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Linear operators and operational calculus, Part IT
by
HARRIS 8. SHULTZ (Fullerton, Calif.)

Abstract. For 0 < 's< oo let @ be the set of all functions in 0% (— oo, s) which
vanish on (— co, 0]; under addition and convolution @ is an algebra. We denote by
P (0, s) the collection of all mappings of  into itself which commute with convolution.
The main result is that P (0, s) is algebraically isomorphic to the space of distributions
on (— oo, s) having support in [0, s). From this follows the sequential completeness
of P(0,s) and the sequential continuity of multiplication in P (0, s); convergence
is defined mimply in terms of the ordinary pointwise convergence of functions. We
also deduce the structure property that every operator in P(0, s) is of finite order on
each subinterval [0, z] of [0, s). The major results are then obtained for the more
general interval [a,b), where —oo < a<<b< oo.

‘We shall begin by showing that the space of operators considered
in [5] and [9] is sequentially complete when topologized as in [5]. The
remainder of this paper deals with an operational caleulus corresponding
to an arbitrary interval [a,b), where —od < a <b< oco.

The algebra P(0, s) is defined in § 1. In § 2 we characterize the space
of distributions on (— oo, §) whose supports are contained in the interval
[0,s) in termg of a class of distributionally convergent infinite series.
In §3 we deduce that each such distribution defines a unigue operator
in P(0,s) and show in §4 that this space of distributions is, in fact,
isomorphic to P(0, s). Using this isomorphism we are able to prove that
P(0,s) is sequentially complete; convergence is defined simply in terms
of the ordinary poirtwise convergenee of functions. We also prove thatb
“multiplication” is a continuous operation. Finally, we extend these
results to the more general interval [a, b).

. Let 2, be the space of all infinitely differentiable functions on
R = (—o0, co) whose supports are bounded to the left. Denote by P
the set of all linear mappings A of 2, into 2, such that A(pi*ps)
= p,*Ap, whenever p, and p, belong to 2.

Tollowing the idea initiated in [5], let us endow 2, with the topology
of pointwise convergence on R; since P consists of mapping into 2.,
let P, denote the linear space P endowed with the topology of simple
convergence on 2, . Thus, if 4, (» =0,1,2,...) is a sequence in P, then
(1) A, =1lmA4,
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means that the equation
(2) Aoq(t) =1limd, g(t)
N—>00

holds for every q in 2, and every ¢ in R. It can be shown that P, is a com-
mutative algebra with

(3) AyB, =1lim 4,B,

n-—>c0 - :
whenever (1) and B, =lmB, (as n» — o). A result analogous to (3)
will be proved in 6.11; from it the reader will be able to prove (3) for
himself.

0.1. TerOREM. Let 4, (n =1, 2, ...) be a sequence tn P. If the sequence
A,q(t) (n =1,2,...) converges for all t in R and all g in D, then there
ewists an element A, of P such that 4, =lim 4, (as n — oo).

0.2. Let F belong to the space &, of distributions having left-bounded
support. We denote by F'* the mapping ¢ ~ Fxq of 2, into 2,. Thus,

(0.3) Fxq(t) = F*q(t) = (F,qoly

for any ¢ in R and ¢ in &, . Here I'; is the function I'j(u) = ¢ —u.
0.4. The mapping F — F* is a bijection of 27, onto P. See [9].
0.5. Thus, for any B in P there exists a unique B’ in 9/, such that

B'xqg =Bq (all geD,).
0.7. Proof of 0.1. Since A,<P we have 4,¢9, and
A,q(t) = A, %q(t) =<4y, g0l
Therefore, setting ¢ = 0: ’ .
(4) »

(0.6)

lim 4,¢(0) = limd{4,,gol>.
Nn—00 n—roo i

Ifpe_, then pol e D, ; we can set ¢ = o I'y in (4) to obtain the existence
of the limit
lim (4, polyolyy = lim <A, ¢y
n—roo N0
for any ¢ in @_. From the sequential completeness of 2/, (the dual of 2_:
see [8, Vol. IT, p. 28]), there exists an F in 9| such that
®) (F,py =lm(dy, @) (all ped.).
n—>o0
If g2, and ¢ R, then gole2_; substituting into (5):
6 (F,qoly =1limcd,, goly).
N~>00
From (6), (0.3) and (0.6) we obtain
(Fyqolyy =lmd,q().
. N~r00 N
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The conclusion F* =1lim4, (as n -» oo) is now immediate from (0.3)
and (1)-(2).

§ 1. Introduction. Throughout, 0 < ¢ < co. To any function f on the
open interval ( — oo, s) there corresponds a largest number of such that f
vanishes on the open interval (— oo, of).

1.1. DEFINITION. Let A° be the family of all complex-valued functions .
f defined on (— oo, 8), such that of > 0, and such that f is continuous on
the half-open interval [0, s).

1.2. Remarks. Thus, if feA®, then of > 0,

(1.3) f is continuous on [0, s)
and
(1.4) ) = 0 whenever ¢ < of.

1.5. Convolution. Suppose that feA® and geA°. The function fxg
in 4% is defined by :
8 .
frg) = [fe—wgw)du (for t<s).
i—s
Clearly, since of > 0 and ¢g > 0,
:

Frg(t) = [ fE—w)g(w)du

(for 0T < 8).
0

It is not too hard to verify that

(1.6) o(f*g) > of
(see [4]).
1.7. Notation. We shall make occasional use of Heaviside’s jump
function 1:
0 for

1) =
@ 1 for

t<0,

1.8
1-8) 1>0.

Let Q Dbe the linear space of all functions ¢ that are infinitely differen-
tiable on (—oco,s) and such that og> 0. Let @, be the linear space @
endowed with the topology of pointwise convergence on the interval
(—c0, 8). Consequently, the equation

(1.9) g =1limg, (¢ and ¢, in Q)
means that
(1.10) g(t) =limg () (0<<t<s);

recall that g(t) = ¢,(t) = 0 for all t < 0. It is easily verified that @,
ig a locally convex topological vector space. :
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If 4 is a mapping of @ into @ we denote by Ag the function that A
assigns to a given ¢ in @. Let P(0, s) be the family of all mappings 4
(of @ into Q) such that

©(L11) A(pypy) = pixdp,

Clearly, a mapping 4 of @ into @ belongs to P(0,s) if (and only if)
CA(prxpa) (B) = pyxAp,(t) for all ¢ in [0, s) and all p, and p, in Q.

