—J¥)7 in || <exp(—=|y|/2),
n=0

we have the desired results.
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Some remarks on the Gurarij space
by '
P. WOJTASZCZYK (Warszawa)

Abstract. Complementably universal properties of the Gurarij space of universal
disposition are proved. Some linearly isomorphic equivalences between Banach spaces
whose duals are L, spaces are stated.

A predual of I, is a Banach space X such that X* is linearly isometric
to L,(u) for some measure u.

DEFINITION. A separable space X is a space of universal disposition
itf for every finite dimensional Banach spaces F o F and every iso-
morphism 7: B — X and every s > 0 there is an isomorphism T:F—>X
such that T| E = T and [T |T-Y < (L&) THTY.

Such a space was first constructed by Gurarij [1] and next by Lazar
and Lindenstrauss [3].

In this note we prove the following

THEOREM. Let X be a separable predual of L, . Then there ewists o Banach
space of uwiversal disposition I's, I'y > X and there is a projection of
norm one from I'y onto X.

The proof of this Theorem is a slight modification of Gurarij’s proof [1].

By [5], Theorem 4.2 there exists a Banach space Y such that:

(*) Y is a separable predual of I, and for any separable predual of L,
say X, and any >0 there exist an embedding I: X — ¥,
IT) 1T~ < 1+4¢ and a projection of norm one from ¥ onto T'(X).

By [4] Remark ¢ after Theorem 4 there exists a separable predual
of I,, say W, such that any separable predual of I, is a quotient space
of W.

If we apply the above Theorem for X = ¥ or X = W we obtain

COROLLARY 1. The spaces Y and W can be choosen to be of universal
disposition.

COROLLARY 2. Every space which satisfies (%) is isomorphic to every
space of universal disposition.
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