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Uniform algebras satisfying certain extension properties
by
JAN-ERIK BJORE (Stockholm)

Abstract. In this paper we study a uniform algebra 4 on a compact metric
space X, Here follows the main result. If for each closed subset F of X there is 4 closed
neighborhood W of F and a constant kp, such that for each feA there is some ged
(tesp. a sequence (g,) in A) satisfying g = f on F (resp. lim|g,— flz = 0) while |glw
< kylfip (vesp. |gnlw < kplflp), then 4 = O(X) (resp. 4 is locally dense in O(X).

Introduction. Let 4 be a uniform algebra on a compact space X, .
i. e. 4 is a closed separating subalgebra of C(X) containing the constants.
If 7 is a closed subset of X and if feC(X) we put |flp = sup{{f(@)]: zeF}.
The following two concepts will lead to the problems studied in this
paper.

DrriNITION A. Let A4 be a uniform algebra on a compact space X.
We say that A satisfies the local extension property on a closed set F in
X if there is a closed neighborhood W of F and a constant C such that:
Vifed thero is a sequence (g,) in A with lim [g,—fl» = 0 while |g, | < O IfIF
for all n.

DrrFINITION B. Let 4 be a uniform algebra on a compact space X.
We say that A satisfies the strong extension property on a closed set
F in X if there is a closed neighborhood W of F and a constant C such
that: VfeAd there ig some ged satisfying g = f on F while |glyp < C|flp.

Now we can state the main results of this paper.

THEOREM 1. Let A be a uniform algebra on a compact metric space X.
If A satisfies the local extension property on each closed set in X, then A is
locally dense in C(X).

THEOREM 2. Let A be a uniform algebra on a compact metric space X.
If A satisfies the strong extension property on each closed set in X, then
A = 0(X). :

Finally we study & phenomena closely related to the local extension
property. Let 4 be a uniform algebra with its maximal ideal space M,
and its Silov boundary S, and let feO(M ). We say that f is boundedly
approximable by 4 on a closed set ' in M, if there is a closed neighborhood
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W of F and a constant O such that lim|g,—flp = 0 while |g,|» < O for
some sequence (g,) in A.

TusorEM 3. Let A be a uniform algebra and let feO(M ). Suppose
that M, =F, V... UF,, where F; are closed subsets of M 4 such that f is
boundedly approsimable by A on each F,. If A, is the uniform algebra on
M, which is generated by A and f, then My =M, and SA, =8,

In Section 1-3 below we prave these theorems and make some addi-
tional remayks about them.

0. Preliminarjes. Let X be a compact metric space with the metric d.
If F is a closed subset of X we put S(F,v) = {peX: d(» F)
each positive integer.#. By a measure on X we understand a complex-
valued measure which is regular and defined on the Borel sets of X and
with -a finite total variation. These are denoted by M (X), so here M (X)
is the dual space of ((X). If meM (X) and if W is a Borel set in X we put
|m|y = total variation of m over W.

If A is a uniform algebra and if F is a closed subset of M, we can
infroduce the restriction algebra A |F = {geC(F): ¢ =f on F for sdme
fin A}. In general 4|F is not a cloged subalgebra of ((F) so we dehote
its uniform closure by 4 (F). Then A (F) is a uniform algebra and it is
well-known that M,y can be identified with the set Hull,(F) = {yeM ;:
F@)] < |flp for all fin A}.

If A is a uniform algebra on a compact space X we may identify X
with a closed subset of M,. Under this identification X contains the
Silov boundary S,, i.e. |flx = |fln, bolds for all fin A. If F is a closed
subset of X such that Hull (F) N X = F, then we say that F is an
(4, X)-convex subset of X.

We shall freely use the following fundamental results about uniform
algebras.

a) LocAL MAXIMUM ‘PRINCIPILE (abbr. to LMP) which asserts that
if 4 is a uniform algebra and if W is a subset of M ,\8,, then |l = |flow
for all fin A, where 0W is the topological boundary of W in M.

b) B1Lov’s InEmMporTENT THEOREM (SIT) which says that if F' and G are

two disjoint closed subsets of M, such that Hull  (F U G) = F U G, then 4

contains a sequence (e,) satisfying lim |6, — 1|7 = 0 while lim|e,|g = 0. .