Since P(0,s) consists of mappings into the topological space Q.
this space P (0, s) can be endowed with the topology of pointwise con-
vergence on @: let P,(0,s) denote the resulting topological space. In
congsequence, the equation :

(1.12) A =1limAd, (4 and 4, in P(0,s))

(all p, and p, in Q).

means that the equation

(1.13) o Ag(t) =limAd,q(z)
holds for all ¢ in @ and any ¢ in [0,5). As a consequence of 1.21, each
element of P(0, s) is a linear mapping of @ into itgelf ; therefore P(0, s)
can be made into a vector space by defining addition and sealar multi-
plication in the usual way. Accordingly, P,(0 ,8) i3 a loecally. convex
‘Yopological vectior space.
1.14. The algebra P(0,s). If 4 and B are in P(0,s), we denote
' by AB the composition f 4 with B; thus ABy = 4 (Bgq) for any ¢ in Q.
By adjoining to the linear space P(0, §).the multiplication (4, B) - AB
we obtain a commutative algebra since :
(1.15)
‘(see 47]). ; ‘
1.16. Orientation. The locally convex space P,(0, s) ig sequentially
complete: see 5.7. The multiplication (4, B) - 4B is sequentially con-

tinuous in both variables: see 6.11. The most general element of P(0, s)
is characterized in 5.11. (see also 1.26),

117. Convolution and differentiation. It J is a function
‘on (oo, s), we denote by f* the mapping ¢ > f*g; thus
(1.18) Ffg=7fxg (for all ge@).
In [4] it is seen that f* belongs to P(0,s) when fe®. The differentiation
operator D is the mapping that assigns to any ¢ in @ its derivative ¢':

AB = BA for any A and any B in. P(0,s)

(1.19) Dg =gq (for all ge@).
. The equation
© (1-20) D(f*q) =f+Dq (for all g<Q)

holds for any f in 4°. From (1.20) it follows that DeP(0, s).

icm°®
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1.21. TamoreM. There ewists o sequence g, (k = 1 3 2,...) in Q such
that " '

4 =lim(4g)"  (for all A<P(0,s)).
. k-0
Proof. Choose p;, in @ with 0 < p, < 1 and such that Pr =1 on the
half-closed interval [k, s) (cf. [10, Theorem 16.4)]. Take any ¢ in Q;
to prove (1.22) it will suffice to show that -

(1) Ag(t) =lm(4p)xq(t) (0<t<s).

Let 1 be defined by (1.8) and observe that

(2) p=1+p" (all pe@).

Further, we have

(3) Ag—(Apy) xq = Ag—p;*Ag by (1.11)
(4) = Ag—pp*(4g) by (1.20)
(8) = (1—pu)*(49)';

the last equation is from (2) with » = Ag. Combining (8)~(8) with 1.5:

i
(6) [dg—(Ap)*q)(0) = [ [(1—p,)(w) [AqT (t—u)du;
0
but [1—p,J(w) = 0 for w > &~ (since p, = 1 on [k 5)); consequently,
(6) yields

1k

|[4g—(Ap)*1@)| < { sup [[Aq) (¢—u)[} [ du.
oSu<t 0.

Conclusion (1) is immediate by taking % — oo.

1.23. DEFINITION. A sequence s, (n = 0,1,2,...) is called a sub-
division of [0,s) if ; .

0 =8 <8 <... <8, <8y <...<8
and
s =lims,.
700 .
1.24. TumoreM. Let f, (n =0,1,2,...) be a sequence in A° and’
Sy {m=0,1,2,...) be a subdivision of [0,s) such that s, < of,. If‘kn
(n=0,1,2,...) is a sequence of non-negative integers, then the eguation

el
A = > Dnfy

n=0

(1.25)

defines an element A of P(0, s). ‘ ‘ , A
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Proof. If »n is a positive integer, we set

@ 2’ Dk"f

»=0

‘Let us prove that
2) Ag(t) = A,q(?)
From (1.20) and (1.18) we see that

(3) - Aq(t) = A,q(t)+ va*q(kv)(t)

Suppose that »> n: We may refer to (1.6) to obtain
) o(f,%") = of, = 5, > 8,2

the last inequality comes from » > . From (4) it follows that f, « " (t) =0
for ¢ <'s, (whenever » > ). Conclusion (2) is now immediate. Next, we
use the fact that 4,<P(0,s) (see 1.17 and 1.14) to infer that 4,qeQ,
whence o(4,9)> 0, so that (2) gives o(4g) > 0. We still have to prove
that the equations

(all t<s,, all ge@).

(8) [Aq1P() = [4,q1%() (b =0,1,2,...)
and
(6) A (py*po)(t) = py* Apy (1)

hold for any ¢< s and any p, and p, in Q. Since 8, m=0,1,2,..)18
a subdivision of [0, s), there exists an integer n such that ¢ < sn < of,s

- equation (5) is now an immediate consequence of 4,,q<Q and equa‘mon (2).

Since t < s, and p, *p,eQ, we may apply (2):

(7) APr*pa)(f) = Ay (p1%D,) () = (P1*4,2,)(t):

the second equality is from (1.11) and A,€P(0, 3).

In view of op, >0
and 1.5, equa.tmns (7) imply that

(8) A(py*pa) (1) = f D1t —w) [4,pa(w);

t—8
note that w'< ¢ < s,; we may therefore use (2) to replace [4,p,1(n) by
[Ap;](u) in (8): ' ‘

t
Apa) () = [t~ ) [Aps)(w)du = (p,» Apy) (1)

i—s

This shows that (6) holds for any £ < s and any p; and p, in @. Conse-
quently, 4 <P(0,s).

