References

- [1] Dunham Jackson, The theory of approximation, vol. XI, A. M. S. Pub., New York.
- [2] P. P. Korovkin, Linear operators and approximation theory, India.
- [3] S. M. Lozinski, On convergence and summability of Fourier series and interpolation processes, Math. Shornik 14 (56) (1944), pp. 175-268.
- [4] I. P. Natanson, Constructive function theory, New York.
- [5] A. Sharma and A. K. Varma, Trigonometric interpolation Duke Math. J., vol. 32, No. 2 (1965), pp. 341-350.
- [6] O. Shisha and B. Mond, The degree of approximation to periodic functions by linear positive operators, Jour. of Approximation Theory 1 (1968), pp. 335-339.
- [7] A. K. Varma. Simultaneous approximation of periodic continuous functions and their derivative, Israel J. Math. 6 (1968), pp. 67-79.
- [8] A. Zygmund, Trigonometric series, vol. II, New York 1959.

Received December 18, 1970

(280)

Fractional powers of operators and Bessel potentials on Hilbert space

b

MICHAEL J. FISHER* (Missoula, Montana)

Abstract. Two candidates for the title "the Bessel potential" over a real separable Hilbert space are studied with the theory of fractional powers of operators and shown to define equivalent Sobolev spaces $L_p^a(H)$. $L_p^a(H)$ is shown to be equivalent to $D(T^a)$ when (-T) is the infinitesmal generator of the Poisson integral and when $D(T^a)$ is equipped with the graph norm. The Bessel potentials of purely imaginary order are shown to be bounded on the reflexive $L_p(H)$ and to form a strongly continuous boundary value group for the Bessel potentials J^a with Re(a) > 0.

Introduction. In [3] we defined the Bessel potential over a real separable Hilbert space, H, and studied the family of singular integral operators $G^a: L_n^a(H) \to L_n(H)$, where $L_n^a(H)$ is the image of $L_n(H)$ under the Bessel potential J^a . $J^a(f) = \Gamma(a)^{-1} \int\limits_{1}^{\infty} P_t(f) t^{a-1} e^{-t} dt$, where $P_t(f)$ is the Poisson integral of f; [2]. The norm in $L_p^a(H)$ is $||g||_{a,p} = ||f||_p$ when $q = J^{\alpha}(f)$. The purpose of this paper is to examine the Bessel potential operators more closely than they were studied in [3]. Specifically, we shall examine two prominent candidates for the designation of "the Bessel potential" over an infinite dimensional Hilbert space and show that the spaces $L_n^a(H)$ defined using these operators are equivalent to the domain of a certain closed densely defined operator when this domain is equipped with the graph norm. Secondly, we shall examine the semigroup J^{α} in $\text{Re}(\alpha) \geqslant 0$ and show that the boundary values, $J^{i\gamma}$, form a strongly continuous group of bounded operators on $L_n(H)$ if 1 .The paper closes with a discussion of the infinitesmal generators of J^{β} , $\beta > 0$, and $J^{i\gamma}$.

Throughout this paper K, K(a), K(p, a) etc. (M, M(a), M(p, a), etc.) denote positive (complex) constants which depend only on the parameters shown. If T is a linear operator on a Banach space X, D(T) denotes the domain of T and R(T) denotes the range of T.

^{*} Research supported in part by the National Science Foundation grants NSF-GP-8839 and NSF-GP-24574.

1. Definitions and Preliminaries. Let H be a real separable Hilbert space, let n_t denote the weak normal distribution on H which has variance parameter t/2 and is centered at the origin in H, and let B be a Hilbert-Schmidt operator on H. Let $n=n_2$, $L_p(H)=L_p(H,n)$ be the Banach space of p-power integrable complex valued functions on H, and let $y\to T_y$ denote the regular representation of the additive group of H acting on $L_p(H)$. See Section 1 of [2] for the measure theoretic preliminaries. Define

$$H_t(f) = \int\limits_H T_y f dn_t \circ B^{-1}(y) \quad ext{ and } \quad P_z(f) = \int\limits_0^\infty H_t(f) N_t(z) dt/t,$$

where $N_t(z)=(\pi t)^{-1/2}z\exp{(-t^{-1}z^2)}.$ $P_z(f)$ is the Poisson integral of f. The strongly continuous contraction semi-groups H_t and P_z were studied in [2]; P_z extends as an analytic semi-group to $|\arg{(z)}|<\pi/4$.

Set

$$J_1^a(f) = \Gamma(a)^{-1} \int_0^\infty P_t(f) t^{a-1} e^{-t} dt$$

and

$$J_2^a(f) = \Gamma(a/2)^{-1} \int\limits_0^\infty \, H_t(f) t^{(a-2)/2} e^{-t} dt \, .$$

In the nomenclature of Komatsu's theory of fractional powers of operators $[4], J_1^a(f) = (1+T)^{-a}f$ and $J_2^a(f) = (1+T^2)^{-a/2}$, where $P_z(f) = \exp{(-zT)f}$. We shall show in Section 3 that when a>0, the $(J_i^a)^{-1}J_k^a$, i,k=1,2, are bounded operators on $L_p(H)$ and that $L_p^a(H)$, whether defined by using J_1^a or J_2^a , is equivalent to $D(T^a)$ with the graph norm. We shall use Komatsu's definition and theory [4] of the powers T^a .

Our comparative study of the Bessel potentials J_k^a will require no information about the operator T beyond the facts that (-T) and $(-T^2)$ generate bounded strongly continuous semi-groups P_z and H_t on a reflexive Banach space X. In Section 4, where we study $J^{i\gamma}$, we need only the basic definitions and introduction of [2]; Section 5 has the same prerequisites. For these reasons we shall not review the formal definitions and basic measure theory of the spaces $L_p(H)$ and $L_p^a(H)$, see [2, 3]. We shall concentrate instead on listing some of the results from the Balakrishnan–Komatsu theory of fractional powers of operators. In what follows T denotes a closed, densely defined operator on a reflexive Banach space X such that $P_z = \exp(-zT)$ is a bounded, strongly continuous semi-group on X.

Early work on the theory of fractional powers of operators is surveyed in [7]. Balakrishnan [1], defined fractional powers T^{α} , $0 < \alpha < 1$, for an operator (-T) which generates a bounded semi-group. In [1]

the semi-group generated by $(-T^a)$ is studied, formulas for the resolvent in terms of $\exp(-zT)$ are given, and properties of T which are inherited by T^a are listed. Komatsu [4–I, II, III, IV] has developed an extensive theory of fractional powers of operators. In [4–I, II] it is assumed that A is a linear operator (not necessarily densely defined) such that the negative half line is in the resolvent set of A and $\|t(t+A)^{-1}\| \leq M$ for all t>0. A^a is defined for all complex a in Section 4 of [4–I]. For our purposes it will be sufficient to recall some of Komatsu's results for the case when (-A) generates a bounded, strongly continuous semi-group on a reflexive Banach space X.

- K-1. If $0 < \operatorname{Re}(a) < 1$, $A^a x = \frac{\sin \pi a}{\pi} \int_0^\infty t^{a-1} A (t+A)^{-1} x dt$ when $x \in D(A)$, the domain of A; [4-I, p. 299].
- K-2. If $0 < \text{Re}(\alpha) < \sigma < n$, n a positive integer, then

$$A^a x = rac{\Gamma(m)}{\Gamma(a)\,\Gamma(m-a)} \int\limits_0^\infty \,t^{a-1} \! ig(A\,(t+A)^{-1}ig)^m x\,dt$$

for $x \in D(A^N)$ when N > m > n; [4-II, P. 92].