¢) PRINCIPLE OF MINIMAYL SUPPORTS (PMS). Herxe we start with
a closed subset F' of M, and let ¢Hull, (#). Then F containg a elosed
subset & (@ is not necessarily unique) such that @ is a minimal suppors
of ». In particular & has the following property If W is a relatively open
subset of @ and if (f,) in 4 satisfy lim [f,|; = 0 while | Jfule < € for some
constant C, then limf, (s) = 0.

‘We refer to [4] for a proof and some applications of PMS.

<o for -
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1. Proof of Theorem 1. Firstly we collect some preliminary results.
Let A be a uniform algebra on-a compact space X. We say that 4 is bound-
edly normal on an open subset W of X if there is a constant ¢ such
that if 7 and G are two compact disjoint subsets of W, then A contains
a sequence (e,) satisfying lim|e,—1|z =0 and limle, |z =0 while
Iﬁn]X < .

ProrosiTioN 1.1. Let A be a uniform algebra on a compact space X
and suppose that A is boundedly normal on an open subset W of X for which
the set X\'W is (A, X)-convew. Then each meM (X) which annihilates A is
supported on the set X\W.

Proof. Let K = X\W and take a compact subset ¥ in W. We firstly
claim that ¥ appears ag an open and closed subset of Hull, (K U F) in
M. For the condition that XK is (4, X)-convex firstly shows that the
space Hull , (K U F) contains an open set Q with ' « Q while £ n Hull ,(K)
is empty. Suppose next that z<2\F and choose a minimal support @
for » with @ ¢ K U F. Here ¢ N F is a non-empty relatively open subset
of @ and then it is wellknown and easily verified that G N F must be 4n
infinite set (in fact even non-denumerable), so in particular @ N F contains
two distinet points y, and ¥,.

Now we choose disjoint closed neighborhoods W, of each y; so that
W, are compact subsets of W, i. e. here y, are considered as points in W.
By assumption we obtain a sequence (s,) in A for which lim |6, ~1lp, =0
while lim |e,|, = 0 while |e,|x < C. In particular limJe,— 1| = 0 on the
set Wy n@ while lenla < O s0 by PMS we conclude that lime,(s) = 1.
In the same way we apply PMS to conclude that lime,(#) = 0, a con-
tradiction. Hence we have proved that Q\F is empty which means thab
F is an open subset of Hull, (K U F).

Using the result above we can easily find closed neighborhoods K,
of K, resp. Fy of F in X so that F; = = W while F, is an open and closed
subset of Hull, (K, U F,). Using SIT we get a sequence (s,) in 4 satisfying
lim |6,—1[p, =0 while limle,/g, = 0. Here [nly, and lo4lg, <1 may
algo be agsumed. . . )

If we put @ = (X\I,) N (X\F,), then ¢ is a compact subset of W
for which @ N F is empty. So if we put C, = l6,ls then we can choose
f, in A such that |f,—1p<n~! and |f,l¢< 07" while |f,|x < C. If we
then put h, = e,f, we see that lim |k, —1]p = 0 and lim |h,|g, =0 while
|l x < C.

Suppose now that meM (X) n AL while |m|p > 0. Then W containg
a compact subset F where m; = m|F is a measure such that é = m; (F)
> 0 (if necessary we multiply’' m with a sealar to obtain this situation).
Using the previous results it is easily seen that if & is.a compact subset
of X\F, then A contains (e,) satisfying lim |6, — 1|p = 0 and lim|e,|g = 0
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while e,|x < 0. In particular we can choose @ so large that |m—my| g\ g
< 8(20)7* and then we see that liminf | fe,dm| > 6/2, a contradiction.

The following result is an easy consequence of SIT.

