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On the extension of Lipschitz-Holder maps on Orlicz Spaces

by
CHARLES B. CLEAVER (Kent, Ohio)

Abstract. Let ¢ be a Young’s function, I? the corresponding Orlicz space over
the measure space (X, , u), go (®) = 2 and ps the inverse of the function ;1 (p~1)1—=
(zpﬂ"l)“, 0< s< 1. A generalized interpolation theorem is used to find conditions so

that for arbitrary D < L®s, every Lipschitz map of order a, 0 < a < 1, from D into
a Hilbert space H can be extended to a map of the same order on all of L%s. Also,
conditions are given so that the same is true if H is replaced by an intermediate
Orlicz space.

1. Introduction. A map 7T from a subset' D of a metric space (X, d,)
into a metrie space (Y, d,) satisties a Lipschitz-H¢lder continuity condition
of order o« and belongs to the class Lip(D, Y, a) provided

(1.3) Ay (Twyy Twy) < [@1(B1y ®o)]*y @1, Wae D

The problem of interest here is in extending maps in Lip(D, ¥, a)
to maps in Lip (X, ¥, «) independent of D. Thus, the statement “extension
holds for «” or “e(X, Y, «) holds” means that for arbitrary D = X, every
map in Lip(D, ¥, a) can be extended to a map in Lip(X, Y, a). Much
of the literature has been concerned with the case a =1 (contraction
maps) with X and/or ¥ Hilbert spaces. Barly consideration of the problem
includes results of MacShane [6] and Banach [1] in the case Y is the
real line, and results of Kirszbraun [4] imply that e(H, H, 1) holds for H
a Hilbert space. Recently, it was shown by Hayden and Wells [3] that
e(X, H, a) holds for any metric space X with 0 < « < 1/2 and, furthermore
e(L? H, a) bolds for 2a < p < 2a/2a—1 with 1/2 < a < 1. An extension
of these results has been obtained in [10] with H replaced by an L7 space.

In this paper, the results in L? spaces are extended to a class of Orlicz
spaces which include intermediate spaces between a given Orlicz space
and L2 The main results are contained in Sections 4 and 5 while Section 3
is devoted to generalizing an interpolation theorem of Rao [9] which
is the main tool used in attacking the problem.
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2. Preliminaries. Let (¢, ) be a pair of complementary Young's
functions ([5], pp. 12-13). Then L*(X, o, u) (= L?) denotes the Orlicz
space of measurable sealar valued functions on the measure space (X, o, u)
such that fe L® iff N,(f) < oo, where

(2.1) No(f) = inf{k > 0: [ els1man<1).
X

Similarly we can define the space I*. Another norm can be defined in L

(2.2) Iflly = sup{ [ |fgldu: ,(9) < 1}.
X

These norms are equivalent if every set of positive u-measure contains
a subset of positive finite u-measure (cf [12]). In the case ¢(2) = la]?,
» > 1, it can be shown that | fll, = N, (f) = K|f|l,, where K is independent
of f(ef [11]).

DrrFINITION 2.1. Let @, and @, be Young’s functions and define ¢,
to be the inverse of ¢;* = (g7 *V™* (") for 0< s < 1, where cp"l is the
unique inverse of the Young s function ¢.

The function ¢, is convex and has most of the common characteristics
of ¢; and g, (cf [2] or [9]) including the property of satisfying a growth
condition. That ig, if the simple funcmons are dense in L™ and L%, then

. the same is true in I%.

The complementary function of ¢, is not the same as the inverse
of yi! = (p)'°(y;")* where p, and y, are the respective complements
of ¢, and ¢,. However, the complement of ¢, and v, generate the same
Orlicz space with equivalent norms (cf [97]). Since the complementary
function iy the only one of interest in this paper, v, will denote the com-
plement of p, unless otherwise stated. Algo, it will be assumed that each
Young’s function is continuous with a continuous derivative.

3. Interpolation. In this section Theorem 1 in [9] is generalized
similar to the way the Riesz—Thorin theorem was generalized in [3].