K-3. If (-A) generates a bounded strongly continuous semi-group T_t on X, then if $x \in D(A)$ and $0 < \text{Re}(a) < \sigma < 1$,

$$A^a x = \Gamma(-a)^{-1} \int\limits_{0^+}^{\infty} (T_t x - x) t^{-a-1} dt; \quad \text{[4-I, p. 325]}.$$

More formally, K-1 and K-3 define an operator A^a_{σ} on a subspace D^{σ} of X; D^{σ} is defined in [4-I]. If A^a_{+} denotes the smallest closed extension of A^a_{σ} , whose existence is proved in [4-I, Prop. 4.1], then $A^a=A^a_{+}$. Similarly K-2 defines an operator on a natural subspace of X and its smallest closed extension is $A^a_{+}=A^a$ as is shown in [4-II]. When $\operatorname{Re}(a)<0$, $A^a_{-\sigma}$ is defined by equation 4.10 of [4-I, p. 304] and $A^a_{-\sigma}$ is shown to have a smallest closed extension A^a_{-} which is independent of σ . When $\operatorname{Re}(a)=0$, $A^a_{-}x$ is defined by equation 4.11 of [4-I, p. 305] for $x \in D^{\sigma} \cap R^r$. There is the important

K-4. For every complex α , $A_{\sigma\tau}^{\alpha}$ has the smallest closed extension A_{0}^{α} which is independent of σ and τ when $-\tau < \operatorname{Re}(\alpha) < \sigma$. If $\operatorname{Re}(\alpha) > 0$, $A_{0}^{\alpha} = A_{+}^{\alpha}$ on $D(A_{+}^{\alpha}) \cap \overline{R(A)}$ and if $\operatorname{Re}(\alpha) < 0$, $A_{0}^{\alpha} = A_{-}^{\alpha}$.

If A has a bounded inverse, $R^{\sigma} = X$ and A^{α}_{-} is everywhere defined and analytic if $\operatorname{Re}(a) < 0$. If $x \in D^{\sigma}$, $A^{\alpha}x$ is analytic in $\operatorname{Re}(a) < \sigma$. If $-(n+1) < \operatorname{Re}(a) < 0$

$$A^{\underline{a}}_{-} = \frac{-\sin\pi\alpha}{\pi} \frac{n!}{(\alpha+1)\dots(\alpha+n)} \int\limits_0^\infty t^{\alpha+n} (t+A)^{-n-1} dt$$

195

and

K-5. If $\operatorname{Re}(a) > 0$, then $A_{+}^{a} = A_{0}^{a}$ is the inverse of $A_{0}^{-a} = A_{-}^{-a}$; the $D(A_{\perp}^{\alpha})$ is contained in the $R(A_{\perp}^{-\alpha})$. See Section 5 of [4-1].

K-6. (i) If $\operatorname{Re}(a) \cdot \operatorname{Re}(\beta) > 0$, then $A^{\alpha}_{\pm} A^{\beta}_{\pm} = A^{\alpha}_{0} A^{\beta}_{\pm} = A^{\alpha+\beta}_{\pm}$ in the sense of the product of operators.

(ii) If α and β are any complex numbers, then $[A_0^{\alpha}A_0^{\beta}]_C = A_0^{\alpha+\beta}$, where $[T]_{G}$ denotes the smallest closed extension of T.

(iii) If A has a bounded inverse and if $\text{Re}(\alpha) > 0$, then $A_n^{\alpha} A_n^{\beta}$ $=A_0^{\alpha+\beta}$. See Section 7 of [4-I].

From the assumption that $||t(t+A)^{-1}|| \leq M$ for t>0 and the resolvent equation it follows that $(t+A)^{-1}$ exists for t in the sector $|\arg(t)|$ $< Arc \sin(M^{-1})$ and that $t(t+A)^{-1}$ is bounded on each ray of this sector. Let $M(\theta) = \sup\{||t(t+A)^{-1}||: |\arg(t)| = \theta\}, \ \theta > 0; \ M(\theta)$ is an increasing function of θ . An operator A is said to be of type $(\omega, M(\theta))$, $0 \le \omega < \pi$, if A is closed, densely defined, the resolvent set of (-A) contains the sector $|\arg(t)| < \pi - \omega$, and $\sup\{||t(t+A)^{-1}||: |\arg(t)| = \theta\} \leqslant M(\theta) < \infty$ holds for all $0 \le \theta < \pi - \omega$. An operator A is of type $(\omega, M(\theta))$ for an $\omega < \pi/2$ if and only if (-A) generates a semi-group T_t which has an analytic extension to the sector $|\arg(t)| < \pi/2 - \omega$ such that the extension is uniformly bounded on each sector $|\arg(t)| \leq \pi/2 - \omega - \varepsilon$, for $\varepsilon > 0$.

- K-7. If A is an operator of type $(\omega, M(\theta))$ and $0 < \alpha \omega < \pi/2$, then $(-A^{\alpha})$ is the generator of a strongly continuous semi-group $\exp(-tA_{+}^{\alpha})$ which is analytic in the sector $|\arg(t)| < \pi/2 - \alpha\omega$ and uniformly bounded on each smaller sector $|\arg(t)| < \pi/2 - a\omega - \varepsilon$. for $\varepsilon > 0$. See Section 10 of [4-I].
- K-8. Let A be of type $(\omega, M(\theta))$. Then $(A_+^{\alpha})^{\beta} = A_+^{\alpha\beta}$ if $0 < \alpha < \pi/\omega$ and $\operatorname{Re}(\beta) > 0$.
- $\begin{aligned} \text{K-9.} \quad & \text{If} \quad 0 < \alpha < 1 \quad \text{and} \quad & \text{if} \quad T_t = \exp\left(-tA\right), \quad T_t^a x = \exp\left(-tA_+^a\right) x \\ = & \int\limits_0^\infty T_s x \, N\left(\alpha,t,s\right) ds, \text{ where } N\left(\alpha,t,s\right) = (2\pi i)^{-1} \int\limits_{\alpha=-\infty}^{\alpha+i\infty} \exp\left(us tu^a\right) du; \ [7]. \end{aligned}$

Let $P_z = \exp(-zT)$ be the Poisson integral defined in the introduction; P_z and T have the following properties:

P-1. P_z is a strongly continuous, contraction semi-group on $L_n(H)$; [2].

P-2. P_z admits an extension as an analytic semi-group the sector $|\arg(z)|$ $<\pi/4$; P_z is uniformly bounded in each smaller sector.

This follows from the fact that $N_{\epsilon}(z)$ is analytic in Re(z) > 0 and the fact that the integral $P_z(f) = \int\limits_t^\infty \, H_t(f) N_t(z) \, dt/t$ converges uniformly in compacts of $|\arg(z)| < \pi/4 - \varepsilon$, for $\varepsilon > 0$.

P-3. If $H_t f = \int_H T_y f dn_t \circ B^{-1}(y) = \exp(-tA)f$, then $T = (A)^{1/2}$; [7, p. 264].

P-4. If B is a one-one Hilbert-Schmidt operator, T is one-one on $L_n(H)$ and the range of T, R(T), is dense in $L_n(H)$.