1.26. Counter- exa.mple It could be conjectured that any element
of P(0, 5) is of the form D™f* where m is some integer and f belongs to A°,

iom®

" the family of all functions that are continuous on Q; further,
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Consider a subdivigion s, (n =0,1,2,...) of [0,s) and define f, by
fo(f) = L(t—s,) (any ? <s); from 1.24 it follows that the operator

= ZD”f:
belongs to P(0,s); nevertheless, it can be shown that the equation

A = D™f* fails for all integers m and for all functions f in A°. As it turns
out (see 5.11), the most general element of P (0, s) has the form (1. 25),

§ 2. Distributions on (— oo, s).

2.1. Notation. If 2 is an open subset of the reals, C(2) denotes
2(02) denotes
the family of all funections that are infinitely differentiable on 2 and whose
support is a compact subset of 2. As usual, 2'(2) denotes the space of
distributions on £ (that is, the dual of 2(2)). If f is a locally integrable
function on 2, then 6™f denotes the distribution defined by

0"f, @y = (—1) fj we™(w)de  (for all peD(Q)).

In pa,rticula.r, 0°f is the regular distribution corresponding to the function f;
obgerve that

(2.2) O fy 9y = <O, (=1 (all pe2(2)).

If J is a gubset of @, it will be convenient to denote by &' (R2;J) the space
of all elements of .@'([)) whose support is a compact subset of J; as usual,
&' (Q2; 2) will be denoted simply by &'(£2). We recall that the suppori
of an element F of 2'(Q2) (denoted supp F) is the complement (with
respect to 2) of the largest open set on which F vanishes. Throughout,

I =(—o0,s).
2.3. Remark. Given J < R, the compact subsets of J are the
compact subsets of B which are contained in J.
2.4. Levmmva. If K is a compact subset of I, then K = (—o0,al,
where a < 8.
Proof. By 2.3 the set KX is a closed bounded subset of R which is
contained in (—oo, §).

2.5, Lmmma. Let s, (n=0,1,2,...) be a subdivision of [0,s). If F
belongs to 2'(I) and has support coma,mad in [0, 8), there ewisls a sequence

F,(n=0,1,2,...) in &'(I) such that
(2.6) F =F0+2._Fm
n=1
(@0 Foe &' (I;10,9))
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and )
(2.8) F,e&'(I;(s,8) (n=1,2,..).

Proof. TLet £y =(—00,8) and £, = (5,8, (®=1,2,..).
Let B, (n =0,1,2,...) be a partition of unity in C*(I) subordinated
to the locally finite open covering ©, (n =0,1,2,...) of I (see [10, Def.
16.17). Set
(1) Fn = ﬁ'nF

and note that

(n=0,1,2,...

(2) suppF, < (suppf,) N (suppF) (n=0,1,2,...)

(see [3, p. 348, Prop. 2]). From (1)-(2) and supp # < [0, s) it follows that

supp Fy = 2y N [0, 85),

which proves (2.7). Again, conclusion (2.8) comes from (2) and supp g, < £

“n
Next, to prove (2.6), take any ¢<2(I); since suppe is a compact subset
of I we ean use 2.4 to assert the existence of a number ¢ < s such that
(3) ' suppp < (— oo, ol.

In view of o < s we can infer the existence of an integer % such that
o < &; from (3) it results that

(4) : SUppe < (—oo0, 5,)  (all n > k).

But (2.8) implies that 7, vanishes on (— o0, §, ) so that (4) gwes

Fpypy =0 (all n=E),
which implies that

I—1 Ie—1

(5) V<Fm¢> = Z< i @ = (Fy 3 Bupds

n—-o n=0

the second equality is from (1). Since suppﬂn (81 8p4a)s Wo ge@ from.
(4) that : .

Bow =0 (all n3>%).

Consequently,
k—1 oo

(6) Z:!w Zﬂw—(z ) ¢ =p:
n= n=0 =0

the last equality is from equation (16.6) in [10]. Conclusion (2.6) now
comes from (5)-(6).

icm°®
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2.9. Tmuma. If T belongs to 2'(R), we denote by T|I the fynclional
which assigns to each p in D(I) the value (T, pd. The gorrespondence
T s T|I maps 2'(R) into 2'(I). If f is a function which is locally integrable
on R, then

(2.10) (@) =*(fIT) (k=0,1,2,..),
where f‘]I 18 the restriction to I of the function f.

Proof. See [2, p. 1649].

9.11. Tmwua. There is o mapping 8 — 8 of &'(I
that suppé == supp S and /§|I = 8.

Proof. If Se&’(I), then suppl is a compact subset of I = (— oo, §);
from 2.4 there exists a number o < s with supp 8§ < (— o0, a]. We may
therefore use [2, p. 16601 with I, = (}(a--s), o).

2.12. Lumma. Suppose that I' belongs to 2'(R) and G, (k =1,2,...,m)
is @ finite sequence of locally integrable functions on R such that oGy, > =,
where > —oco. If

) into &'(R) such

o

(2.13) T= D'0"G,,

k=0

then there exists a locally integrable fumnction g, with og > x, such that the
equation
(2.14) T=20y

holds for some non-negative integer v. If each Gy, belongs to O(R), then g belongs
to O(R). If each Gy, belongs to A%, then g belongs to A%, .

Proof. Set Y,(t) = 1(5)t"/n! and note thatb
(1) M(F*Y,) = Fxl (for all FeD,):
this comes from the fact that '
(2) F(F*@) = F*0"¢ (b =0,1,2,...)
(see [11, p. 132]). From (1)~(2) it follows that
(3) NP xY,) = Fx0l =F  (for all Fed);

the last equation is from 81 = ¢ and [11, p. 127, Ex. 5.4-2]. Consequently,
2.13 and (3) give

' m n
(4) } /- Z "G, = 2 gAY (@ x X _) = gmtig,
N =0
where

m
‘(5) g = ZGVL* Yorn ~
=0
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By [11, p. 126, ex. 5.4-1] we see that g is a locally integrable function.
By hypothesis, o, > @; on the other hand it iy clear that Y,,_,ed®.
We may therefore conclude from [11, p. 125 Theorem 5.4-2] that
0(G,*Y¥,_,) >« The conclusion og>> & is now immediate from (5).
Note that (2.12) is immediate from (4). If each G,<C(R), then each
@,%Y, _,<C(R) (see [5]), from which we may conclude that geU(R).
If each @,eA®, then each G,* ¥, _,eA* (by 1.5) and therefore geA™.

