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Some properties of 1,, 0 < p<<1
by
W. J. STILES (Tallahassee, Fla)

Abstract. Thi; paper contains some results about I, spaces for 0 <p < 1. In
particular, it contains a proof of the fact that every complemented infinite-dimensional
subspace of I, is isomorphic to I, and a proof of the fact that every continuous linear
map of a normed linear space into I, is compact.

In [8] we investigated some of the properties of 7, spaces for 0 < p < 1.
We showed, for example, that each I, contains a subspace no infinite-
dimensional subspace of which is ecomplemented in I,, that each I, con-
. tains an infinite-dimensional subspace not isomorphic to I,, and that
each p-normed separable F-space is a quotient of I,. We add to these
results here by showing that each complemented infinite-dimensional
subspace of 1, is isomorphie to 1, and that each continuous linear mapping
of a normed linear space into I, is eompact. We also give some other
related results and state some problems concerning I, spaces.

1. Terminology and Notation. The notation and terminology emjgloyed
here seem to be fairly standard. We use the term F-space to denote
a complete linear metric space and the symbol [z,] to denote the smallest
subspace spanned by the sequence {x,}, where the term subspace is used
only for a closed linear manifold. A. subspace X is complemented if and
only if there is a continuous linear projection onto X, and two spaces
are isomorphic if and only if they are linearly homeomorphic. For 0 < p
< 1,1, will denote the F-space of all real sequences @ = {m,} such that
llzll, = 3 |2,]® < oo, and I will denote the space of all Lebesgue summable
functions on the interval (0,1). Two basic sequences {a,} and {b,} in
an F-space are said to be equivalent if and only if 3 a,a, converges when
and only when Y a,b, converges. Finally, we will say that a linear metric
space X is a p-normed space if X admits a p-homogeneous norm.

2. Complements in 7,. It was shown by A. Pelezynski in [4] that
each complemented infinite-dimensional subspace of 1,, p = 1, is isomor-
phic to I,. His proof utilized the fact that each subspace of 1, » > 1, conta-
ins a complemented subspace which is isomorphic to 7,. Since there are
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subspaces of 1,,0<p <1, which contain no complemented infinite-
dimensional subspaces (cf. [8]), this proof does not apply when 0 < p < 1;

however, the theorem is true in this case as we will now show.
Lemva 1. Let a, = (a¥,af,...) and b, = (0, ..

ot 1) —1

0,...) be poimis in 1, 0<p <1, such that |a,|, =1, Z g
: ]

7
ak(n+l)’
. . . g . "
= r> 0, where {k,} is a strictly increasing sequence of positive integers,

=7,

kugn)=1
D lgPr=1-1/2" and
=k,
Then the following hold.
(1) {a,} is @ basic sequence equivalent to the unit vector basis in by
(2) There is a continuous projection P of 1, onto the space [b,] and P is
given by P(z) = 3 f;(w)b;
"(3) The mapping A given by A (z) = x —P @)+ f@)ay is an isomor-
phism of 1, onto 1,. ‘
Proof. By the proof of Theorem 2.1 of [8], {a,} is a basic sequence

equivalent to the basic sequence {b,} ‘which is equivalent to the unit

veator ba51s in -1,
Enip-1 .
Since 2 {67 > r > 0 there exists a linear functional f, and a cor-

respondmg sequence 0.0y fiys s such that f,(b,,)
_Z‘f’” o= 6,,,,, and sup]f" 1fr. Tt is then easy to see that P(z)

= Z‘f, (%)b; is a contmuous projection. of I, onto [b,].

The mapping A (x) = z—P(x -I-ij(w Ja; is a well defined continuous
mapping on 1, since {4;} and {b;} are equivalent basic sequencss. We will
show that ‘thS mapping is one-to-one and onto l,. Note that

Dlb—all, < (1j2)77.

ooy a1 03 +02)

1@ =A@, = 1P (@)~ 35 @), = 15F(@) (b — al
< @b —all, < (/A el 15— afl,
< 1Pl 3 by~ a, < 12 .

