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Drury’s lemma and Helson sets
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Abstract. A generalization of a lemma of Drury [2] is used to obtain extra-
polations of continuous functions on Helson sets by absolutely convergent Fourier
transforms which are small on given closed sets of the complement. This simplifies
the work of Varopoulos [3].

The idea of S. W. Drury [2] used in proving that the union of Sidon
sets is a Sidon set can be generalized to give a result, Theorem 1 below,
which is of considerable interest in its own right. The main point of this
article is that the generalization allows one to obtain a simple proof of
the fact that the union of Helson sets is a Helson set, a theorem obtained
by Varopoulos [3] in an extremely complicated manner. Some of the
broad lines of Varopoulos’ argument remain, albeit in a simplified form.
In particular, rather general locally compact commutative groups play
an essential role so that even of one is only interested in Helson sets on
the circle group the reasoning here perforce leaves the domain of classical
harmonic analysis. In compensation, the methods used here give a sharper
result than Varopoulos’ note [4] on the classical situation, and genuinely
less effort is required. )

Our Theorem 2 below is new only in the sense that it is completely
general. By contrast, Theorem 3 brings some precision to the estimates
which is of interest even in the classical case, and it is a marked improve-
ment over anything heretofore obtained.

The material of this article was developed during the first MeGill
Seminar on Current Research in Analysis. Lectures by J.-P. Kahane
which reviewed the recent work of Drury and Varopoulos provided the
motivation. The participation of K. Gowrisankaran and R. Rigelhof
is gratefully acknowledged.

* The rescarch for this article was sponsered by the National Rescarch couneil
ol Canada.
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0. Introduction. Let G be a locally compact commutative group.
Write .4 (@) for the Fourier algebra of &, i.e. the space of continuous
functions f: @ - C which have a representation f(») = o f <wy EY 7 (&)dE

where G~ is the character group and f~ ¢ L;(G¢"). Then A (@) is a Banach
algebra for the orfinary addition and multiplication of functions and,
the norm |f|. = |f ;. The dual Banach space to 4 (@) is denoted by
PM(@); the elements of this space are called pseudomeasures. Let H be
a closed subset of G; we write A(H, &) for the quotient algebra of .4(@)
obtained by restricting functions to F.

Consider the situation in which F is a compact subset of ¢, H 2@
is a continuous homomorphism of locally compact commutative groups,
and 6: B — H is a continuous section, i.e. a continuous map such that
wof is the identity on E. Then ¢ +— gox gives a morphism of Banach
algebras (algebraic homomorphism of norm < 1) A(E, ) 3 A (08, H).
The question arises whether % > hof gives a continuous map A (68, H)
— A (B, @). The simplest result is this.

THEEOREM 0. Suppose that H > G is a monomorphism and that B is
a compact subset of G with a continuous section 0: B — H. Then A (W, )
B A(0B, H) is an (isometric) isomorphism. In particular, given heA (H)
and B > 1 there exists geA (@) such that

() lglla < Bllllys

(ii)) g = hot on E.

The requirement that = be a monomorphism is quite severe. A slight
relaxation is permissible ([1] Theorem 1).

COMPLEMENT TO THEOREM 0. If it s only assumed thai = has a discrete
kernel then my still has a continuous inverse, i.e. there is a constant a such
that the last sentence of Theorem 0 holds with “f > 1 replaced by “B > ao”.

This is as far as one can go without special assumptions. In fact if
one assumes that there exists a constant a such that the above is valid
with no restrictions on = and 6 then (X, ¢) must be Helson a.

DrrinirioN. The pair (B, @) where ¥ is a closed subset of the locally
compact commutative group @, is Helson o if given ¢peCy(H) and f > «
there exists fe A (G) with ||f| 4 < Bll¢lle such that f = @ on B.

The generalization of Theorem 0 as it stands with (B, @) assumed
to be a Helson set is trivial. The essential point of the next is condition
(iii) which gives a control outside .

TeeorEM 1. Suppose that H > G is a homomorphism and that B is
& compact subset of G with a continuous section 0: B — H. Suppose further
that (B, @) is Helson a. Then given he A (H), f > a, 6 > 0, and V a neigh-
borhood of the identity in @, there ewmists e d(G) such that
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0 gl < FlRlL,

(il) |hob—gj<<d on EH,

(i) g (@) < PSP yers 11(y)] for all z<G.

The key step in the proof of Theorem 1 is the special case we call
«Drury’s. Lemma” in which H = G x H, and = is projection on the first
coordinate. The idea of Drury [2] applies to G discrete and H, finite.
It was extended by Varopoulos [3] to G compact and H, profinite. It is
essential in what follows that we have Theorem 1 in full generality. (We
could, with only slight annoyance, restrict our attention to ¢ and H
compact which would allow for less “abstraction’ in the proof of Theorem 1.)