2.15. LeMMma. Let s, (n = 0,1,2,...) be a subdivision of [0,s). If I
belongs to @' (I) and has support contained in [0, s), there emists o sequence
fo 0 =1,2,...) in A° with of, = s,, such that the equation

(2.16) - F =F0+Za’ﬂnfn

n=1
holds for some element F, of &' (I ; 10, 8)) and for some sequence k, (n =
=1,2,...) of non-negative integers.
Proof. From 2.5 we see that

f=Fot D',
n=1
with F,e &' (I;[0,s) and F,e&'(I;(s,,s) (n=1,2,..); the proot

will therefore be concluded by finding a function g, in A% and an integer
k, such that

1) og,>s, and F, = d"(g,|I).
Since F,¢ &'(I; (s,,s)}, we may use 2.9 to infer that
(2) Fye &'(R; (syy 9).-

In consequence of (2) we may use [8, Vol. I, p. 90, XXVI] to infer that
the equation

. K
@) - F, = ) "G,
Fo==0
holds for G <0 (R) with supp@, < (s,, 5); therefore, o6, >3, and GeA”.
WQ may therefore use (3) and (2.12) to infer that the equation
(4) F, = ding,

holds for some element g, of A% such that g, > s, and for some non-

negative integer k,. To complete the proof of (1) it now suifices to observe
that the equations

B, =F,|I =0y, |I = dn(g,|I)
come from (2.11), (4) and (2.10).

icm°®
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9.17. TugorEM. Let s, (n =0,1,2,...) be a subdivision of [0,s).
If T belongs to ' (I) and has support contained in [0, 8), there exists a sequence
fo (n=0,1,2,...)in Ay with of, > s, such that the equation

(2.18) F = Zaknfn
n=0

holds fof some sequence k, (n = 0,1,2,...) of non-negative integers.

Proof. In view of 2.15 we need only prove that the equation
(8) Fo =0,
holds for some non-negative integer » and for some f, in A° (recall that
s, = 0). From 2.16 we see that Fye &'(I; [0, s)); we may therefore use
2.11 to obtain F, in &'(R) and

(6) supp ¥, < [0, 9).
From [8, Vol. I, p. 90, XXVI] we now infer that the equation
=0

holds for some G,eC(R) with supp Gy, contained in the neighborhood
(-1, 8) of [0, ). From 2.12 and (7) if follows that the equation

(8) By =o'y

holds for some non-negative integer j and some geC(R) with of >—1.
From (6) we see that I, vanishes on (—o0, 0), so that (8) gives

(9) &’y  vanishes on  (—o0,0).

Let 1g be the pointwise product of the funection 1 (defined by (1.8)) with
the function g; clearly,

(10) Ig=0 on (—o0,0).

Consequently &' (lg) vanishes on (—o0,0) s0 that (9) gives

#'(g—1g) vanishes on  (—o0,0),

which implies ’
(1) supp (g —1g) < [0, o).

'On the other hand, g = 1g on (0, o) (by (1.8)); consequently, #(g—1g)
vanishes on (0, oo), whence

(12) suppd’ (g —1g) = (=0, 0].

We may conclude from (11)—(12) that the support of ' (g—1g) consists
of at most the point ¢ = 0. Consequently [8, Vol. I, p. 99, XXXV] asserts

P
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the existence of a finite sob ¢, (n=20,1,...,m) of complex numbers

such that
ig—1g) = Zo oS = ch@”*ll
n=0
whence
me-1
(13) ' d'g = 8'(g) + ) 0" 1)

k=1
From (8) and (13) it now follows that

M1

=3 (1g)+ D) 9*(0u11).

Je==1
Note that 1g and ¢,_,1 belong to A°; Lemma 2.12 therefore asserts that

the equation ¥, = &% holds for some % in 4% and some non-negative
integer ». Appealing to (2.10):

Fy=F|I = (@I =& (0|I).
Conclusion (5) is now obtained by s’etting Jo=h|IL

§ 3. The sliding units. This section is of crucial importance; we shall

begin by describing the “sliding units” that will enable us to inject the
space of distributions in @'(I) whose support is contained in [0, s) into
the space P(0, s). As before

I=(—c0,s) and R =(—oc0, o).

3.1, DEFINITION. A sliding unit is an infinitely differentiable function
on R that assumes the value 1 on a meighborhood of [0, co). Tf @ < s
we denote by [«] the set of all sliding units ¢ such that ce > o —s.

3.2. Remarks. Suppose that < s. If ee[x], then
(3.3) —oLr—s<oe<0 and 0<oe< oo.

Observe that the set [#] is not void; indeed, we can apply [10, Theorem
16.4] with F = [0, oo) and U = (!, (z—s), o).

3.4. Lmyma. If 0< @ < ¢ and ec[o], then
(3.5) —o§<ce<w<mw—ae<s.
Prqof. From (3.3) we see that —oo < ge < 0; since 0< » we have
— o0 < g6 <L ¥ < ¥-—ge.

The last inequality comes from the fact that —oe > 0 (see (3.3)). It only
remains to show that

1) . x—06 < §.
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In case 8 < oo this is immediate from (3.3); if s = oo inequality (1)
comes from z < s and from the fact that —oe < oo (see (3.3)).

3.6. LemmA. If 1, <t < s, then [i,] < [§,].
Proof. If ¢e[t,], then e is a sliding unit such that ce > ¢,—s; since

 $,—8 >, —s we may conclude that ge > ¢, —s and therefore that ee[?,].

3.7. DerFINITIONS. Let f be a function with domain dom f. If e is
a sliding unit the function ¢f is defined by

0 if td¢domf
e(t)f(t) it tedomf.
If X < domf we shall uge the notation

(3.8) el =

" (3.9) Ifllz = sup|f(E).
te K |

3.10. Remarks. Suppose that 0 Lo <<s and e.e‘[w]. If feC° (@ — 5, o),
then efeC® (2 —8, 00). If f = 0 on (w, co), then
(3.11) suppef < [oe, 2];
in consequence, ef¢Z (). .