Let (X, uy), (X, tg)y o) (X, ) be o-finite measure spaces and
let ¢ = (p,..., ¢,) be an fntuple of Young’s functions such that ¢
satisfies a growth condition on (X, ), 5 =1,2,...,n Define the direct
sum @ L% () by

B1) @L™(we) ={f = (fiy .o, fu): Sue L%(m), % = 1,2, ..., m}
with usual addition and sealar multiplication. For each r, 1< 7 < oo and

each n-tuple 4 = (4, ..., 4,) of positive weights, introduce the following
norm on @ L% (),
{ 2 Wil

(3.2) fllg,r =1 %=1
max ||fylly, 7 = oo.
<k<n

}llr 1<7‘< o,
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Denote By L?7(2) the set of vectors f such that [|f],,< co. The space
L%" is a Banach space and if we let y = (y,, ..., ,) with v; the comple-
mentary function of ¢;, then it follows from lemma 1 in [7] that

(3.3) Wfllor = sup | [ fgdt) = sup| 3 ([ fugudue) 4,
k=1 Xj

where g varies over all simple funetions in L¥", 1/r-1jr' = 1, and
K

Nw,r’(g) ={kZ:(

(gk)) ]‘k}l” =

DerinITIoON 3.1. For two n-tuples
Py = (Pa1; -+-5 Pan) define ¢, = (pg, ...
inverse of the function ¢3' = (¢i)' (¢}, k =1,2, ..., n.

Now, let (¥;,#), (¥, »),...,(¥p, »,) be another sequence of
o-finite measure spaces, 7 = (’71; -e3 M), and define the m-tuples Q,
and @, in the same manner as ¢; and ¢,. Letting X = (Xyy ..., X,) and
¥ =(Y,...,Y,) we obtain the following interpolation theorem.

THEOREM 3.1. Let 1<r,t;< oo, i=1,2 0<s<<1 with 1/r
= (1 —s8)[ry+8frs, 1/t = (L—s)[t,+s/ty and suppose @;,Qy, i =1,2 are
defined on X and Y reéspectively with each component satisfying a growth
condition. If T is a linear tramsformation from L% imto L9, § =1,2
with bounds M, and M, respectively, then T takes L%’ into L% and

(3-4) 1S llggr < M 17°M3 ||fllg, e

Proof. The tuples ¢, and @, are those obtained from Definition 3.1
and from previous remarks, it follows that they satisty-a growth condition.
The proof follows that of Theorem 1 in [9].

If E; is the complementary function of @;, i = 1, 2, then the linearity
of T and (3.3) imply that (3.4) will hold provided

(85) \[ Tgan| < 2313

1 = (F11; P12y -5 P1n) and
y Pen)y 0 <8 <1, where g, is the

holds for all simple vectors f on X and g on ¥ such that Ifllggt =1,
Np,-(9)< 1. Choose two such vectors f = (fi, ..., ), g = (gl,. ,gm)
and define f; = |fi|é™ and g, = lg;| 6™ where u;, and v, are real-valued
simple measurable functions on X, and ¥, respectlvely

Let ag, = ¢y b = 1,2, ..., 2, By =Ry, j =1,2,...,m and extend
these functions to the strip 0 < Rez <1 by defining a,, = (p3})"*(p5l)®
and 8,; = (R5")""*(R5;') for each k and j.

For each j =1, 2 ..y %, it follows (cf. [5], p. 92) that there exists
a number K ;>1 sueh that

(3.6) 0ot (B il il dpt, = Foy_y.
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Let y(z )—t[(l—z Jt+
each j =1,2,..., 7,

By = (LK) s o (g | £ [ Fill, ) 16

(3.7) %
and § =1,2,...,m,
(3.8) Gy = [N, (991 Bs [Bes (19| | g, (97) 1671

,F) and @, = (G, ..., Gy) then F, —f

It we let F, = (F,, Fpy,...
and @, = ¢. Finally, define

H(z) = [(TF)Gin = 3 ([ (TF)G i) .
k=1 ¥,

Since f and g are simple, it can be shown that H (z) is a finite linear com-
bination of exponentials of the form d° with 4 > 0, which 11nphes H (2)
is regular in the strip 0 < Rez < 1.

If Ree = 0 then T'F, ¢ L%k, G e L%k and by the Holder inequality

H ()] < D 1T lloy, Nz, (Gt M

Je=1

SITE e N, . (6) < M [ Fllpy N, (6o).-
"1

“tpl,!l Rl!"'i

Now

IFelle g = ZHF(W o2

= 2|||f,~u2;‘*'“|na/Ksj)a@m, L e ),

Denote by P; the part inside the norms in the expression above, then
according to ([5], pp. 92)

1ylloyy < (LIE) (14 [ 05 (g Py))
< (UK (14 [ 00 (Ko 1511 gyy))