If T is one-one on $L_n(H)$, the R(T) is dense in $L_n(H)$ by Theorem 3.1 of [4-I]. To show that T is one-one, it suffices to show that T^2 is one-one. If $T^2f = 0$, $H_tf = f$ for all t > 0. If A_h denotes the infinitesmal generator of T_{tBh} , t>0, then $A_hH_{t^2}(f)=A_hf$ for all h in H. From the formula for $A_h H_{t^2}$ given in [2], it can be seen that $Z_{\theta\varrho}(f) = \int_{t}^{\xi} A_h H_{t^2}(f) dt =$ $=A_n f(\rho-\delta)$ is a bounded operator on $L_n(H)$ with norm at most $K\log(\rho/\delta)$. After dividing by $(\varrho - \delta)$, one shows that this inequality implies that $A_h f = 0$ for all h in H by letting $\rho \to \infty$. $A_h f = 0$ for all h in H implies that $T_{tRh}f = f$ for all t > 0. A well-known result due to Hormander implies that for tame functions g, $||T_{tRh}g+g||_p \to 2^{1/p} ||g||_p$ as t tends to $+\infty$. Since the tame functions in $L_p(H)$ are dense in $L_p(H)$, this limit holds for all f in $L_n(H)$. For the f with $T^2f = 0$, $2||f||_n = ||T_{tBh}f + f||_n$ $\rightarrow 2^{1/p} ||f||_p$. This implies that f=0 and T is one-one.

2. Basic properties of Bessel potentials. In Section 3 of [3] we studied the Bessel potential J^a which is mentioned in the introduction of the present paper. We showed that for $Re(\alpha) > 0$, J^{α} is bounded on $L_n(H)$, J^a is strongly analytic, $\lim \{J^a f: |\arg(a)| \leq \theta < \pi/2, \ a \to 0\} = f, \ J^a J^{\beta}$ $=J^{\alpha+\beta}, J^{\alpha}$ is the α -th Komatsu power of J', J^{α} is one-one on $L_n(H)$ $R(J^a)$ is dense in $L_n(H)$, T^aJ^a is bounded on $L_n(H)$, and $(-A_h)^aJ^a$ is bounded on $L_p(H)$ when A_h is the infinitesmal generator of the translation semi-group T_{tRh} , t>0, and B is the one-one Hilbert-Schmidt operator of Section 1. In Sections 2 and 3 of the present paper we shall study abstract Bessel potentials by using the theory of fractional powers of operators.

Let T be a one-one, closed, densely defined operator on a reflexive Banach space X such that (-T) and $(-T^2)$ generate strongly continuous, contraction semi-groups $P_z = \exp(-zT)$ and $H_t = \exp(-tT^2)$. Then P_z can be written as an integral of H_t as in Section 1 and P_z is analytic in $|\arg(z)| < \pi/4$. Let J_1^a and J_2^a be as in Section 1 when $\operatorname{Re}(a) > 0$. Recall that since X is reflective, it $T_t = \exp(-tA)$ is a bounded strongly continuous semi-group, then $X = N(A) \otimes \overline{R(A)}$ by Theorem 3.1 of [4-I]. Since T is one-one, R(T) and $R(T^2)$ are dense in X. We begin by listing some of the basic properties of the J_k^a .

THEOREM 1. Let α and β be positive real numbers. Then for k=1, 2:

- (1) $||J_{i}^{\alpha}|| \leq 1$.
- (2) $\lim \{J_{k}^{\alpha}f: \alpha \rightarrow 0\} = f.$
- (3) $J_{\nu}^{\beta} = (J_{\nu}^{1})^{\beta}$, the β -th power of J_{ν}^{1} .
- (4) $J_{k}^{a} = (1 + T^{k})^{-a/k}$.

- (5) $R(J_k^a)$ is dense in $L_p(H)$.
- $(6) \quad J_k^{\alpha} J_k^{\beta} = J_k^{\alpha+\beta}.$
- (7) J_k^a is one-one on $L_p(H)$.

Proof. Let T_t denote a contraction semi-group, $T_t = \exp(-tA)$, which stands for H_t or P_y in the proof. Set $J^{\beta}f = \Gamma(\beta)^{-1}\int\limits_0^{\infty}T_tft^{\beta-1}e^{-t}dt$. (1) follows from Minkowski's integral inequality. For (2) let $f \in X$, $\varepsilon > 0$, and $\delta > 0$ such that if $0 < t < \delta$, $||T_tf-f|| < \varepsilon$. Choose $\eta > 0$ such that if $0 < \beta < \eta$, $\Gamma(\beta)^{-1}\int\limits_{\delta}^{\infty}t^{\beta-1}e^{-t}dt < \varepsilon$. Then if $\beta < \eta$, $||J^{\beta}f-f|| \leqslant ||\Gamma(\beta)^{-1}\int\limits_0^{\delta}(T_tf-f)t^{\beta-1}e^{-t}dt|| + ||\Gamma(\beta)^{-1}\int\limits_{\delta}^{\infty}(T_tf-f)t^{\beta-1}e^{-t}dt|| \leqslant \varepsilon + 2\varepsilon ||f||$. This proves (2). To prove (3) and (4) let $\beta > 0$ and set $Jf = J^1f = \int\limits_0^{\infty}T_tfe^{-t}dt$ $= (1+A)^{-1}f$; we will show that $(1+A)^{-\beta}f = J^{\beta}f$. Let $0 < \beta < 1$; then for x in X

$$\begin{split} J^{\beta} x &= \varGamma(\beta)^{-1} \int\limits_{0}^{\infty} u^{\beta-1} e^{-u} T_{u} x du \\ &= \varGamma(\beta)^{-1} \varGamma(1-\beta)^{-1} \int\limits_{0}^{\infty} \left(\int\limits_{0}^{\infty} t^{-\beta} e^{-u} e^{-tu} dt \right) T_{u} x du \\ &= \varGamma(\beta)^{-1} \varGamma(1-\beta)^{-1} \int\limits_{0}^{\infty} \left(\int\limits_{1}^{\infty} (t-1)^{-\beta} e^{-tu} dt \right) T_{u} x du \\ &= \varGamma(\beta)^{-1} \varGamma(1-\beta)^{-1} \int\limits_{1}^{\infty} (t-1)^{-\beta} \int\limits_{0}^{\infty} e^{-tu} T_{u} x du dt \\ &= \varGamma(\beta)^{-1} \varGamma(1-\beta)^{-1} \int\limits_{0}^{\infty} (t-1)^{-\beta} (t+A)^{-1} x dt \\ &= \varGamma(\beta)^{-1} \varGamma(1-\beta)^{-1} \int\limits_{0}^{\infty} v^{-\beta} (v+1+A)^{-1} x dv \,. \end{split}$$

Since $(v+1+A)^{-1} = J(vJ+1)^{-1}$, set $w = v^{-1}$ to get

$$J^{\beta}x = \frac{\sin \pi \beta}{\pi} \int_{0}^{\infty} w^{\beta - 1} J(w + J)^{-1} x dw$$

by K-1. This completes the proof of (3) and (4) for $0 < \beta < 1$; the general result now follows from K-6. (5) follows from K-5 since $J_k^a = (1 + T^k)^{-a/k}$ = $[(1 + T^k)^{a/k}]^{-1}$ and $D((1 + T^k)^{a/k}) \in R(J_k^a)$. (6) is a consequence of (4) and K-6; an elementary direct computation also verifies the desired identity. If $J_k^a(f) = 0$, $J_k^{a+r}(f) = 0$ for r > 0 by (6). Since $J_k^a(f)$ extends to an analytic function in Re(a) > 0, the uniqueness principle for analytic

functions implies that $J_k^a(f) = 0$ for all Re(a) > 0. By (1), f = 0. So (7) holds and J_k^a is one-one.