3.12. DEFINITION, Given @ < s, let I, be the functlon defined by
Ty(t) = & —1.

3.13. Remarks. The function I, maps an interval (a,b) onto the
interval (z—b, »—a): ‘ i
(3.14) Iy(a,b) = (#—b, z—a).

If g is a function, then (gol7)(¢) = g(z—1) and
(3.1b) (goly)ol, =4g.

. 8.16. LummA. Suppose that 0<w<s and ee[x]. If qeQ, then e(qu
belongs to @(I) and
(3.17) suppe(goly) « [oe, #].

Proof. Note that I)(@—s, cc) = (—o0, ) and geC™(—oo,5); con-
sequently, gol%eC®(w—s, o). Since Iy(z, o) = (—o0,0) and since

g =0 on (—oo0,0), it follows that gol, == 0 on (, o0). Consequently,
we can apply 3.10 with f = gol} to obtain the desired conclusion.

318, Lmmma, Suppose that 0 < @ < s and. eec(w]. If peQ, there ewists
o number N,(@,p) < oo such that

(3.19) 100 Lillioe,m < Ne (s D) (all t < m).

Proof. From 3.4 it follows that -—co < 06 <% < o0} congequently,
Iloe, #] = [t—, t— oe], whence

(1) 120 ltwea = [IPle-ei-or = [Plio—ser -
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The second equality is obtained by combining ¢—2 <0 with the fact
that p = 0 on (—oc, 0). We now set

(@) Ne(@y2) = 1Pll0,2-c0
and observe that {—oe <X #— oe; so that
(3) 120 0,mce) < No(wy 1)

Conclusion (3.19) is immediate from (1) and (3). To prove that ¥, (x, p)
< oo, observe that z—oe < s (by (8.5)); pince p is continuous on [0, s)
we have that p is contintious on [0, 2~ ce], whence the conclusion
N,(z,p) < oo now comes from (2).

3.20. TarorEM. If f belongs to A° and m is a non-negative integer,
then the equation

(3.21) {O"™f, e(goTy)> = D™f*q(t)
holds for any e in [t] and any q in Q.

Proof. Take any ¢eQ and ¢ < s. If e<[t], then

(all t < 8)

(@) O™ fye(goly)y = [ (—1)"f(w)[e(go T)I™ (v)du.

Since of = 0 we have -

(2) @y olgoTy = [(—1m 3 (%) ser=go 0.
0 ve=(

Since ¢ =1 on [0,s) we have 6™ =0 on [0,s) only when » = m;
consequently (2) gives '

®) ", e(qo Iy = [ (—1y™f(w)qo 1™ () du.

But [gol}] = —[¢'oT}], so that [gol}}™ = (—1)"[¢"™oT}]; equation
(3) therefore becomes

(4) "f,e(qol)> = [ f(u)g™ (t—u)du:
. ,t—8

we have replaced the lower limit by ¢—s (since t—s < 0 < .af ). We may
now use 1.5 to write

"fye(qoly)y = f+g"™(t) = D™f*q(1):
the second equality is from (1.20) and (1.18).

3.22. THE.OREM. If F belongs to 2'(I) and has support contained in
[0, 8), there exists an element A of P (0, s) such that the equation

(3.23) (Fre(gol})y = Aq(t)
holds for any e in [t] and any q in Q.

(all t < s)

icm°®
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Proof. Let s, (» =0,1,2,...) be any subdivision of [0, s). From
9.17 we see that there exists a sequence f, (n =0,1,2,...) in 4° such that
of, = 8, and such that the equation )

(Fypy = D <Oy, 0)  (all ped(I))

=0

holds for some sequence L, (»w =0,1,2,...) of non-negative integers.
Since e(go )¢ (I) (see 3.16), we obtain

(B, e(gol)y = D) (*f,, e(gol))y,

n=0

and, by 3.20:
(F,e(goly)y = 3 Diafigt) (all t<s).
n=0

Conclusion (3.23) now comes from (1.24).
3.24. COROLLARY. Suppose that F belongs to @' (I) and has support
contained in [0, ). If g<@ and t < s, the family

Ty e(goIy)y:eet]}
contains a unique clement, which will be denoted by F*q(t). Consequently,

(8.28) F*q(t) = (Fye(goly)y  (all eeft]).

3.96. DRFINICION. Let F' and ¢ be as in 3.24; we denote by F*q
the function that assigns to any ¢ in I the number F*q(¢). Further, let
F* be the mapping that assigns to any ¢ in @ the function g

3.27. COROLIARY., If Fe2'(I) and suppF < [0, s), then F*eP(0, s).

Proof. Combine 3.26 with 3.22.

3.28. Lummma. If fed’, then

(3.29) (@mf)* = D" f*
Proof. Tmmediate from (3.21) and (3.25)-3.26.

(m = 0,1,2,-..)3

§4. The isomorphism. Let 2'(I;I,) be the space of all Fin 2'(I)
(with I == (~o0,8)) such that supp F' < [0, s). From 3.24—(3.25} and
(8:28) it follows that the correspondence F — F* is a linear mapping of
9'(I; I,) into P(0, 8). In this § 4 we ghall prove that the correspondence
F — F* is a one-to-one mapping onto P (0, s).

4.0, Liewma, If pe@(I) there ewists ‘o number t < § with pol,eQ;
further :

(4.1) (I, ¢y = F*@ol) (1) (all Fe2'(I; L))
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Proof. Since suppe is a compact subset of I, we can use 2.4 to infer
the existence of a number ¢ <'s such that suppe = (— oo, ¢]; therefore,

1) @ {t; o).

Since p<C®(R), we ses that gol«C”(R): It only remains to prove that
gol} vanishes on (—oco,0). Since I}(—o0,0) = (¢, ), the fact that
poI vanishes on (—oo, 0) follows immediately from (1). To prove (4.1),
take ee[t] and note that the equations

F*(pol})(t) = <F,elpo o ly)y =<, ep)

vanighes on

come directly from (8.25) and (3.15). Conclusion 4.1 now comes immediately

from the fact that ep = ¢ on a neighbourhood of [0, s) = supp.F {recall
that ¢ = 1 on a neighborhood of [0, co): see 3.1).