Hence, I (%) — A @)]l; < |1 () — 4 (@)|4* < (1/2)"7||a],. A simple induction

argument shows that [(I—A)s|}? < (1/2)"|x|, for each positive
integer n. Recall that
AT+HT—A)+ T - AP+ ... +(I -4y
=((I+T-)+T -4+ ... + (I—4)4
—(I—Ay=+,

o Wy “l:n-}-l: “Icn 2y e
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Since

I —4)" all, < (1/2)" 2llf, Lim || (T —4)" o], = 0

Moreover, 7
U 1§ AL

II—Ay"w+ ... +(I—A)" o], < |(I—A)" ], +
< +(L1/2)™ ) ]}

(2ym+ ...

This implies that the series Y (I—A)*» converges. Hence, it is easy to-
see that 4 is one-to-one and maps I, onto 1,

TusoREM 1. If X is a subspace of 1,,0 < p< 1, then X contains no
subspace which is both complemented in 1, and isomorphic to 1, if and only
if 8% = {weX: |ja], <1} i8 a precompact subset of 1,, . e. if ‘and only if
given any & > 0 there ewists an integer N such that n > N, a = (ay, ty, ...)
X, and Jal, <1 'mehes V lo;] < e

Prootf. The equlvalenee of the last two conditions stated in the theorem
follows from a theorem of Cohen and Dunford (cf. [7], p. 193). We will
first show that if the second of these conditions is not satisfied, then X has
a subspace ¥ which is both isomorphic to I, and complemented in 7.

Suppose that for some & 0< <1, there is a sequence {a,} such
that a, = (af, g, ...), llayl, <1 and given any integer N there exists
an a, such that >'|a?| > s We note that by using a diagonal process

i=N - :

= lima}.

n n
‘We select two strictly increasing sequences {h,} and {%k,} of non-neg-
ative integers and a sequence {b,} of vectors inductively in the following

manner. Let by = ay, by = 0 and choose k, such that 3 |aj? < (1/8)(e/2)?
0 ik

0
kys, and b,, select

if necessary we can assume that limaj; exists for each n. Let a

and )} |aj| > ¢/2. Having selected Ry, ...,
=1
gy, such that

hony kyy ooy

Kap,
(1) 2 0" — ay|? < 1[275 (s]2)%
for all m = hyy, . Select %, ; such tha.t
(@) | Dl <2,

j=kop41

Then select hy,,, such that

®) 3 s,

J=kap 1
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Let bn+1 Gy = Oty RO Byl > /2 and by, < 2. Hence
(6/2)° < |bppill, < 2. Fimally, choose ky,,, such thab .
4 3 < (12 e f2)
’ I=lign 2

and

) Fant2
) D 1 > 62,

I=legn -1

where b, = (b7, bzl, ). Let ¢, = /||bn|{1/ﬂ, then Jle,ll, = 1. Now let
6, = (&}, ¢ ...), and &, = (0, ..., 0, c,ﬂml, . c,,z a? 0,...). We will show
that {c,}i° satisfies the eondltlons of Lemm& 1 with r = (1/2"7)(s/2).

Let Kn+1 = {j: § is an integer and %,,+1 < j < Ky, ,»}. Then (1) 1mpl1es

that Z [b"“l" < 1/2"**(¢/2)* and (4) implies that 3 |6+ < 1/2%+x

X(s/2)9” Hence ‘ s
) < L2t (ef2)
j‘Kn-H . - ”
Thus
lew—Gully = 16517 = 2 B3P Ibally < D 10517/ (e/2)°
HE, RE,
- <L2ME (2P (ef2)? = 12" (e/2)”

This implies that

2 llea— Gallp < 21 27 ([2)7 = 1[4(e[2)? = 1/2(1 /2" [2)7.