Let T^a , $\alpha > 0$, be as in K-1, K-2, or K-3; we shall examine $T^a J_k^a$.

THEOREM 2. $T^a J_k^a$ is a bounded operator on X for k=1, 2 if a>0. These operators are given by:

$$T^a J_1^a x = x - rac{\sin \pi a}{\pi} \int\limits_0^1 J_u x u^a (1-u)^{-a} du \quad ext{ for } \quad 0 < a < 1,$$

and

$$T^a J_2^a x = x - \frac{\sin{(\pi a/2)}}{\pi} \int\limits_{z}^{1} K_u x u^{a/2} (1-u)^{-a/2} du$$

for
$$0 < a < 2$$
, where $J_u x = \int\limits_0^\infty e^{-ut} P_t x dt$ and $K_u x = \int\limits_0^\infty e^{-ut} H_t x dt$.

Proof. To prove the theorem for J_k^a , k=1, 2 note first that $T(1+T)^{-1}=1-(1+T)^{-1}$ and $T^2(1+T^2)^{-1}=1-(1+T^2)^{-1}$ are bounded operators, so that we need only prove the theorem for $0<\alpha< k$ for J_k^a ; K-6 can be used to complete the proof of the boundedness of $T^aJ_k^a$. Let $T_t=\exp{(-tA)}$ be a bounded, strongly continuous semi-group on X. We shall show that

$$A^{\beta}(1+A)^{-\beta}x = x - B(\beta, 1-\beta)^{-1} \int_{0}^{1} (u+A)^{-1}x u^{\beta}(1-u)^{-\beta} du$$

for $0 < \beta < 1$. Here B(x, y) is the β -function.

 $\begin{array}{l} \text{For } 0<\beta<1, \ J^{\beta}x=\Gamma(\beta)^{-1}\int\limits_{0}^{\infty}T_{t}xt^{\beta-1}e^{-t}dt=(1+A)^{-\beta}x \ \text{ and } \ A^{\beta}x\\ =\Gamma(-\beta)^{-1}\int\limits_{0}^{\infty}(T_{y}x-x)y^{-1-\beta}dy. \ \text{ If } \ x\in D(A), \end{array}$

$$A^{\beta}x = -\Gamma(1-eta)^{-1}\int\limits_0^{\infty}T'_yxy^{-eta}dy\,,$$

where $T_y'x=rac{\partial}{\partial y}\,T_yx$. Let Lg(u) denote the Laplace transform of g at u. Then

$$A^{eta}J^{eta}x=\ -rac{\sin\pieta}{\pi}\int\limits_{1}^{\infty}\,L(t^{eta}A_{0}^{eta}T_{t}x)(u)\,du\,,$$

where $A_0^{\beta} = \Gamma(-\beta)A^{\beta}$. Then

$$t^{\beta}A_0^{\beta}(T_tx)=t^{\beta}\int\limits_{0+}^{\infty}\frac{\partial}{\partial y}T_{\nu+t}xy^{-\beta}dy=\int\limits_{0+}^{\infty}\frac{\partial}{\partial t}T_{\nu+t}xt^{\beta}y^{-\beta}dy=\int\limits_{0+}^{\infty}tT_t'T_{t\nu}xy^{-\beta}dy.$$

But
$$T'_t T_{ty} x = (y+1)^{-1} \frac{\partial}{\partial t} T_{t(y+1)} x$$
. Then

$$egin{aligned} L(t^{eta}A_0^{eta}T_tx)(u) &= \int\limits_{0^+}^{\infty}(y+1)^{-1}igg(-rac{\partial}{\partial u}uigg)L(T_{t(y+1)}x)(u)y^{-eta}dy \ &= \int\limits_{0^+}^{\infty}(y+1)^{-2}igg(-rac{\partial}{\partial u}uigg)J_{u(y+1)^{-1}}(x)y^{-eta}dy\,, \end{aligned}$$

 $\text{where } J_v x = \int\limits_{0+}^{\infty} e^{-vt} T_t x \, dt. \text{ Since } \left\| \left(-\frac{\partial}{\partial u} u \right) J_{u(y+1)-1}(x) \right\| \leqslant K(y+1) u^{-1} \|x\|,$

we consider an interchange of integrals in $\int\limits_{1}^{R}L\left(t^{\beta}A_{0}^{\beta}T_{t}(x)\right)(u)\,du$.

$$\int\limits_{\gamma}^{R} (1+y)^{-2} \left(-\frac{\partial}{\partial u} u\right) J_{u(1+y)-1}(x) \, du = (y+1)^{-2} [J_{(1+y)} - 1 - RJ_{R(1+y)} - 1](x).$$

Since $\|RJ_{R(y+1)-1}(x)\| \le K(y+1)\|x\|$, the dominated convergence theorem implies that

$$egin{align} A^{eta}J^{eta}x &= -rac{\sin\pieta}{\pi}\int\limits_{0^{+}}^{\infty}(J_{(1+y)^{-1}}(x)-(y+1)x)y^{-eta}(1+y)^{-2}dy \ &= -rac{\sin\pieta}{\pi}\int\limits_{0^{+}}^{1}(J_{u}x-u^{-1}x)u^{eta}(1-u)^{-eta}du \ &= x-rac{\sin\pieta}{\pi}\int\limits_{0^{+}}^{1}J_{u}xu^{eta}(1-u)^{-eta}du \,. \end{array}$$

Since $||J_u x|| \le K u^{-1} ||x||$, $||A^{\beta} J^{\beta} x|| \le (1+K) ||x||$ by the triangle inequality for integrals. This completes the proof of Theorem 2.

Remark 2.1. When P_t and H_t are semi-groups on $L_p(H)$ of the type given in the introduction, $T^aJ_k^a$ is given by convolution with a measure on H for all $\alpha>0$; see [3]. If $X=L_p$ of an Abelian group and if P_t and H_t are given by convolution with measures, it is easy to see from Theorem 2 above or from Theorem 4 of [3], that $T^aJ_k^a$ is given by convolution with a measure.

Remark 2.2. Many of the properties of the J_k^a in Theorem 1 also hold for complex a when Re(a) > 0. Theorem 2 holds for these complex a with no change in proof or notation.

Remark 2.3. For any k in $0 < k \le 2$, $J_k^a = (1+T^k)^{-a/k}$ defines a strongly analytic semi-group in α when our present assumptions on $P_z = \exp(-zT)$ are in force. It will not be hard to see in what follows

that any of the J_k^a , $k=k_1$, k_2 are equivalent for $0 < k_1$, $k_2 \leqslant 2$. The basis for this assertion is the set of results presented in Section 10 of [4-I] regarding the semi-groups generated by fractional powers of operators.

3. Equivalence of J_1^a and J_2^a . By statement (7) of Theorem 1, J_k^a is one-one on X for k=1,2. Define $X_k^a=R(J_k^a)$ with the norm $\|y\|_{a,k}=\|x\|$ if $J_k^ax=y$. In this section we shall complete the proof of the equivalence of the norms $\|a_{a,k}$ by proving that $(J_k^a)^{-1}J_i^a$ is a bounded operator on X for k,i=1,2 and a>0; this leads to the conclusion that X_k^a is equivalent to $D(T^a)$ when this domain is equipped with the graph norm. The following lemma will be useful.

LEMMA 3.1. Let (-A) be the infinitesmal generator of a bounded, strongly continuous semi-group on X and let $0 < \alpha < 1$. If $x \in D(A)$, $(1+A)^{\alpha}$ $x = A^{\alpha}x + Bx$, where B is a bounded operator on X.