Therefore

= (1/—Ksj) (1+-Ksi_1) =

Iyl < 2 [l ™| 4 = 2 155, 4 = 1.
Since [ Ry (|Buyy (st|gf|/NRs,(0j))|)\1 it follows that Ng, (|Gl

‘I il . 1r,
< [N, (gj)]r " and hence NR] (@) < {Z‘ (N, (9)7 - "< 1. Thus
ot J=1 ’

[H ()] < M,. Similarly, when = = 144y we get [H (1 -+4y)| < M.
Hence by the “three-line theorem’, we obtain (3.5).

zfty], v(2) = [(1—#)jr;+2/r,] and define for -
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4. Maps into Hilbert space. The results in this section are obtained
by applying Theorem 3.1 and the following geometrical theorem proved
by Hayden and Wells [37].

TaEOREM 4.1. Suppose X is a Banach space and 0 < a<< 1. Then (X,
H, o) always holds prom'decl that for any n poim‘s By, Loy .eny @, of X, we have

S’ 0, 0yl — w2 < 2 5’0 e

11 1 z-l
0 and Z C; =1
i=1

The first application gives us another property that intermediate
spaces inherit.

TaEOREM 4.2. Let (X, o7, ) be a o-finite measure space and @y, @y
Young’s function satisfying a growth condition on X. If (4.1) holds for
any n points in L¥, ¢ = 1,2 and arbitrary collection {C;}, of positive
<1, and

(4.1)

whenever C; >

n
numbers such that 3 C; = 1, then the same is true in L%, 0 <s

() g

hence e(L%, H, a) holds where ¢;' =
Proof. Let ¢ = {C;}{, be a collection of positive numbers such that

n
> C; =1, ¢; the constant n-tuple and @, the constant m2-tuple with
=1

each component in both cases being ¢;, i = 1, 2. Define T from L"’i"“"’(O’)
into L% (C*) by Tf = (f; —f;)%;-, for each simple vector F="{fryeresfn)

with the norm defined in.L% so that [|Tf|[5 .. = 2 Ol — 1

© =1, 2. Thus by hypothesis ||Zflo, 2. < 2 rﬂ’“]]fﬂ‘p 2a and Lt follows from
Theorem 8.1 with #;, =7, =1, =1, = 2a and M1 = M, = 2" that

Zaonft —fila < 2201mn

1,j=1
for all vectors f ='(f,, ..., f,) in L%.

- THEOREM 4.3. Let (X, <, u) be a o-finite measure space, ¢ a Young’s
function satisfying a growth condition on X, and 0 << a <1. If @y(x) =2
and ¢y, 0 <s <1 is the inverse of the function o7 = (™)' ~°(p7Y)° then
e(L%, H, a) holds for 2—1[a < s< 1.

Proof. In the case a << 1/2, the fact that the theorem is true for all
s, 0<<s< 1, follows from Theorem 4.1 (cf [3]). Thus we may assume
12<a< 1.

Define the spaces as in the previous proof, let t;, = r; = 1,1, =1, = 2

(4.2)

M, =2 M, = 1/5, and apply Theorem 3.1 to the inequalities
2 n
(4.3) D GOlfi—Fle <2 Y Clfil,
4,5=1 i=1
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and -

w8 {i 2 00— Hilf < {2 Z Ol f, )"
to obtain

(45) z GO lf—Tilley 0 <2 Z Cullfulfg -

The mequahty (4.4) follows since it is true in L? and [Fllog = EI1f1le-
Sefting § = s’ =2—1/a in (4.5), we obtain (4.2) which 1mp11es that
¢(L%, H, ) holds in this case. For the spacial case ¢ = ¢y, it follows
from (4 5) that

n n
(4.6) D GOlfi—fi <2 3 ClflE, 12<a<l.
4i=1 i=1

According to Theorem 4.2, inequa,lities (4.2) and (4.6) imply that
e(L™ H,a) holds for 0<<t<1 and ¢ ' = (¢7") H(eg ) X & <s<1,
then sefting ¢ =1—[(1—s)/(1/a—1)] we see that ¢, = ¢, and hence
e(L%, H, ¢) holds for 2—1j/a<<s < 1.

CorOLLARY 4.1. Suppose (X, o, u) is a o-finite measure space and
0<a<1, then e(L”(u), H, a) holds for all 1 <p < co if a<1/2 and for
2a < p <2a)(2a—1) if a>1)2.