n=1 n=1
" Also .
k2n k2n k27l
B N - T N 20 X
=k g+l J=kiy—g+1 J=lop—gt1
Tom,
12 MW > 122
: Iy gl
by (5). Finally
Tom, N
D lgr=1— N iep = 1-1jam ooy
J=Kap g+l HEm,
by (6). Thus, since (¢/2)? < 1,
Eap
D' P = 1—12m,
ety g+, '
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This shows that ¢,,, satisfies the conditions of Lemma 1. Thus there
is a projection P, P(x) = 3 f;(#)G;,-0f 1, onto [¢;] and the mapping A (x)
=g—P w)—}—Z’fj (#)¢; is an isomorphism of 7, onto I,. This implies that
@ = APA™' is a continuous projection of I, onto [¢;]. Since [¢;] is a sub-
space of X which is isomorphic to I, by Lemma. 1, this completes the
proof of the first implication. '

Suppose that 8% is a precompact subset of I; and that ¥ is an infinite-
dimensional subspace of X which is isomorphic to I,. Since 8% = 8%, 8%
i precompact in I, (cf. [6], p. 51), and so co 8% is precompact in the Iy
topology of ¥. Thus the Minkowski functional of eco 8% is a norm, | |,
on Y which is strictly stronger than || ||; on Y. This implies that there
is a linear functional f which is continuous.with respect to | | which is
not continuous with respect to || [|;. Thus f cannot be extended to a con-
tinuous linear functional on 1,. However, since ¥ is complemented in 1,,,
every continuous linear functional on ¥ can be extended to a continuous .
linear functional on I,. This contradiction completes the proof of the
theorem.

TEEOREM 2. Every complemented mfzmte—d'bmenswnal subspace of
l,, 0 < p <1, is isomorphic to 1,.

Proof. Let X be an infinite-dimensional complemented subspace,
of I,. ¥ X contains a subspace which is both complemented in I, and
isomorphic to I,, then X is isomorphie to I, by Proposition 4 of [4] (cf.
[8]). Hence if X is not isomorphie to 1,, 8% = {zX: [ofl, < 1} is a pre-
compact subset of I, by Theorem 1. However, since X is complemented,
the lagt part of the proof of Theorem 1 ghows that S% cannot be precom-
pact. We conclude that X is isomorphic to I,.

3. Extension Property. It seems natural to ask for a characterization
of the infinite-dimensional subspaces of I, for which every continuous
linear funetional can be extended continuously to all of 7,. It follows
of course from the proof of Theorem 1 that no such subspace whose unit
ball is I, precompact hag this property. Although we cannot give a satis-
factory characterization of these subspaces, we ¢an show that the -7,
precompactness of their unit ball does not characterize them. Indeed,
the referee has pointed out to us that a simple example of such a subspace
can be obtained in the following manner. Select two isometric copies,
X and Y, of I, such that X and ¥ have “disjoint supports” and the unit
ball in X is I, precompact while the unit ball of ¥ is not I, precompact
(cf. [8]). Then if Z is the direct sum Z = X@Y, Z is easily seen to have
the desired properties. We will now give another example of such a sub-
space. This subspace X, has some interesting properties which. will be
discussed in the following lemmas. In particular X, (as a subset of 1,)
is dense in U, where U, is a subspace of I, which is an &%, space without
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an anconditional basis which is not isomorphic to I, (cf. [1] and [37).
Furthermore, if Xp denotes the completion of X,when X, hag the strong-
est locally convex topelogy weaker than the I, topology, then. Xp is
isomorphic to 7,. ) . :

We begin by letting A be the continuous linear mapping of 7, onto
L, such that

A (bz7b+zc) = 2"%[1&—”, (k+1)2—7]2

0<k<2%n=0,1,..., where b, = (0, ..., 0, 1,, 0,...). This mapping
is essentially T';, the mapping given by Lindenstrauss in [1]. It is stated
without proof in [1] that the mapping T, is an isometry of 1,/U, onto
L, where U, is the kernel of T,. It is not difficult to see that A is also an
isometry of I;/X, onto L, where X, is the kernel of 4 in l,. Let ¢, be the
element in I, defined by )

1 ifi=mn,
6() =1 —% ifi=2m,2n+1,
' 0 otherwise

for n =1, 2, ... Obviously A(e,) = 0.