Proof. By K-1

$$(1+A)^{\alpha}x = \frac{\sin \pi \alpha}{\pi} \int_{0}^{\infty} t^{\alpha-1} (A+1)(t+1+A)^{-1} x dt$$

$$= \frac{\sin \pi \alpha}{\pi} \int_{0}^{\infty} t^{\alpha-1} (t+1+A)^{-1} x dt + \frac{\sin \pi \alpha}{\pi} \int_{0}^{\infty} t^{\alpha-1} A (t+1+A)^{-1} x dt.$$

Since $||(t+1+A)^{-1}|| \le K(t+1)^{-1}$, the first integral on the right represents a bounded operator on X. By the resolvent equation, $(t+1+A)^{-1}-(t+A)^{-1}=-(t+1+A)^{-1}(t+A)^{-1}$. Then

$$rac{\sin\pi a}{\pi}\int\limits_{0}^{\infty}t^{a-1}A\left(t\!+\!1\!+\!A
ight) ^{-1}xdt$$

$$=A^{a}x-\frac{\sin\pi\alpha}{\pi}\int\limits_{0}^{\infty}t^{a-1}A(t+1+A)^{-1}(t+A)^{-1}x\,dt.$$

Since $||A(t+A)^{-1}|| \le K$ and $||(t+1+A)^{-1}|| \le K(t+1)^{-1}$, the last integral on the right represents a bounded operator on X. Thus $(1+A)^a$ has the desired form.

THEOREM 3. If $\alpha > 0$, $(J_k^a)^{-1}J_i^a$ are bounded operators on X if i, k = 1, 2.

Proof. Consider $(1+T^2)^{a/2}(1+T)^{-a}$ and write $\alpha=2n+\beta$, where $0\leqslant \beta<2$. Then by Lemma 3.1, $(1+T^2)^{\beta/2}=(T^2)^{\beta/2}+B$, where B is a bounded operator. By K-8, $(T^2)^{\beta/2}=T^\beta$. Since $(1+T^2)^{a/2}=(1+T^2)^n$ $(T^\beta+B)=\sum_{k=0}^n A_k T^{2k}+\sum_{k=0}^n B_k T^{2k+\beta}$, where A_k and B_k are bounded operators on X, and since $T^\nu(1+T)^{-a}=T^\nu(1+T)^{-\nu}(1+T)^{-(a-\nu)}$ for $\gamma\leqslant\alpha$, Theorem 2 implies that $(1+T^2)^{a/2}(1+T)^{-a}$ is a bounded operator on X.

201

of Theorem 3.

Similarly, write $a=N+\gamma$, where N is a non-negative integer and $0\leqslant \gamma<1$. Then $(1+T)^a=(1+T)^N(T^{\gamma}+B)=\sum\limits_{k=0}^N A_kT^k+\sum\limits_{k=0}^N B_kT^{k+\gamma}$, where A_k and B_k are bounded operators on X. Since if $\delta\leqslant a$, $T^\delta(1+T^2)^{-a/2}=(T^2)^{\delta/2}(1+T^2)^{-\delta/2}(1+T^2)^{-(a-\delta)/2}$ by K-8 and Theorem 2 implies that

Our methods give the following

Corollary 3.1. X_k^a , k = 1, 2, is equivalent to $D(T^a)$ when $D(T^a)$ is equipped with the graph norm.

 $(1+T)^{\alpha}(1+T^2)^{-\alpha/2}$ is a bounded operator on X. This completes the proof

Proof. By Theorem 3, it suffices to prove that $X_1^a = D(T^a)$. If $y = J_1^a x$, then $\|y\| + \|T^a J_1^a x\| \leqslant K(a) \|x\| = K(a) \|y\|_{a,1}$ by Theorem 2. Write $\|y\|_{a,1} = \|x\| = \|(1+T)^a y\|$, and expand $(1+T)^a = \sum_{k=0}^N A_k T^k + \sum_{k=0}^N B_k T^{k+\beta}$ by Lemma 3.1. By Theorem 6.5 of [4-I], $D(T^a) \subset D(T^v)$ continuously if $\gamma < a$. Thus $\|(1+T)^a y\| \leqslant K(a)(\|y\| + \|T^a y\|)$ and the proof is complete.

COROLLARY 3.2. X_k^a consists precisely of those elements x of X for which T^ax is also in X.

Stein [6] has studied the questions dealt with in this section over finite dimensional Euclidean spaces. Fourier multiplier techniques are used in [6] to prove the above results.

4. Boundedness of $J^{i\gamma}$. In this section we shall prove that $J^{i\gamma}$, γ real, is a group of bounded operators on $L_p(H)$ if $1 , and we will study the relationship between <math>J^{i\gamma}$ and the closed operator $(1+A)^{-i\gamma}$. If $\gamma = 0$, $J^{i\gamma}$ is the identity on $L_p(H)$ and if $\gamma \neq 0$, set

$$J^{i\gamma}f = \Bigl[\lim_{\epsilon \to 0} \varGamma(i\gamma)^{-1} \int\limits_{\epsilon}^{\infty} P_t f t^{i\gamma-1} e^{-t} dt + \varGamma(i\gamma+1)^{-1} \epsilon^{i\gamma} f\Bigr].$$

Here P_tf is the Poisson integral of f as defined and studied in [2], and which is briefly described in Section 1 of this paper. In [2] it was shown that there is a unique Borel probability measure p(E) on H such that if $p_t(E) = p(E|t)$ for t > 0, $P_tf = \int_{H} T_y f dp_t(y) = \int_{H} T_{ty} f dp(y)$ for all f in $L_p(H)$; $y \to T_y$ is the regular representation of the additive group of H acting on $L_p(H)$.

For $\alpha=\beta+i\gamma$, $\beta\geqslant 0$ and γ real, define $J^a_{\ \epsilon}f=f$ if $\alpha=0$ and if ${\rm Re}\,\alpha\neq 0$ define

$$J^a_\epsilon f = \Gamma(a)^{-1}\int\limits_0^\infty P_t f t^{a-1} e^{-t} dt + arepsilon^a \Gamma(a+1)^{-1} f \quad ext{ for } arepsilon>0 \,.$$

Then for $\operatorname{Re} a > 0$, J^a_{ε} converges strongly to $J^a f$ as ε tends to zero. Define $J^a f = \lim \{J^a_{\varepsilon} f : \varepsilon \to 0^+\}$ for $\operatorname{Re} a \geqslant 0$ if this limit exists. Let 1 and <math>1/p + 1/q = 1.

THEOREM 4. $J^{i\gamma}$ is a bounded operator on $L_p(H)$ for all real γ and $\|J^{i\gamma}\| \leqslant Kpq(|\gamma|+1)^2|\Gamma(i\gamma+1)|^{-1}$.

Proof. First consider $(T^a_{\epsilon}f)(x)=\int\limits_{\epsilon}^{\infty}f(x-t)\exp{(-t/a)}t^{i\gamma-1}dt$ on $L_p\big((-\infty,\,\infty),\,dx\big)$. Let $g(t)=t^{i\gamma-1}$ if t>0 and g(t)=0 if t<0. Then for a>0,

$$(T_s^a f)(x) = \int_{|t| > s} f(x-t) \exp(-|t|/a) g(t) dt.$$

Since

$$\exp(-|t|/a) = (\pi)^{-1} \int_{-\infty}^{\infty} e^{-ity} \frac{a \, dy}{1 + y^2 a^2},$$

set $h(a, y) = a(\pi)^{-1}(1+y^2a^2)^{-1}$ and write

$$(T_{\varepsilon}^{a}f)(x) = \int_{-\infty}^{\infty} e^{-ixy} \int_{|t|>\varepsilon} f(x-t)e^{i(x-t)y} g(t) dt h(a,y) dy.$$

By Minkowski's integral inequality and by Theorem 1 of [5],

$$||T_{\varepsilon}^{\alpha}||_{p} \leqslant Kpq(|\gamma|+1)^{2}|\gamma|^{-1}$$
 for all $\varepsilon > 0$.