Proof. Let ¢(x) = [#]", 1< k< oo and ¢;* = (¢7)*~*(p;")%. Letting
§ = (2/p)[(k——g))/(k—2)], then ¢, = (pp = |z|? and from Theorem 4.3,
¢(L%, H, a) holds provided 2—1/a<(2/p)[(k—p)/(k—2)]< 1. Letting
k —1 and %k — oo, this inequality leduoes t0 20<p<2and 2<p<2¢f
[(2a—1) respectively. Since ||f l[% = K||fll, for some constant K, we obtain
the stated result.

Examples are given in [3] to show that these inequalities are sharp.

5. Maps into Orlicz spaces. Similar to the L? case in [10], another
application of Theorem 3.1 gives a new inequality which allows us to
use a theorem of G. J. Minty [8] to obtain results in intermediate spaces.

Choose a collection O = {0}}., of positive numbers such that

_;:C'i =1 and define L*"(C) as in Section 3. For a Young's function ¢

defined on the o-finite measure space (X, o7, u), leb L*"(C* be the set
of (n—1)-tuples (f, f ..., ") in which f’ is an (n—j)-tuple of elements
of L. On this space introduce a new norm,

e = {3 3 005", 17 < oo

i=1j>1
and .
Ml = max |ff_,.
\z\n—
i>1
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Define the operator T from the simple funections in L#7((?) into
L?"(0) by (Tf); = 2 Cipifi— 2 Crf¥ 1,1 <j < m, where the p in defining
i=1
L%"(C) denotes the eonsﬁant 'n-tuple with each component ¢@. The
following lemma is essentially established in [10].
LemwmA 5.1. Suppose ¢ is a Young’s funclion satisfying a growth

condition on the o-finite measure space (X, o7, u) and ¢q(x) = x2. Then
for each simple vector f in L*"(C?),

(51) ”Tf”gso,z < ”f”qnn,z
and
(5.2) 1S llg00 < 1 g0

We can now apply Theorem 3.1 to obtain the following inequality.

LeMMA 5.2. Suppose ¢ is a Young's function satisfying a growth con-
dition on the o-finite measure space (X, o, u) and ¢,(x) = a*. Then for
each 0 < s<<1, with ¢;' = (¢ (¢g 1), we have,

(53) 2 C: Gl —Flse = 2 2 Glif— Z RA

Proof. Apply Theorem 3.1 to the inequalities (5.1) and (5.2) with
=1 =00, l =1, =2 and M, = M, =1 we obtain

(5.4) WAy 2s < 1 lgpgiass-
Let f = (fi, ..., f.) be a simple measurable vector in L%"((C), then

the Silnple vector (fl“fzgfl“fa: ---7f1 ‘“fmj:z_f:n "'7fn—1_.fn) is an
element of L™"(C*) where fI =f,—Jf;

4y

IS pass = 20 ICZf)s e

Z C?” y 0H~J (fJ ft-H S olc(fk _f:'p) Z/S
XA j - 3 Gl
Jj=1 i=j+1 k=1

n

o) 3 es—mf)

M:

= &
= So,(ls- 3 e
i= i=1

and
n—1

W = 3 X GO M= f =12 ) it o 5

=1 j>1i 2,§==1

-,
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Thus using (5.4),
2 2 olh- Z et

DerFINITION 5.1. Suppose Y is a vector space over the reals and X
is & set. A map K: YX XX X — R is called a K-function provided that

(i) for each @, #,¢X, K is finitely lower semicontinuous and convex
on ¥; and

(ii) for any sequence (Y, @1)y ... (¥p,

< 2 CiCilfi— 1l -

2,) in ¥YxX, any weX and

k3
0, of nonnegative numbers with 3’ 0; = 1 one has

i=1

n
(5.5) D 00 Ely;—ys; 0, %) = 22 i K (y,— 20 g5 iy ).
1,7=1 =1

THEOREM 5.1 (MINTY). Let Y be a linear space, X a space and K o
K-function on ¥ X XX X. If (41, ), ».. (Yu, ®,) 18 a finite sequence in
Y X X such that K(y,—1y;; %y, 0;) < 0 for all 4, 5,1 <4, § < n, ond if veX,
then there exists a vector ye Y such that K (y,—y; x;, ) < 0 for all 4, 1 < i < m.
Moreover y can be chosen in the comvex hull of {yi, U5, ..., Y}

In order to extend Lipschitz—Holder maps between Orlicz spaces,
we combine Lemma 5.2 with the Minty criterion for extensions.