TEmMA 1.2. Let A be o uniform algebra on a compact metric space and
let F be o closed subset of X. If e X\Hull 4 (F) then there is an integer v such
that for all closed subsets G of 8(z,v) we have Hull, (F U &) =Hull (T
U Hull, (&). :

From now on 4 and X are as in Theorem 1. We say that a closed
set F in X is of type w, if F satisfies the local extension property with
the neighborhood S(F, n) and the extension constant n. Here n iy a posi-
tive integer and the assumption in Theorem 1 means that every closed
set in X is of type w, for some integer #. In Lemma 1.3~1.6 below we
prove Theorem 1.

LemMA 1.3. Let zeX. Then there is a closed neighborhood W of @ and
an integer N such that oll closed (A4, X)-convex subsets of WN\{x} are of
ype wy-

Proof. Suppose this is false. Then we define a sequence (F,) of
disjoint (4, X)-convex sets which converge to the point # and finally
derive a contradiction.

The sets F, are defined inductivelly as follows. Suppose F, ... F,
have been obtained where F; is not of type w; and R, =F, u...UF,
ig an (4, X)-convex subset of X not containing the point ». Using Lemma
1.2. we find an integer v such that the conclusion there is satisfied by R,
and the point x. Here we may assume that v > n-1 and by our assumption
we can now choose an (4, X)-convex set F, ., from 8(z, v)\{w} where
F,., is not of type w,,.

Having constructed the sets ¥, as above we put F = (JF,) U {a}.
Then F is a closed set in X which is of type wy say. Now the construction
ghows that Hull,(F) is the disjoint union of the sets Hull,(Ry._,),
Hull, (Fy) and Hull,(F\Ry), so in particular Hull,(Fy) is a cloged
and open subset of Hully (F). Hence we can apply SIT and obtain a se-
quence (¢,) from A satistying lLimv|e,~—1|p =0 while lim|e,|p sy, = 0.

It we now let fed satisty |fly, <1 we see that |fe,|, < L for large m,
so for large n we obtain g, in 4 such that |g,—fe, |, < #~* while (Inlszr,
< N. But then lim|g,—f|p, = 0 while [Wnls@y,m = N, 5o that .Z«’N’m
of type wy, a contradiction.

Levva 1.4. Let xe X and let W be a closed neighborhood of @ such that
all (4, X)-convew compact subsets of W\{w} are of type wy. Then there is
a closed neighborhood W of w, with W, < W, such that if we put B = A (W),
then all (B, W)-conves subsets of W, \{&} are of type wy-.

Proof. Choose W, so small that W, < §(w, 2¥) and Hull, (W) N X
= W, Let then -F be a (B, W,)-convex and compact subset of WoN{x}.

icm
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I G = Hull,(F) N X, then @ = W\{z} and hence G iz of type wy.
Since |flp = |flg for all f in A we can easily conclude that F is of
type wy with respect to B. Here W, = §(x, 2N) also holds so we see
that if feB then there is a sequence (g,) in B satisfying lim|g,— flz=0
while \gnh\vl < N|flp- )

LevvA 1.5. Let B = A(W,) be as in Lemma 1.4. Then Mz = W,
and all compact subsets of W \{«} are (B, W;)-conves.

Proof. Suppose that M\ W, is not empty and let @ be a point in
this set. Choose a minimal support F for a with #' < W,. Then F is infinite
0 in particular we can choose two points y; and y, in ' F\{z}. Next we
choose small closed B-convex meighborhoods £, and 2, of y, resp. ¥,

_in My, so that Hully (2, U Q,) is the digjoint union of the two sets Hullg

(2,) and Hullg(R,). Then SIT gives a sequence (6,) in B such that
lim|e,—1|o, = 0 while lim|e,|q, = 0. .

Because 2 = (0, U 2,) " W, is (B, Wy)-convex we deduce from
Lemma 1.4. that B contains a sequence (f,) satisfying |f,lm, < N while
|f,,— nlo = 0. But then PMS can be applied as in the proof of Proposition
1.1. which gives that limf, (e) =1 and limf,(a) =0 hold simultaneously,
a contradiction.