4.2, LeMMA, If AeP(0,s), there exists an F in 2'(I; Ly)
A =T

Proof. Take any p in 2 (I); from 4.0 we infer the existence of a number
t < s such that pol}<Q). We may therefore apply 1.21 to obtain

(2) Alpo ) (#) =klim£(flqh)*(¢0ﬂ)](t)~

such that

Setting m = 0 in 3.28 we obtain

(38} [(Ag)" (po I)1(2) = [(0°(Ags))* (@0 T1)] (¥)

(4) = (0°(4gy), o>: ‘

the last equation is from (4.1). Combining (2) with (3)—(4) we see that
(5)  Alpol)(t) = Em((4g), ¢)  (any g e(I).

‘We may now use [3, p. 315, Prop. 2] to infer the existence of # in 2'(I)
such that

(6) F = 1limo°(Agy).

k—o00
Since A¢;<Q we see that o(Ag,) > 0, so that §°(4.g,) vanishes on (—oc, 0);
congequently, it is easy to infer from (6) that X vanishes on (—oo,0),
whence .
suppF < [0, s).

Therefore, FeP'(I;1,): it only remains to prove that F* = A. To that
effect, take any ¢<Q and ¢ < s; we have

(M Frq(t) = (T, e(goT)> by (3.25)
(8) 213-2:2(60(-‘4—470)7 e(goly) by (6)
(9) = gi [0 (Ags))*q] ) by (3.25).
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We may now combine (7)—(9) with 3.28 to obtain
Fq) = fm [(Ag)" q1(6) = Aq(t):
the second equation is from (1.22). Since ge@ and ¢ < s, this eoncludes

the proof of F* = A.

4.3. THROREM. The mapping F s F* is a linear bijection of 9'(I;1,)
onto P(0,s).

Proof, It is a surjeetion by 4.2; it only remaing to prove the bijecti-
vity. To that effect, assume

(10) F* ==

Since F = F* is a linear mapping it will suffice to prove that ¥ = 0.
Take any ¢eZ(I); from 4.0 we know that the equation

Fy ) = F*(gpol}) (1)

holds for some ¢ < 5. Frrom. (10} it now follows <¥, ¢> = 0 for any gpe 2 (I),

whenee our conclusion I = 0.
4.4. TunoreM. The mapping F s F*
Proof Let I, (n =1, 2, ..
of proving that, if

(1) 0 =limF,
N~>00

@8 sequentially continuous.
.) be a sequence in 2'(I; I,); it is a question

(in the mense of 2'(I)),

then 0 = lim F)} (a8 # — oo). To prove this, take geQ and ¢ < s; we mugt
show that

(2) 0 ~11m14’zq()

Since e(qol})e2(I) for ee[t] (see 3.16), it follows from (1) that
0 —hm< s 6(q013) >,

whenee (2) is now immediate from (3.25).

§ 5. The completeness property and the representation theorem.
5.1, DrriNitioN. Given AeP(0,s) let A’ denote the unique F in
2'(I; I,) such that ™ = A.

5.2. Remarks. The existence and unigueness of ¥ comes from 4.3.
In consequence of 5.1, we have

(5.8) A2 (I;I,) and A™ =4
Turther, if pe@ and £ < s, then
(6.4) Ap(t) = (A e(pTy)y  (all ee[t]):

2 — Studia Mathematiea XLI1
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this comes from (3.28). If g2 (), then there exists a number ¢ < ¢ such
that

(8.8) polieQ

and :

(5.6) A’y gp = A(poI)(Y)
(see 4.0). '

B.7. THEOREM. Let A be an accumulation point of o set J < R. Suppose
that {4,: e<d} is a family in P(0, 8) such that
(5.8) Iim A4,

B=¥d

ewists in the sense of (1.12). Then there ewists an element B of 2'(I;1,)
such that

(5.9) P* =limd,
. B>l

and

(5.10) F= lirrllAZ,

this last limdt being taken in the fopology of @' (I)

Proof. Let &,(n =1,2,...) be a sequence in J such that e, - 4
when # — co. By hypothesis, the sequence 4, (n =1, 2,...) converges;
setting B, = 4, , this meany that for every g<@ and every t <s there
exists a number ¢ (¢) such that

:(t) = im B, g(t).

Take pe2(I); from (5.5) we know the existence of ¢ < s such that

g0l (t) = Um B, (poI})(t)

= lim{By,, ¢p by (5.6).

Therefore we may again use [3, p. 315, Prop. 2] to infer the existence J'
in 2'(I; I,) such that
(1) F = limB, = lnnA

N=>00 00

the second equality comes from B, = 4,,. Bquation (5.8) implies
@) P =lim lim 4,
(3

(by 4.4 and A," = 4, ). Tet us verify (5.9) (resp., (5.10)): if (5.9) (vesp.,
(5.10)) is falge, some nelghborhood N of F* in the topological space P +{0,8)

icm°®
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(resp., of F' in the space 2'(I)) could he found such that for all » >0
the relation

A, ¢N  (vesp., 4, ¢N)

would hold for ¢, - 1 as n — co. Since 4,
(resp., (1)).

8.11. THROREM. Let s, (n =0, 1, 2,...) be any subdivision of [0, s)
and A belong to P(0,s). There ewists a sequence of functions f, (n = 0,
1,2,...) in A° such that of, > s, and such that the equation

4 = ZD’%]’;

n=0
holds for some sequence k, (n = 0,1 »2,...) of nom-negative integers.

Proof. Since 4'¢2'(I;1,), we infer from 2.17 the existence of a se-

quence f, (n =0,1,2,...) in A° such that of,> s, and such that the
equation

(1) 4= Vo,

n=0

= B,, this contradicts (2)

(5.12)

holds for some sequence k,(n =0,1,2,..
From (1) and 4.4 it follows that

A" —2[6’% I —ZD’”M

=y

.) of non-negative integers.

the second equality is from 3.28. Conclusion (5.12) is now immediate
from (5.3).