THEOREM 5.2 Let ¢, and ¢, be Young's functions satisfying a growth
condition on the measure space (X, s, u) and suppose L' is reflevive.
If 2 1a<t<1, s =a(2—1) and o7 = (7)™ (90 ot = (@)
(g3 V)t then e(L%, L%, o) holds.

Proof. This proof follows closely the proof of Theorem 1 in [10].

Fix ¢ and let FeLip(D, L%, o) where D is a subset -of L®. Define
E: I%xI#xI®~E by K(g;f;,f;) = gl —If:—Fll¢0.  Using
(4.5) and (5.3), we see that

D) G0y,

1,j=1

any sequences Cp, ...,

— 955 fus Iy)

= 3 oo 20 Oyl =)+ (F=F e
1

nLj=

220!1% 2091
=2 20 o= 3 2 > G2 1, — ]

=22 K(gy-—znj Oigi;fj’f)'

F=1 i=1

9 2 Oyl —FIE
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Since K is continuous and convex on L%, it is a K-function. In order
to extend the domain of F' to a point ke L%/D, it is enough to show that
() 8py # ¢ where
<D

Sy = {geL®s: lg—F (f)ll, < Ik —fll.}-

Fix fye D and define Shy) = Spy N Spy, for fe D. Since L7 is reflexive,
it follows that L®sis reflexive and hence 8p, s weakly compact. Thus
() Spp= () 8%y # ¢ if the finite intersection property holds. Suppose
feD feD

Jisfos ooy fu is a finite set in D and note that for 1< i, j < n,

E(F(f)—F (), for [) =IE (£ = FHNE — W= i< 0

sinee |F(f,) —F(Flel < 1fi— il = 1fi—fliy e,
By Theorem 5.1, there exists a g in L% such that K(F(f,)
for i =1,2,...,n Therefore

12 (fo) — glfge — ife—

—9:fi h)< 0

RIPe-9 < 0
or
I (f) —gllg, <
COROLLARY 5.1 Let (X, o/, u) be a o-finite measure space and
1< p,q< co. Then e(LP, L% o) holds for
(i) 2a<p <2 and p/p——a q,
(i) 2 << p < 2a/2a—1 and ag < plp—1.
Proof. To prove (i), choose k > 1 sufficiently close to one so that
=2(p—k)/p(2—F) > 2—1/c and let ¢,(2) = |z|*. With s = «(2—1) and
@5, ¥; a8 In Theorem 5.2, we can find ¢, (#) = |#|' so that g,(») = |z}
provided that
(5.6) ' 1jg+a—2(p—k)/p(2—k) <1
Letting & —1, we see that 1/g< (p—a)/p or ¢= p/(p—
The proof of (if) is similar if we choose % sufficiently large so that
t=2(k—p)p(k—2)=2—1/a

Iifi— h”%/(z—t)](slz) = If;— hngr
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Drury’s lemma and Helson sets
by
CARL HERZ * (Montreal)

Abstract. A generalization of a lemma of Drury [2] is used to obtain extra-
polations of continuous functions on Helson sets by absolutely convergent Fourier
transforms which are small on given closed sets of the complement. This simplifies
the work of Varopoulos [3].

The idea of S. W. Drury [2] used in proving that the union of Sidon
sets is a Sidon set can be generalized to give a result, Theorem 1 below,
which is of considerable interest in its own right. The main point of this
article is that the generalization allows one to obtain a simple proof of
the fact that the union of Helson sets is a Helson set, a theorem obtained
by Varopoulos [3] in an extremely complicated manner. Some of the
broad lines of Varopoulos’ argument remain, albeit in a simplified form.
In particular, rather general locally compact commutative groups play
an essential role so that even of one is only interested in Helson sets on
the circle group the reasoning here perforce leaves the domain of classical
harmonic analysis. In compensation, the methods used here give a sharper
result than Varopoulos’ note [4] on the classical situation, and genuinely
less effort is required. )

Our Theorem 2 below is new only in the sense that it is completely
general. By contrast, Theorem 3 brings some precision to the estimates
which is of interest even in the classical case, and it is a marked improve-
ment over anything heretofore obtained.

The material of this article was developed during the first MeGill
Seminar on Current Research in Analysis. Lectures by J.-P. Kahane
which reviewed the recent work of Drury and Varopoulos provided the
motivation. The participation of K. Gowrisankaran and R. Rigelhof
is gratefully acknowledged.

* The rescarch for this article was sponsered by the National Rescarch couneil
ol Canada.


GUEST