Hence My = W, holds and in exactly the same way we can prove
that all closed subsets of W,\{z} are (B, W;)-convex. ’

LeMMA 1.6. Let B = A(W,) be as in Lemma 1.4. Then B = C(W,).

Proof. If W = W,\{z}, then W i§ an open subset of Mz and {&}
= M,\W iz B-convex. From Lemma 1.5. we know that all compact
subsets of W satisty w, and then an application of SIT shows that B is
boundedly normal on W with the constant N. Hence Proposition 1.1.
shows that if meM (W,) n BL, then supp(wm) = {#}. But here B contains
the constants so that m = 0 follows which means that B = G{W,).

Let us remark that Theorem 1 cannot be improved, i. e. we cannot
expect that 4 = C(X). Consider for example the dise algebra restricted
to the unit circle. If we assume that X = M, in Theorem 1 then LMP
shows that all closed subsets of M, are A-convex. Whether we also have

‘A = (0(M,) in this case is an open question.

TFinally we remark that Defintion 4 is given when the uniform algebra
A is defined on a compact space X which need not be netric. We do not
know if Theorem 1 remains true when X is not metric. Notice that we
wsed the metric in Lemma 1.3.

2. Proof of Theorem 2. Let A be a uniform algebra with its maximal
ideal space M. We introduce the so called zero-hull of a closed set F'
in M, as follows. Put Z(F) = {weM : VfcA with f=0 on F we
have f(#) = 0}. Recall here that if Jp = {fed: f=0 on F}, then
Jp is a closed ideal in 4 and Z(F) can be identified with the maximal
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ideal space of the Banach algebra A/Jp. In particular an application
of SIT to 4/J, shows that each open and closed subset of Z(F) must
intersect F.

Suppose next that 4 is a uniform algebra on a compact space X
and let ¥ be a closed (4, X)-convex set in X satisfying the strong extension
property. If we let W be the closed neighborhood of F which appears in
Definition B, then the set Z(F) n (W\F) is empty. For if 2 W\TF we
can choose fin A so that f(#) = 1 while |f|»< (20)~". Now we can find
geA satistying g = f on I while |glp < 0(20)7' < 27! and then b = g—f
. i8 zero on ¥ while h(z) % 0.

Now we introduce some new concepts.

DurFrnrtIoN 2.1. Let 4 be a -uniform algebra on a compact space X.
We say that a closed subset I of X is almost regular if I is an open and
closed subset of Z(F)n X.

DErFINITION 2.2. Let A be a uniform algebra on a compact space X.
We say that A is locally regular at a point z<X if there is a closed neigh-
borhood W of » in X such that each closed subset F in W satisfies
Z(Fyn'W = F. :

We shall now prove a result which together with Theorem 1 and
the preceding discussion immediately gives Theorem 2.

THEOREM 2.3. Let A be a uniform algebra on a compact metric space.
Suppose that A is locally dense in X and that each closed (A, X)-convex
subset of X is almost regular. Then A = C(X).

Before we prove Theorem 2.3. we need several preliminary results.

LeMma 2.4. Let A be a wniform algebra on a compact meiric space.
Suppose that each closed (A, X)-conver subset of X 48 almost regular. If
now xeX 48 given, then there is an open neighborhood W of » in X such
that A is locally vegular at each point in W\ {z}.

Proof. Let us say that a closed (4, X)-convex set F in X is of type
oy if d(F, (Z2(F) n X}\F) > N’ Using the same argument as in Lemma
1.3. we can prove that there exists an open neighborhood W, of @ in X
such that every compact (4, X)-convex subset of W,\{z} is of type
oy for a fixed integer N. By shrinking W, if necessary we may assume
that W, < 8(w, 4/N). Then we see that if F' is a compact (4, X)-convex
subset of W,\{z}, then Z(F) n W, = F holds.