Lenea 2. For each p, 0 < p <1, the sequence {e,} is & monotone basis
for a subspace of 1,.

Proof. Let {4} be any sequence of real numbers, and, for each n,

let a" =a,e,4 ... +age,. I [(n+1)/2] denotes the smallest integer
greater than or equal to (n-+1)/2, then

187l — 16" = 16011~} tygns1yml® +218 Gppa = (3 gy

Z [ menml® = G’ +2 /27 | a,,, [P — [} tmgnyey® = 0

because 0 < g < 1. The theorem follows immediately when p = 1; the
theorem follows for 0 < p < 1 from the proof of a well-known theorem
of M. M. Grynblum (see e. g. [9], p. 211).

LA 3. For 0 < p < 1, let Xy = {mely;: A (@) = 0}; then {6} 45 a basis
for X,. . '

Proof. Since {¢} it a basic sequence and ¢ eX,, it iy sufficient to
show tihat the set of all finite linear combinations of the form Slagey, is
fiense in X,. To see that this is true, let & = (€1 24, ...) Do any element
n X,, and.Jet ¢ be any positive number. Choose a positive integer N such

that
2 l2l” < &/2,
=2

and choose #;, 2V < j < 21 —1, such that

A (2, ced BNy BNy ey By, 0, ...) = 0.
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Since A(0; ...y 0, Fyx; oy Bywg1 1 0, ...) = A(0, ..., 0, s By, yy +o)y i
follows that ® i .

A0,y 0, T, 0, .0) = A(0, .5 0,255, 0y ...y O, By Wag 1, 0, ..
' vy Oy Bapy ooy Bagis, 0y .00)
for 2¥ < k<< 2V 1. Since 4: /X, - L, is an isometry,
[Za) = (0, ..., 0, F, 0, ...), Xy
=a((0, ..., 0,2, 0, ..., 0, By, Bppy, 0, ..0), X))
KOy ovvs 0y @1y 0y ooy Oy By By as 0y -0l

for 2% <k<2¥*'—1, where d(v, X,) denotes the I, distance of
from X,;. Therefore,

o, ..., 0, 7;21\7‘1 ---’»§2N+1_15 0, )”p < (0, ..., 0, Tywy Byn1s )”p < 5/2

and this implies that
o= @1y e By Byvs voes Bywa_p 0, - )y < e

Bince (@1, ..oy By s Tywyy oey Bpypa_g0 0y o) éXp, this last  inequality
completes the proof. : ‘

Levws 4. There exists a positive number K, such that KPEXP({@})
o {weX,: |ol, <1} where EXP({ej}) is the 1, closure of the convexr hull of
the set {e;}. ) :

Proof. If ¢ = a,6,+ ... +a,6, and |z, <1, then an application of
the triangle inequality yields

|ay]P 4222 ( 2 lagl?) — 3 Jayl” <1.

Therefore,
n
DllaP <1/@*-1)
1
By letting K,, = (1/(2""? —1)? and noting that {¢} is a monotone basis
for X,,, we see that the conclusion follows easily.