Our main application of Theorem 1 is to prove

THEOREM 2. There exists a continuous function o: (0,1] — [1, co)
with the following property. If (B, @) is Helson o and peCy(H), f > a and P,
a closed subset of G disjoint from E, are given then for each ¢ with 0 < ¢ <1
one can find feA(G) such that

@) 1S lls < B llglleo 0 (2),
() f=¢ on B,
(i) [f] < Blglee on F.
The purely existential Theorem 2 suffices to prove that the union
of two Helson sets is Helson. We do, however, have something new to
contribute about the nature of the function w.

THEOREM 3. One can take the w of Theorem 2 so that w(s) < &2 for
all e<1. For small ¢ one has logw(e) << }(loglogl/e)2
From Theorems 2 and 3 we easily deduce

COoROLLARY. The uwion of a Helson o with a Helson f is Helson
H(ay p) < $3°%(* + B°).

RemARKS. After the first draft of this paper was submitted I learned
of the work of Stegeman [5] where the estimate w(e) << s ™ for s<<1
was obtained in the context of Theorem 2’V below. The particular case
H(1,1) < 3% of the above Corollary is a slight improvement over Stege-
man’s Theorem 3 resulting from the removal of the limitation &< %.
In fact, for ¢ < %, we have w(s) < ¢~ and the above estimate of H(a, f)
is very crude unless a and # are both near 1 so that values of ¢ > } play
@ role. For fixed a we have H(a, §) = o(a®fexp{(}loglogB)?}) as B — oco.
If a>p then H(q, f) = ou*exp{(}logloga)?}) as a — co. The factor o
comes from the inequalities of Theorem 2.

A special case of Theorem 2 is

THEOREM 2'. Let (B, G) be Helson 1 with B compact. Then given y > 1,

F . a closed subset of G disjoint from B, and 0 << £ <1 there ewists fe A (G)
such that
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@) Hflls < yole)

(i) f=1onE

(1) [fi<e on F.

Theorem 1 allows us to pass from Theorem 2’ to Theorem 2 almost
immediately. We therefore concentrate on Theorem 2. The simplest
special case is this.

PRrOPOSITION 1. Let E,, be the canonical generators of Z". Given 0 < e < 1
there ewists fe A (Z") such that

() Ifle < e

() f=1 on H,,

(iil) of w¢ B, then f(z) = 0 or f(&) = ), where k(x) > 0 is an integer.

The proof of Proposition 1 is a simple construction. We shall now
fix the function w. We put w,(e) = inf||f|, taken over fed(Z"™ with
f=1on E,and |f| < ¢ elsewhere. Then o is defined by w(s) = sup,w,(s).
The existence and properties of this function are consequences of Propo-
sition 1. Only the existence of a confinuous w such that Theorem 2’ holds
for (E,, Z") is used in the proof of Theorem 2.

‘We now sketch the 1deas for the proof of Theorem 2. A useful technical
device is

Lemma 1. In order that the conclusion of Theorem 2 hold for (E, @)
1t 18 mecessary and sufficient that for each complen Radon measure of bounded
variation pe M(@) and each &, 0 < e<{1 we have

[1aul <

E

2+ ate) " [w(e) lullpar+ ellula]

where |ullpyr = 1" ko and ||ullz, = total variation of p.

It follows immediately that it suffices to prove Theorem 2 for I
compact. The crucial role of Theorem 1 is in proving the transition step

Lmvma 2. A sufficient condition that Theorem 2 hold for (B, @) is that
there ewist (B, H) Helson 1 satisfyin g the conclusion of Theorem 2', a contin-
wous map 6: B —H with 0F = E", and a continuous homomovpinsm
H 2 @ such that mof =id,..

The case of Sidon sets is now settled. If (%, @) is Helson o with B
discrete, Lemma 1 allows to reduce to the case of % finite. It T has n
elements then have 6: E — F, and 2" > @ so that Lemma 2 can be
applied using (%, Z") and the known result, Proposition 1. We state
the result as

TweorEM 2D. Theorem 2 holds for B discrete. If G is also discrete then
given qan(E) there ewists a Fourier-Stieltjes tramsform fe B(Q) such that

) Ifllz < o (&) 9]l
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(L) f = ¢ on E,
(1) [f] < o?e llpllee outside E.

The second sentence of Theorem 2D is given by Drury [2] for the
function ¢ =1 and with w(e) replaced by 4e7*. The proof, indicated
above is a minor variation of his proof with the improvement being gained
by using Proposition 1 rather than Riesz products.