Suppose next that F is a compact subset of W,\{o} and let y e W, \F.
If z¢F we can choose a closed (4, X)-convex neighborhood V, of zin X
80 tha.’g Vs, = WiN{z}. Then Z(V,)n W, = V, so there is some f, in 4
for which f, = 0 on V, while f,(y) # 0. Finally F' is covered by Einitely
many sets V, and then we conclude that 4 contains some f for whici1
f(y}) =1 while f =0 on F. Hence Z(F) n W, = F follows. This yesult
shows of course that 4 is locally regular at every point in W\ {x}. '

@
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Recall that if A4 is a uniform algebra on a compact space X and if
X is identified with a subset of M, then X contains §,. In addition 84
is the closure of the set U, where O, consists of all generalized peak
points for A4, i. e. w<C, if and only if {»} is an intersection of peak sets.
The set €4 is the so called Choquet boundary of A4, i.e. reC, if and only
if m({w}) = 0 for all meM (M ) N AL

PROPOSITION 2.5. Let A be a uniform algebra on a compact space X.
Lot xe¢X be a generalized peak point for A and supposs in addition that
wedd, where A = M NX. If now U is & closed neighborhood of @ in X,
then Hull, (U) 48 a closed neighborhood of @ in M 4. :

Proof. Let W be a closed neighborhood of # in X as in Definition
2.2. ¢ W is its interior, then F' = XN\ is & closed subset of X and since
we(, it is clear that @ does not belong to Hull, (F). Hence Lemma 1.2.
shows that thereis a closed neighborhood V of # in X such that Hull, X
X (VU F) = Hull, (V) U Hull,(F) holds. In addition we may assume
that V< U here. .

Rince A is locally regular at @ we can choose f in A so that flo) =1
while f = 0 on the set W\TV. If we put Z = {yelM,: y <M NHull,(F)
and f(y) s 0}, thén Z is an open neighborhood of @ in M, and clearly
ZnXcV.

Suppose now that yeZ N 4. I @ is a minimal support of ¥ with ¢ =« X
it follows from PMS that @& n (W\V) is empty. Hence yHull, (F UV)
= Hull, (V) v Hull,(F) and the definition of Z then implies that
yeHull (V). . :

The result above shows that Z < Hull Ly Q2]
follows that Hull, (U) is a neighborhood of » in M,. .

Proof of Theorem 2.3. Firstly we show that M, =X holds.

and since V< U it

. For suppose that 4 = M \X is not empty and let F =94 be its topol-

ogical boundary. We claim that F is an (4, X)-convex subset- of .X.
For if weHull, (F) n (X\F)=TU it follows easily form the LMP applied
to the uniform algebra A (F) that A cannot be locally regular at . Notice
namely that U is an open subset of M 4\ S here. .

Now: Lemma 2.4, implies that A4 is locally regular at all points in
X except for a finite set S. Hence we conclude that U = 8§, so that U is
a finite open subset of M ym\S4m)- But LMP shows that M 4m\S.ium
cannot contain isolated points so it follows that U must be empty.

The result above shows that ¥ is (4, X)-convex 8o if we replace A
by the uniform algebra 4 (F)on F, then A (F) will satisty the same assump-
tions ag A. So therefore we may assume that X = 04 holds, since M N\X
= M_4m\F holds by LMP. )

Tt § is the finite set in X where 4 is not loeally regular and if e X\S
is in O, then Proposition 2.5. shows that if U is a closed neighborhood

v
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of #in X then Hull,(U) is a neighborhood of » in M. Since 4. is locally
dense in ((X) we can choose U so small that 4(U) = 0(U) and then
U = M,y = Hull,(U) follows which means that » cannot belong to
04 =X. ‘

We conclude that the set €, is contained in the finite set S so that
84 = 8§ follows. But then M, = 8§, = X follows, a contradiction.