Since X, is a locally bounded space in the topology it inherits from 7,
the strongest locally convex fopology on X, which is weaker than the
topology of X, is a morm topology. A meighborhood base at the origin
for this topology can be obtained by taking the convex hull of 7, neighbor-
hoods of the origin. This norm topology will be called the Mackey topology
for X,,. The Mackey topology is obviously stronger than the topology
induced on X, by the I, norm. However, an even stronger statement
is true as is shown by the following lemma., :

and i‘ ot < (1) (22— 1)),
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Lewma 8. The Mackey topology on Xy, is strictly finer than the topology
induced on X, by the I, norm. )

Proof. Since the Mackey topology is a norm topology, we can assume
that its unit ball is the set cox ({#eX,: |l#], <1}). Since this set iy, by
Lemma 4, contained in K, cox, ({¢}), it suffices to show that R 66 x, ({6})
does not contain {weX,: |zl <1} for any real number R. Suppose to the
contrary that Rc_oxﬂ({ej}) contains {weX,: ||, < 1}. Then, since {o;} is
a monotone basis for X, it follows that B 'c—o"xl({ej}) o {weXy: flally < 1)
Since the I, topology on X, is obviously weaker than the norm topology
whose unit ball ig E6X1({ej}), this implies that the two topologies on X,
are equivalent. We will complete the proof by showing that this is impos-
sible.

Consider the linear mapping 7 of I, into X, which maps (o, ...
030,15 0,...) onto }e¢. This mapping is one-to-ome and continuous,

Since {¢} is a basjs and the coefficient functionals are continuous, -

{#eXs: @ = Yo, and Y| <1} is an 1, closed convex subset of X,.
This implies that the range of T contains ¢0x, ({¢;}). Thus, since R ¢ x,({erd)
o {meXy: |2, <1}, T maps I, onto X,. Hence X, is isomorphic to I;
however, this gives a contradiction since Lindenstrauss hay shown that
X, is not isomorphic to I, (cf. [1]).

The above lemma clearly implies the following. theorem.

THEOREM 3. For each p, 0 < p< 1, the set {weXy: |loll, < 1} fails to
be a precompact subset of 1, and there is o continuous linear Junctional on X,
which cannot be extended continuously to all of 1,,.

Since each complemented subspace X has the emtension property,
i. e., each continuous linear functional on. X can be extended to a continuous
linear functional on 1,, one might suspect that the quotient space /X

determines those X wlhich have the extengion property. Thus we state
the following,

ProBLEM 0. If X is a subspace of lpy and 1,/X 4s locally convex, does
X have the extension property

In connection with this problem, we recall (cf. [8]) that every separable -

Bamjchvspace B is the quotient of each I, space, 0 < p << 1. In fact if
{#a} is aly sequence denge in the unit ball of B'and {e,} is the usual unit
vector basiy in 1, then the linear extension of the mapping 4 such that
A (e,) = 2, is 2 continuous linear mapping of 7, onto B for each P, 0<p
§ 1. A glightly stronger result ig given in the following.

PRQ:?OSITION. Let B be a separable Bamach space amd A: 1, B
& mapping of the form given above. If 1, M by and X, = {mel,: A(w) = 0},
>0

then B is a quotient of 1, and every element Y 1, can be writien as y = u--v
where uely and v is in the p-closure of X,
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Proof. I, is an F-space when given the “sup” topology, anq A:l,~>B
is clearly continuous in this case. By using the technique given in Theorer'n
4.1 of [8], one can show that A actually maps I, onto B. ?E[ence B is
a quotient of 7,. Sinece I, is dense in I, and 7,/X, is isomorphic .to B, X,
i dense in X,,. If y is any element of I,, there is an element % in 1, such
that A(u) = A(y). Hence y—u is in X,,.

4. Mappings. In this section, we investigate properties of mappings
into 7, spaces. '

THEOREM 4. Hvery continuous linear mapping of a normed linear space
nto 1,, 0 < p <1, is compact. o .