We may write

$$J^{i\gamma}_{\,\scriptscriptstylearepsilon}f = arGamma(i\gamma)^{-1}\int\limits_{H}\left[\int\limits_{arepsilon}^{\infty}T_{ty}ft^{i\gamma-1}e^{-t}dt + rac{arepsilon^{i\gamma}}{i\gamma}\,f
ight]dp\left(y
ight).$$

If f is a bounded tame function on H, then the rotational invariance of the normal distribution can be used as in the proof of Proposition 3 of [2] to show that as a consequence of the above inequality for $T_s^{\|y\|}$,

$$\left\|\int\limits_{arepsilon}^{\infty}T_{ty}ft^{i\gamma-1}e^{-t}dt
ight\|p\leqslant K(\gamma,p)\|f\|_{p}$$

for all $\varepsilon > 0$. The bounded tame functions are dense in $L_p(H)$. Minkowski's integral inequality can be used to complete the proof that $\|J_z^{i\gamma}f\|_p \le Kpq(|\gamma|+1)^2|\Gamma(i\gamma+1)|^{-1}$ for all $\varepsilon > 0$.

To prove convergence as $\varepsilon \to 0^+$, write

$$\begin{split} J_{\varepsilon}^{i\gamma}f &= \varGamma(i\gamma)^{-1} \int\limits_{H} \left[\int\limits_{1}^{\infty} T_{ty} f t^{i\gamma-1} e^{-t} dt + \int\limits_{\varepsilon}^{1} T_{ty} f t^{i\gamma-1} (e^{-t}-1) dt + \right. \\ &\left. + \left(\int\limits_{\varepsilon}^{1} T_{ty} f t^{i\gamma-1} dt + \frac{\varepsilon^{i\gamma} f}{i\gamma} \right) \right] dp \left(y \right). \end{split}$$

The first and second integrals on the right converge absolutely. If f is a bounded tame function with bounded derivatives, write the third quantity as

$$\int\limits_{\epsilon}^{1}T_{ty}f\,t^{i\gamma-1}dt+\frac{\varepsilon^{i\gamma}}{i\gamma}f=\int\limits_{\epsilon}^{1}(T_{ty}f-f)t^{i\gamma-1}dt+\frac{f}{i\gamma}.$$

Since $||T_{ty}f-f||_p \leqslant Kt||y||$ and since $\int_T ||y|| dp(y) < \infty$, the third quantity on the right above converges as $\varepsilon \to 0^+$. Thus $J_{\varepsilon}^{i\gamma}$ converges strongly to a bounded operator $J^{i\gamma}$ and $||J^{i\gamma}|| \leq Kpq(|\gamma|+1)^2 |\Gamma(i\gamma+1)|^{-1}$.

The next theorem shows that $\int\limits_{-\infty}^{\infty}P_{t}ft^{i\gamma-1}dt$ converges with respect to a certain summability method.

Theorem 5. $J^{i\gamma}f = \lim \{J^{\beta+i\gamma}f \colon \beta \to 0^+\}$ for all f in $L_n(H)$.

Proof. The integral $\Gamma(\alpha)^{-1}\int\limits_{0}^{\infty}P_{t}ft^{a-1}e^{-t}dt, \quad \alpha=\beta+i\gamma,$ converges uniformly to $\Gamma(i\gamma)^{-1}\int\limits_0^\infty \,P_tft^{i\gamma-1}e^{-t}dt$ as $\beta\to0^+.$ It is sufficient to consider the limit of $\int P_i f t^{a-1} e^{-t} dt$. This last integral is

$$\int\limits_0^1 \beta x^{\beta-1} \int\limits_x^1 P_t f t^{i\gamma-1} e^{-t} dt dx.$$

The function $\beta x^{\beta-1}$ gives a regular summability method on $0 \le x \le 1$. Since the integral $\int_{0+}^{\hat{f}} P_t f t^{a-1} (e^{-t}-1) dt$ converges strongly to $\int_{0}^{\infty} P_{t} f t^{i\gamma-1}(e^{-t}-1) dt$ as $\beta \to 0^{+}$, we consider

$$\lim_{\beta \to \infty} \int\limits_0^1 \beta x^{\beta-1} \int\limits_x^1 P_t f t^{i\gamma-1} dt \, dx.$$

From Section 3 of [5], we have that this last limit exists if

$$\lim_{\epsilon \to \infty} \left[\int\limits_{\epsilon}^{1} P_{t} f t^{i\gamma-1} \ dt + \frac{\epsilon^{i\gamma}}{i\gamma} f \right]$$

exists; when the last limit exists these limits are equal. Theorem 4 shows that the last limit exists, so that

$$J^{i\gamma}f = \lim\{\beta + i\gamma f \colon \beta \to 0^+\}.$$

Corollary 4.1. If a is a real positive number, $J^a J^{i\gamma} = J^{a+i\gamma}$.

 $\text{Proof:} \quad \text{For} \quad 0 < \varepsilon < \alpha, \quad \|J^{\alpha}J^{i\gamma}f - J^{\alpha+i\gamma}f\|_{\sigma} \leqslant \|J^{s}J^{i\gamma}f - J^{\varepsilon+i\gamma}f\|_{\sigma} \quad \text{by}$ statements 6 and 1 in Theorem 1. By the triangle inequality $||J^{a}J^{i\gamma}f -J^{s+i\gamma}f\|_p\leqslant \|J^sJ^{i\gamma}f-J^{i\gamma}f\|_p+\|J^{i\gamma}f-J^{s+i\gamma}f\|_p. \text{ By statement 2 of Theorem 1}$ and by Theorem 5, the terms on the right tend to 0 as $\varepsilon \to 0^+$. This verifies the required identity.

COROLLARY 4.2. $T^a = J^{a+i\gamma}$, $a \geqslant 0$, forms a bounded, strongly continuous family of operators on $L_n(H)$ with $||T^a|| \leq Kpq(|\gamma|+1)^2|\Gamma(i\gamma+1)|^{-1}$.

Proof. Since $T^a = J^a J^{iy}$ and J^a is strongly continuous for a > 0and J^{ij} is bounded, T^a is strongly continuous. The estimate for $\|T^a\|$ follows from the estimate for J^a , $||J^a|| \le 1$, and the estimate for $||J^{i\gamma}||$ which is given in Theorem 4.

Corollary 4.3. $J^{i\gamma}J^{i\beta}=J^{i(\gamma+\beta)}$ for all real γ and β .

Proof. If $\varepsilon > 0$, $J^{2\varepsilon + i\gamma}J^{i\beta} = J^{i\gamma}J^{2\varepsilon + i\beta} = J^{2\varepsilon + i(\gamma + \beta)}$ by part 6 of Theorem 1 and Corollary 4.1. By Theorem 5, if we take the limit as $\varepsilon \to 0^+$ in this equation, we get the desired result.

Corollary 4.4. $J^{i\gamma}$, γ real, is a strongly continuous group of operators on $L_n(H)$ with $J^{i0} =$ the identity and $(J^{i\gamma})^{-1} = J^{-i\gamma}$.