Having proved that M, = X we can easily finish the proof, Since 4
is locally dense in C'(M,) we see that if -4 is normal on M, then A4
= O0(M ). In addition we knqw that 4 is normal on M, if F = Z(F)
holds for all closed subsets in M,. SR

So let F' be a closed subset of M ,. Because A is locally dense in
C(M,) the LMP shows that Fis 4-convex so by assumption F is an open
and closed subset of Z(F). But we recall that Z(F) = M, where B is
the Banach algebra A/Jy and then SIT shows that Z(F) = F holds.
This proves that A is normal on M, so that 4 = (M ).

3. Proof of Theorem 3. The proof which follows is using the methods
developed:by C.H. Rickart in [5].- We recall that in [1] it is. proved
that if feO(M 4) is such that to each point » in M, there is an open neigh-
borhood W of # and a sequence (f,) in A4 satisfying lim|f,— flp = 0,
then M, = M, . and 8y =48 4y holds. We also remark that it is essential
to assume that f is boundedly approximable on the closed sets- F; in
Theorem 8. For in [2] there is an example with M, =1, UF, U ¥,
and some feC{M ;) which is approximable by A on each closed set 17,
and yeb 'MAI #* M,.

‘Proof of -Theorem 3. Suppose that the set 4 = M 4\ M, I8 not
empty. If X = 0 4 is its fopological boundary and if we put B = 4,(X),
then My = Hull, (X) and the LMP shows that My containg the set .

Since 4 |X can be identified with a subalgebra of B we get a canonical

map .from My into M, which satisfies g(y) = g(w(y)) for all y My and
all ged|X. Recall that « is continuous here and in addition = maps My
into the set Hull,(X) in M. ' :

Next we make the following induction hypothesis. If #¢X is a gener-
alized peak point for B, i. e. if ®<Cy, then & belongs to at least % different
Fy; Trivially -this holds when % = 1. . .

,Sl}p]gose next that <0y only belongs to & sets I, say Iy ...JH,.
By assumption 4 contains % sequences (g?) such that Lim g —f|,. = 0
while lg,(f’\ms; O for .all i and » and certain closed neighborhomfﬂ W,
of each F; and @ constant €. If we put W =W,n...n W, then W is
w elosed neighborhood. of » in M., . ‘
- We can choose a closed neighborhood V of #in M pothat m(V) <« W
while 7 (V)N F; are empty for all 4 >%. It we then take & point ¥ in
¥ n 4, then the LMP applied to B shows that the set V N (V N Sp)

icm
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containg a minimal support @ for y. Using the fact that xeCy we can
choose g in B so that g(@) = 1 while |g|p, < 1 and |gly < 1/2. If we now
let yeV N A satisty |g(y)| > 3/4 and if G is chosen as above then the set
U = V n 8z NG containg a relatively open subset of G.

Now V n 8y is a relatively open subset of §p which is contained
in X and we know that F, n ¥V n 8y are empty for all 4 >%. So by the
induection hypothesis every point in the set V in 05 must belgng to Fyn...

... N I, and since 8z is the closure of C; we conclude that V n 8z < Fy N
NN Iy,

Now ¢ are considered as elements of B and since n(V) = W we
see that lgi|, < ¢ for all 4 and n. Hence PMS can be applied to the point
y and ity minimal support to give lim g (»)f—f(y)] =0 for ¢ =1... k.
We also know that m(y)eF, U... U Fy so let =(y) =2 with =zl say.
Then ¢ (y) = g¥(2) for all » and since limgf’(z) = f(¢) we conclude
that f(y) = f(¢). Here zeMpn M, and since f(2) = f(y) while z = n~(y)
we conclude that y = ¢ in Mp. But then y cannot belong to 4 from which
it was chosen, a contradiction. :

Hence we have proved that each point in O is contained in at least
k-1 different sets F;, so by induction we get Oy < Fin...n If’n and
hence Sy is also contained in this intersection. But then we easily get
a confradiction again. For let yed and put m(y) = z where zel, say.
Since Sz < B, we see that f(y) = limgl(y) = limg{(2) = () so that
y =z in My which means that y cannot belong to 4, trgm which it was
chosen, & contradiction. Hence 4 must be empty which proves that
M, ;= M+ In exactly the same way we can p_rove that 8,, = Sy
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