Proof. Let X be a normed linear space and 4 a mapping of X into lz.,‘
Then A (z) = Y f;(w)e; where {¢;} is the unit vector basis in I, and f; is
a continuous linear functional on X. Let Sy be the unit ball of X If
A(8y) is not precompact, then by Theorem B. IV. 2.1 Qf [7] there is an
&> 0 and a sequence {z,} of elements of Sx such that given any positive

integer N there exists an integer n such that ‘szirfj (2,)|? > e Let A(m,) =y,
s =

= (g% 7, ...). By using a diagonalization process if necessary, we can
assume that limy! exists for each n. Let y; = limy}. Select two strictly
n n

increasing seqﬁences {h,} and {k,} of non-negative integers and a sequence
{2,} of vectors in the following manner. Let 2, = ¥, hy = 0, and choose
k, such that - :

0 ko
TP <efd and iR > e)2.
i=Fg i=1
Having chosen. z,, hy, ..., hy,, and ky, ..., ky,, choose h,,,, such that
kon )
(1) Dy —yf? < ef2nt?
=1 :

for every m = by, . Select Iy, ., such that

(2) e < ef2;
J=lop 4.1
then select 7, , such thatb

00

Ton.a.9
3) > W > e
F=hkyp 41
and let #,,, = ke gyl Pinally, use (2) and (3) to choose Iy,
such that .
) D I < o

I=konto


GUEST


118 W. J. Stiles

and
]

(5) D g > ef2,
J=kypt1

where 2,,, = (2}, 2", ...). Note that (1) implies
Tegn,

(6) g < efam,
=

Also note that A (22— g™+ — 5 +1 and that for each positive
integer m,

(@ /m) (& — o™) + (@l — ale) + ...
On the other hand
(X fm) (e +2a+ .. 2,

-+ (.thm — w"’ﬁm—l)) ” < 2.

Ry kg ey Toy
>@m)(( -3 Yar)+( X -3 3 )+
J=1 r#1 j=1 Femlig1 TAL Juafig okl
Fam Eorn
toet( X =3 3 E) > wm ez —ctym)
F=lyp—g+1 PEM =gy okl

by (4), (8), and (6). Since /4 m 2=2» co ag m — oo, 4 (S) it not a bounded
_sebin l,. Thus 4: X -1, iy not continuous. '

COROLLARY. If X is a reflemive Banach space and T: X ~ L, 0 < p< 1,
is continuous, then T (Sx) is compact where Sx is the unit ball of X,

Proof. T is weakly continuous. Hence 7T (8x) is weakly compact and
therefore closed. ;

We note that no continuous linear mapping of & Banach space into
by, 0<p< 1, can have a cloged infinite-dimengional range. We also note
that Theorem 4 could easily be extended to show that a continuous linear

mapping of a g-normed space into b, is compact whenever ¢ > p and
o<p<l.
5. Problems. It is known from [3] that every normalized uncondi-

tional basis of 1, is equivalent to the wunit vector basiy {e,}. Thix leads
to the following.

PROBLEM 1. Ts every normaliced unconditional basis of 1,,0 < p< 1
‘equivalent to {e,}? Bl 0<p<t,

It was shown in [5] that the identity map I:l -1, ¢ > 1 is absolutely
summing if and only if ¢ > 2. This leads to the following. :

PROBLEM 2. For precisel what val ie T+ 7
summing 1 P Y alues of g, g > p, is I: 1,1, absolutely
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In [2], the authors show that if 7,/X is isomorphic to 1,/Y where X
and Y are infinite-dimensional subspaces of I, then X is isomorphic to Y.
Their proof is based on three properties of I; given in Lemma, 2 of [2].
Since the first two of these properties hold in 7,, 0 < p < 1, and it appears
possible to replace the thitd property with a weaker condition, it seems
natural to ask the following.

ProsrEM 3. If X and Y are infindte-dimensional subspaces of 1,
0< p <1, and if 1,/ X is isomorphic to 1,/ Y, is X isomorphic to YV 2

ProBrEM 4. Is every complemented subspace of L, 0 < p < 1, isomorphic
to L, for some q, 0 << g <11
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