Proof. Because of Corollary 4.3 we need only show that $\lim \{J^{ij}f:$ $\gamma \to 0$ = f for each f in $L_n(H)$. The bound on $||J^{i\gamma}||$ is

$$Kpq(|\gamma|+1)^2|\Gamma(i\gamma+1)|^{-1}=Kpq(\pi|\gamma|)^{-1/2}(\sinh\pi|\gamma|)^{+1/2}(|\gamma|+1)^2,$$

since $|\Gamma(i\gamma)| = (\pi)^{1/2} (\gamma \sinh \pi \gamma)^{-1/2}$ as follows from the well-known identity for $\Gamma(z)\Gamma(1-z)$. Thus $||J^{i\gamma}||$ is bounded on any compact neighborhood of $\gamma = 0$ and $\lim \{J^{\epsilon+i\gamma}f: \epsilon \to 0^+\} = J^{i\gamma}f$ uniformly on $-1 \leqslant \gamma \leqslant 1$. Because of the strong continuity of J^a in $\operatorname{Re} a > 0$, the following equality completes the proof:

$$\lim_{\gamma \to 0} J^{t\gamma} f = \lim_{\gamma \to 0} \lim_{\epsilon \to 0} J^{\epsilon + t\gamma} f = \lim_{\epsilon \to 0} \lim_{\gamma \to 0} J^{\epsilon + t\gamma} f = \lim_{\epsilon \to 0} J^{\epsilon} f = f.$$

COROLLARY 4.5. $J^{i\gamma}f = (1+T)^{-i\gamma}f = \lceil (1+T)^{i\gamma}\rceil^{-1}f$, for all f in $L_n(H)$. and $(1+T)^{-i\gamma}$ is a bounded operator on $L_p(H)$ for all real γ .

Proof. By Corollary 5.3 of [4-I], $J^{a+i\gamma}$ is the inverse of $(1+T)^{a+i\gamma}$ if a > 0. Because the fractional powers are strongly continuous on a dense set of $L_n(H)$ in a strip $-\tau < \alpha < \sigma$, $-\infty < \gamma < \infty$, by Theorem 8.2 of [4-I], we have that $J^{i\gamma}f=(1+T)^{-i\gamma}f=[(1+T)^{i\gamma}]^{-1}f$ for a dense set of f's in $L_n(H)$. Since the $J^{a+i\gamma}=((1+T)^{-1})^{a+i\gamma}=(1+T)^{-a-i\gamma}$ are uniformly bounded in $\alpha > 0$, a corollary of the Uniform Boundedness Principle implies that $(1+T)^{-i\gamma} = \lceil (1+T)^{i\gamma} \rceil^{-1}$ is a bounded operator on $L_n(H)$ and the desired equality holds.

COROLLARY 4.6. $J^{i\gamma}$ is the $i\gamma$ -th Komatsu power of $J=J^1$ for all real γ . Proof. Denote the $i\gamma$ -th Komatsu power of J by $(J)^{i\gamma}$. By Theorem 8.2 of [4-I], for a dense set of f in $L_p(H)$, $(J)^{i\gamma}f=\lim_{a\to 0^+} (J)^{a+i\gamma}f=\lim_{a\to 0^+} J^{a+i\gamma}f$ $=J^{i\gamma}f;$ the second equality follows from part 4 of Theorem 1 and the strong analyticity of $(J)^a$ and J^a . Since $J^{a+i\gamma}=(J)^{a+i\gamma}$ are uniformly bounded in $a \ge 0$, $(J)^{i\gamma}$ is bounded by the Uniform Boundedness Principle. so that $J^{i\gamma}f = (J)^{i\gamma}f$ for all f in $L_n(H)$.

COROLLARY 4.7. For any complex number a in $\operatorname{Re} a > 0$, $L_n^a(H) = L_n^{\operatorname{Re} a}(H)$ with equivalent norms.

205

Proof. Let $\alpha = \beta + i\gamma$. Then because of the boundedness and in- $\text{vertibility of } J^{i\gamma}, \ \|J^{\beta}f\|_{p} \leqslant K(\gamma)\|J^{\alpha}f\|_{p} \leqslant K_{1}(\gamma)\|J^{\beta}f\|_{p}.$

Remark 4.1. The method used in Section 4 can be used to show that J_{n}^{ip} is a bounded operator on $L_{n}(H)$. The basic fact used above was that if

$$arepsilon^{U_y^a}f=arGamma(lpha)^{-1}\int\limits_{lpha}^{\infty}T_{ty}ft^{a-1}e^{-t}dt+rac{arepsilon^a}{arGamma(lpha+1)}f,$$

and if

$$U_y^{\alpha}f = \Gamma(\alpha)^{-1}\int\limits_0^{\infty} T_{ty}ft^{\alpha-1}e^{-t}dt \quad ext{ for } \operatorname{Re}\alpha > 0\,,$$

then $\varepsilon^{U_y^{i\gamma}}$ converges strongly to a bounded operator $U_y^{i\gamma}$ as $\varepsilon \to 0^+$. Furthermore, $U_y^{i\gamma}$ is the strong limit of $U_y^{\beta+i\gamma}$. Thus only minor modifications in the argument are needed to prove that J_2^{iy} is bounded. Write

$$\begin{split} J^a_2(f) &= 2 \varGamma (\alpha/2)^{-1} \int\limits_0^\infty H_{\ell^2}(f) t^{a-1} \exp{(-t^2)} \, dt \\ &= 2 \varGamma (\alpha/2)^{-1} \int\limits_H^\infty \int\limits_0^\infty T_{ty} f t^{a-1} e^{-t^2} \, dt \, dn \circ B^{-1}(y) \, . \end{split}$$

 $\exp(-t^2)$ is the Fourier transform of a bounded measure on the real line and $t^{-1}(\exp(-t^2)-1)$ is bounded near zero, so that

$$\varepsilon^{J_2^a\!f}=2\,\varGamma(\alpha/2)^{-1}\biggl[\int\limits_{\varepsilon}^{\infty}H_{t^2}(f)\,t^{a-1}e^{-t^2}\,dt+\frac{\varepsilon^a}{a}\,f\biggr]$$

is uniformly bounded and converges if $\operatorname{Re} a \geqslant 0$. As above $J_2^{i\gamma}f =$ $=\lim\{\varepsilon^{\frac{\gamma^{i\gamma}}{2}}f\colon\varepsilon\to0^+\} \ \text{ and one shows that } \ J_2^{i\gamma}=\lim_{\beta\to0^+}J_2^{\beta+i\gamma}f. \ \text{ Again }$ $J_2^{i\gamma} = (1+T^2)^{i\gamma/2}$ and the $J_2^{i\gamma}$ form a strongly continuous group of bounded operators on $L_p(H)$ whose norm depends only on γ and p. An estimate for $||J_i^{\prime\prime}||$ can be written easily from the estimate, given above, for $J_1^{\prime\prime}$.

Remark 4.2. If $2 \ge k > 0$ is a real number, one can reason as above to show that $J_k^a = (1+T^k)^{-a/k}$ has boundary values J_k^{ij} bounded on $L_{r}(H)$. Here one has to use the special function $f_{k}(t, u)$ given in [7] to represent $\exp(-tT^k)$ as a semi-group given by convolution with a Borel probability measure.