§ 6. The continuity of multiplication. Suppoge that 0 <
is & non-negative integer and if pe @, the equation

ce<s. Ifm

(6.1) WM (p) = o 12" sy

defines a geminorm #™ on the space §; it is the mapping that assigns
to any p in @ the number uJ”(p). Let @, denote the space @ endowed
with the topology detelmmed by the family of seminorms

(1) {ul?: m =0,1,2,... and 0<u < s}
Consequently,
(6.2) g =@, img, (g and ¢, in @)

means that

63)  lmu™(g—g)=0 (ll m>0, all a<s).
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If peQ, the equation

(6.4) WM (p) = sup sup |p® ()]

0ghsm OIS
is an immediate consequence of the fact that p = 0 on (—o0, 0).

6.5. TemorEM. The space Q, is a Fréchel space; it is also barreled.

Proof. Since Fréchet spaces are barreled (see [10, p. 8347]), it suflices
to show that @, is a Fréchet space. Let ¢ (I) be the space of all infinitely
differentiable functions defined on I; let &(I) be the result of endowing
0= (I) with the topology determined by the seminorms (1). This space
#(I)is a Fréchet space [10, pp. 85-89]. Bince @ = 0*(I) and since @, iy
the space @ endowed with the topology induced by &(I), it will guffice
to prove that @ is closed in &(I). To that effect, we can imitiate the reas-
oning found at the bottom of p. 131 of [107; let ¢, be any net in @ that
converges in &(I). Equation (6.2) then holds for some g<(0™(I); since
(6.2) implies that

g(t) =limg,(t) (—oo<it<s),

we see that ¢ = 0 on (—o0,0) (since oq,>> 0). Therefore, ¢¢> 0 and
(sinee 9«0 (I)) we have that ge@. Thus @ is closed in &(I); consequently
Q, is a Fréchet space.

6.6. LeMMA. Suppose that q<Q and let m be a non-negative integer.
If 0< 2z <s and ec[x], we denole by H, (x,e¢, q) the family

{e(g"oly): 0K < m and 0 <t < o}

This family H,,(x, ¢, q) is a bounded subset of 2 (I).

Proof. If t <« we have [z] = [¢] (by 3.6); it therefore follows from
our hypothesis e<[#] that ec[t]. From 3.17 and ee[t] it results immediate-
Iy that -

suppe(goly) < [oe,t] < [oe, 2].

On the other hand, [o¢,®] i3 a bounded subget of R (see (3.5)). Set
= [oe, 4] and let » be any non-negative integer; from [3, p. 166] we

ses that it will suffice to find a number N, (x,e,),> 0 (independent

of k and 1) such that the inequality

(@) ' H[e(!l"“)ol‘t e < Non(w, e, g),

holds for 0 k<< m and 0 <t< o To that effect, note that

®) e(@oIy 1% < I ()16 Dleligho L.
i=0

But )

4 g™ o Il = [lg%* 0 Ty gs,my < N, (®, ¢+9):

icm
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the inequality is from (3.19) with p = ¢**9, From (3) and (4) we now
obtain

Ile(g®o L)1 < 2()ne‘"*‘>nK ZN (2, ¢=+9).
. i=
Thus (2) obtains with

m

Y (7)1 21, 2, go+9).

i=0 a=0

V(@ e, q),

6.7. TuworEM. Let T, (n =1,2,..

.) be a sequence in P(0,s). The
Sollowing statements are equivalent:’ ’

(i) Iim?7, =0;
(i) Q,lim T,g =0 (all geQ).
n—+00

Proof. Since (ii) obviously implies (i), it will suffice to prove that (i)
1mp11es (ii). From (i) and 5.7 it follows the existence of an element F of
2'(I; I,) such that

(1) F=1lm T, (in 2(I)
M—>00

and .

2) F* = ]im T,.

From (ij and (2) we see that F* = 0, which implies (by 4.3) that 7 = 0;
consequently (1) gives
(3) 0 =lim T,

n—+00
in the topology of 2'(I); from [10, p. 358, Cor. 2] we see that (3) holds
in the strong topology; thus

(4) ) 0 = lim sup {(Tn, o>l

n—00 pell
whenever H is a bounded subset of 2(I): see Example IV of [10, p. 198].
Take 0 < & < s and ee[2]; for any non-negative integer m we substitute
in (4) for H the bounded subset H,(x,e,q) (see 6,6):

(B) 0 =1lim sup sup |<T,, q( Yo IS,

n-so0 0SkSm 0Si<e
T 0<k<m and 0 <t w, then ee[t] (by 3.6 and since ee[w] by hypo-
thesis); consequently we may use (5.4):

(6) T, g"(t) = (T, e(g@oT)).
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On the other hand, since 7T,¢® = T,D'q = D*T,q, we may combine
(6) with (3) to obtain .
0 =1lim sup sup |D*T,q(t);

n-so0 0ShSm 0<ESa

that iy, by (6.4):
0 = lim y{"(T,q)

N->00

(m=0,1,2,... and 0< o< s).

Conelugion (ii) is now immediate from (6.2)-(6.3).
6.8. DEFINITION. If B, and H, are Fréchet spaces, we denote by
#(B,, H,) the space of continuous linear mappings of B, into .

6.9. LEMMA. If peQ, then p*e 2(Q,,Q.).
Proof. Take any ¢ in Q; we can use (1.20) to obtain

@ [p*q1® =p*¢®  (h=1,2,...).
I 0<<t<o <s¢, then (1) and 1.5 give

. i .
(2) p* 1™ )] < [ Ip (2 —w) g™ (w)| du.

From (2) it follows that
¢

"1™ 0] < Tewp 107 @)1 [ lp (6= )l du.

0
Setiting

£ 11
My(p) = [IpG—w)idu = [|p () d,

équation (8) implies that for 0< k< m,

) 2" 1% ()] < Mo(p) sup 140,09
. OhkSm

From (4) it therefore follows that

B) W) < My (p) ™ (g)
for any ¢ in Q. It is easily verified that p* is & linear mapping; from (5)
and [3, p. 97, Prop. 2] it now follows that p*e £ (Q,, Q).

6.10. THEOREM. P(0,s) = £(Q,,Q,).

Proof. Suppose that 4¢P (0, s). Combining 1.21 with 6.7, we obtain

Ag = Q,zllim prg  (all geQ),
[(~>00 N

(m =0,1,2,... and 05 0 < 8)

where p, = Ag,. Thus, 4 is the pointwise limit of a sequence pj
(k=1,2,...)in £(Q,,Q,). Since @, is barreled we may now use the
Banach-Steinhaus theorem [10, p. 348] to conclude that A e Z(Quy Q)

icm
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6.11. THEOREM. Suppose that 4, (n =0,1,2,...) and B, (n =
=0,1,2,...) are sequences in P(0,s). If A, =lmAd, and By=1limB,,
then A,B, =1lmAd,B,.

Proof. From 6.7 it follows that

(6) Aoq = Q;& ]j'n]'Anq (all qu)
and - '
(7 ' Byg =@, im B,q (all ge@Q).

From 6.10 we known that A, e#(0,,Q,) and B,e Z£(Q.,Q,). Let
Z,(Q4,Q,) denote the space Z(Q,,Q,) endowed with the topology of
pointwise convergence on @,. Equations (6)-(7) state that the sequences
approach their respective limits in %,(Q,,Q,); we may therefore apply
[1, p. 43, Cor. 2] to infer that the sequence 4,0B,(n =1,2,...) ap-
proaches the limit 4,0B, in Z,(Q,,Q,). That is,

(8) AOBOQ = Qu limAanq (a‘]l q in Q)'

The conclusion A4,B, =limA,B, now comes directly from 6.7 and
(1.12)—(1.13).

§ 7. The interval [a, b).

7.1. Henceforth, —oco < a <b< . Let Q(a,b) be the space of
all functions ¢ that are infinitely differentiable on the half-closed interval
[@,b) and such that ¢®(a) = 0 for k = 0,1, 2, ...

7.2. The translator. Given a number z and a function f, let T, f
be the function defined by T,f(t) = f(t—=). Let @ be the space (pre-
viously denoted by Q) of all infinitely differentiable functions on (— oo, s)
that vanish on (—oc0,0). If pe@Q' % then T,pcQ(a,bd); consequently,
if VeP(0,b—a), then the composition T,0V is a linear mapping of
Q"¢ into Q(a, b).

7.3. DEFINITION. Let P(a, b) denote the linear space

{T,oV: VeP(0,b—a)}.
Let Ly(a, b) be the set of all functions which are abgolutely integrable

on each interval (a, ) with o < # < b and which vanish on (— oo, a).
7.4. TurorEM. If f belongs to Ly(a, b), the equation
o = T(T_fxp) (all pe@®™)
defines a function f*p in Q (a,b). Let f* be the mapping ¢ > f*p. The mapping
Fref* is a Uinear injection of Ly(a, b) into P(a,d).

Proof. Tt is easily seen that the mapping f +— T_,f is a linear injection
of Ly(a, b) into Ly(0, b— a). By [4, (5.17)] the mapping F > F* ig a linear
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injeetion of Ly(0, b—a) into P(0, b—a). And, it is immediate from 7.3
that the mapping V> T,0V is a linear injection of P(0,b—a) into
P(a,b). Therefore, the mapping frs T,0(T_.f)* is a linear injection
of Ly(a, b) into P(a, b). But, by (1.18) and 7.2,

Vile (T—af)*‘p = Ta(T—af*(”) (all Ws@b—a)’
which completes the proof.

7.5. TEEOREM. Let Q(a,b), be the space Q(a, b) endowed with the °

topology of pointwise convergence; let P, (a, b) be the space P(a, b) endowed
with the topology of pointwise convergence. Then the sequence V, (n = 1,2, ...)
converges in P,(0,b—a) if and only if the sequence T,oV, (n=1,2,...)
converges in P, (a, b); consequently, the space P,(a, b) is sequentially complete
and

ImT, 0V, =T,0(limV,).

N0 T-->00

Proof. By 5.7 the space P,(0, b— a) is sequentially cozﬁplebe. And
we may infer from (1.12)—(1.13) and 7.2 that the sequence V, converges
to V in P,(0, b—a) if and only if the equation

(L0 V)p(¥) = lim (T,0V,)p(t)
N-ro0
bolds for all g in @°~* and any ¢ in [a, b).
7.6. Multiplication. If VeP(0, b—a), the equation
(1.7 TV =T,0Vor_,

d~e.fines a mapping of Q(a, b) into itself; consequently, if AeP(a, b), then
VoA is a mapping of @°* into Q(a, b). We shall write

(1.8) VA =Vod and AV =Ao7.
Note that the equation
(7.9) T,oVoW = V(T,0W)

holds for any W in P(0, b—a).

7.10. TEEOREM. If V belcmgé to P(0,b~a) and A belongs to P(a,b),
then AV belongs to P(a, b) and AV = VA.

Proof. By 7.3, A =T, 0W for some WeP(0,b~a). Therefore

(1) AV = (T,oW)oV =T, o(WV),
from which it follows that AV eP(a,b). By (1.15),
(2) WV =VW;

combining (1)~(2) with (7.9) we have
AV = T,o(VW) = V(T,0 W) = VA.
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7.11. THEoREM. Suppose that A, (n =0,1,2 s..-) IS 6 Sequence im
Pla,b)and V, (n =0,1,2,...)is a sequence mP0,b—a). If Ay = lim4,
and Vo =1lmV,, then 4,V, =Jim4,7V,. ,

Proof. By 7.3, 4, = T,0 W, for some W, eP(0,b—a). By hypothesis
and 7.5 we have that W, converges to W,. Therefore, by 6.11,

WO VO = lim Wn Vn}
R Nn—00
consequently, by 7.5 again,
TypoW,Vy =limT,0W,7,.

n—o0

We conclude the proof by observing that 7,0 W, V,=4,7,.
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