5. The semi-groups J^{β} and $J^{i\gamma}$. We shall study the spectrums and infinitesmal generators of J^{β} , $\beta > 0$, and $J^{i\gamma}$, γ real. Since J^{α} is an analytic semi-group with bounded boundary values, $J^{i\gamma}$, a well-known theorem in semi-group theory states that if A is the infinitesmal generator of J^{β} , $\beta > 0$, then $J^{i\gamma} = \exp(i\gamma A)$. In what follows A denotes the infinitesmal generator of J^{β} , $\beta > 0$.

THEOREM 6. A function f in $L_n(H)$ is in D(A) if and only if

$$f_* = \int\limits_0^\infty P_t f e^{-t} \log t \, dt$$

is in D(T) when $P_t = \exp(-tT)$. When this is the case $Af = Cf + (1+T)f_*$, where C is Euler's constant.

Proof. Let $J=J^1$. If f is in D(A), $AJ(f)=JA(f)=\frac{\partial}{\partial \beta}J^{\beta}(f)|_{\beta=1}$ $=- \varGamma'(1) J(f) + \int\limits_{-\infty}^{\infty} P_t(f) e^{-t} \log t \ dt$. Since JAf and Jf are in $D(T), f_*$ is in D(T) and $Af = Cf + (1+T)f_*$; $C = -\Gamma'(1)$ is Euler's constant $= \lim \left(\sum_{n=1}^{\infty} k^{-1} - \log n \right).$

Conversely if f_* is in D(T), then

$$\begin{split} \int\limits_a^b J^t \big(C\!f + (1+T)f_* \big) \, dt &= \int\limits_a^b J^t (1+T) \, (C\!J\!f + f_*) \, dt \\ &= \int\limits_a^b J^t (1+T) \frac{\partial}{\partial u} J^u (f) |_{u=1} dt = (1+T) \int\limits_a^b \frac{\partial}{\partial t} J^{t+1} (f) \, dt \\ &= (1+T) [J^{b+1} (f) - J^{a+1} (f)] \, . \end{split}$$

Thus $\lim_{\alpha\to 0^+}\int\limits_a^b J^t(Cf+(1+T)f_*)dt=J^b(f)-f$, and f is in D(A) since

$$\lim_{b\to 0^+} b^{-1} \int_0^b J^t (Cf + (1+T)f_*) dt = Cf + (1+T)f_*.$$

COROLLARY 5.1. The infinitesmal generator of the group $J^{i\gamma}$ acting on $L_p(H)$ is i.e., where $Af = Cf + (1+T)f_*$ when $f_* = \int_{-\infty}^{\infty} P_t(f)e^{-t}\log t dt$ is in the domain of T; C is Euler's constant.

Proof. By a well-known theorem in semi-group theory, $J^{i\gamma} =$ $= \exp(i\gamma A)$ when $J^{\beta} = \exp(\beta A)$ for $\beta > 0$. The properties of A are given

If $\beta > 0$, the spectrum of J^{β} is contained in the unit disk. For $J^{i\gamma}$ there is:

THEOREM 7. The spectrum of $J^{i\gamma}$ lies in the annulus $\exp(-\pi |\gamma|/2)$ $\leq |\lambda| \leq \exp(\pi |\gamma|/2).$

Proof. By Theorem 4, $||J^{i\gamma}|| \leq Kpq(|\gamma|+1)^2 |\dot{\Gamma}(i\gamma+1)|^{-1}$. Since $|\Gamma(i\gamma)| = \pi^{1/2} (\gamma \sinh \pi \gamma)^{-1/2}$, Corollary 4.3 implies that the spectral radius of $J^{i\gamma}$ is $r(J^{i\gamma}) = \lim_{n \to \infty} \|(J^{i\gamma})^n\|^{1/n} = \lim_{n \to \infty} \|J^{i\gamma n}\|^{1/n} \leqslant \exp(\pi |\gamma|/2)$. Since $J^{i\gamma}$ is invertible and since $\sigma(J^{i\gamma})$ is a compact set in the complex plane, there

is a real number A such that $\sigma(J^{i\gamma})$ lies in the annulus $A\leqslant |\lambda|\leqslant \exp{(\pi|\gamma|/2)}$. Since $\sum\limits_{n=0}^{\infty}\lambda^{-n-1}J^{in\gamma}$ converges to $(\lambda-J^{i\gamma})^{-1}$ on $|\lambda|>\exp{(\pi|\gamma|/2)}$ and since $-\sum\limits_{n=0}^{\infty}\lambda^nJ^{-i(n+1)\gamma}$ converges to $(\lambda-J^{i\gamma})^{-1}$ in $|\lambda|<\exp{(-\pi|\gamma|/2)}$, we have the desired results.

References

- [1] V. Balakrishnan Fractional powers of closed operators and the semi-groups generated by them. Pacific J. Math. 10 (1960), pp. 419-437.
- [2] M. J. Fisher, Harmonic functions and their conjugates on Hilbert space, Trans. Amer. Math. Soc. 137 (1969), pp. 387-405.
- [3] Singular integrals and fractional powers of operators, ibidem (November, 1971).
- [4] H. Komatsu, Fractional powers of operators I, Pacific J. Math. 19 (1966),
 pp. 285-346; II. Pacific J. Math. 21 (1967), pp. 89-111; III. J. Math. Soc. Japan
 21 (1969), pp. 205-220; IV. J. Math. Soc. Japan 21 (1969), 221-228.
- [5] B. Muckenhoupt, On certain singular integrals, Pacific J. Math. 10 (1960), pp. 239-261.
- [6] E. M. Stein, The characterization of functions arising as potentials, Bull. Amer. Math. Soc. 67 (1961).
- [7] K. Yosida, Functional Analysis, Berlin 1965, pp. 259-268.

THE UNIVERSITY OF MONTANA MISSOULA, MONTANA 59801

Received December 27, 1970 (283)

Some remarks on the Gurarij space

b

P. WOJTASZCZYK (Warszawa)

Abstract. Complementably universal properties of the Gurarij space of universal disposition are proved. Some linearly isomorphic equivalences between Banach spaces whose duals are L_1 spaces are stated.

A predual of L_1 is a Banach space X such that X^* is linearly isometric to $L_1(\mu)$ for some measure μ .

DEFINITION. A separable space X is a space of universal disposition iff for every finite dimensional Banach spaces $F\supset E$ and every isomorphism $T\colon E\to X$ and every $\varepsilon>0$ there is an isomorphism $\tilde T\colon F\to X$ such that $\tilde T\mid E=T$ and $\|\tilde T\|\cdot \|\tilde T^{-1}\|\leqslant (1+\varepsilon)\|T\|\|T^{-1}\|$.

Such a space was first constructed by Gurarij [1] and next by Lazar and Lindenstrauss [3].

In this note we prove the following

THEOREM. Let X be a separable predual of L_1 . Then there exists a Banach space of universal disposition Γ_X , $\Gamma_X \supset X$ and there is a projection of norm one from Γ_X onto X.

The proof of this Theorem is a slight modification of Gurarij's proof [1]. By [5], Theorem 4.2 there exists a Banach space Y such that:

(*) Y is a separable predual of L_1 and for any separable predual of L_1 , say X, and any $\varepsilon > 0$ there exist an embedding $T \colon X \to Y$, $\|T\| \|T^{-1}\| \le 1 + \varepsilon$ and a projection of norm one from Y onto T(X).

By [4] Remark c after Theorem 4 there exists a separable predual of L_1 , say W, such that any separable predual of L_1 is a quotient space of W.

If we apply the above Theorem for X = Y or X = W we obtain Corollary 1. The spaces Y and W can be choosen to be of universal disposition.

COROLLARY 2. Every space which satisfies (*) is isomorphic to every space of universal disposition.