An analysis of the proof reveals the fact that Lemma 2 could be
applied because Proposition 1 is available for the free discrete commuta-
tive group generated by the finite set F. What is needed for the general
case is the free compact commutative group I'(E) generated by a compacht
Hausdorff space E. There is a canonical embedding 6: E — I'(E) such
that if ¢: B — @ is a continuous map of F into a compact commutative
group then there is a “homomorphism I'(E) > G, = = I'(4), such that
4 = mof. The character group I'” (B) is the discrete group of continuons
maps from F to « with the operation of pomtwme multiplication.

The mext step is

ProrosIrioN 2. Let E be o totally discommected compact Hausdorff
space and §: B — I'(E) the canonical embedding in the free compact commuta-
tive group generated by K. Then the conclusion of Theorem 2' holds for
(6B, I'(B)).

Proposition 2 is quite easy to prove. Using Lemma 2 one gets as
a corollary

THEOREM 2'V. Theorem 2" holds for E totally disconnected and & compact.

This is a result of Varopoulos [3; Theorem 1] except that he has
8¢~ in place of w(e).

The enormous complication of Varopoulos’ proof arises from the
fact that he has nothing like Theorem 1 at his disposal. He is unable
to derive Theorem 2’V directly from Proposition 2 and has to replace
I'(E) by a group whose character group is C(E, T), the continuous maps
from E to T in the topology of uniform convergence; thus he has to leave
the category of locally compact groups.

After Drury’s work appeared, Varopoulos ([3], Theorem 4) indicated
how to pass from Theorem 2'V to Theorem 2 for F metrizable and @
compaet with f* replaced by an unspecified quantity and w(e) by &7

As Varopoulos pointed out, Lemma 1 allows us to conclude

COROLLARY TO THEOREM 2'V. Theorem 2' holds for E metrizable and G
compact.

His method stops here, but, using a trick and Theorem 1 again, we get

ProrosrrioN 3. Theorem 2' holds for G compact, in particular for
(0B, I'(B)), where B is an arbitrary compact Hausdorff space.
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Now if we use Lemma 2 with (B”, H) = (6E, T(E)) we get Theorem
2 for @ compact. If @ is not compact look at its Bohr compactification
b@. If (B, G) is Helson a then (#, b() is Helson a by Theorem 0. The con-
clusion of Theorem 2 for (B, b@) is & fortiori valid for (¥, @) by Lemma 1
and the fact that the inclusion M (G) = M (bG) is isometric for both the
variation and pseudomeasure norms.

1. ¢“Drury’s Lemma’ and the proof of Theorem 1. It will be con-
venient to deal with Banach-valued functions. Let BAN be the category
of linear transformations of norm <1 of (complex) Banach spaces. Given
a locally compact group & and a Banach space B we denote by L,(G; B),
1< p < oo, the completion of the continuous functions of compact sup-
port u: G — B for the norm [ufl, = {[|u(#)%dz}*”, where dz indicates

2]

integration with respect to the (left-invariant) Haar measure on G. The
limiting case, p = oo, corresponds to C,(@; B). The crucial remark is
that L,(&; ) and Cy(6; +) are endofunctors of BAN.
There is a tensor product ® for BAN (see appendix) which we use
in two places. First there is the identification of I,(@; B) with L,(G; C)o B;
the needed part of the Fubini theorem is a canonieal isomorphism
L (GXx H; C) with L,(&; C)©L,(H; C). The second place involves the
group structure in an essential way. We shall denote the group by H”
Dbecause this is the notation which occurs in the applications. Let B be
" a Banach algebra, i.e. a Banach space with a “multiplication” morphism
B®B -~ B which is associative. Then writting * for convolution and
“07 () = o(5™) we state :
Levwma A. If B is a Banach algebra then u®v > w v~ gives & morphism
Ly(H"; B®L,(H"; B) - C,(H"; B).
The explicit formula when « and v are continuous B-valued functions
of compact support is
wro” () = [ w(@o(n0)d = [ wnt)o()dc.
- i
The multiplication is that of B. The proof of Lemma A is the estimate
W*’DV(?})]BQIHA [w(nd)|zlv (L) zd¢ followed by the Schwarz inequality.
In the special case B = C the coimage of Ly(H )@ L,(H") — €4 (2 ")
is the Fourier algebra A (H"), ie. the elements of A(H") are viewed as
continuous functions on H" but the norm is the quotient norm from
Ly(E")® L,(H"). In particular, if H" is the character group of the locally
compact commutative group H then the Fourier transform, which is
an isomorphism of L,(H") with L,(H) takes

L, (H)® Ly (H) — L, (H); fog+-fg°
isomorphically over to
Ly H QL(H") > A(H"); u®v > uxp".

icm°®

Drury’s lemma and Helson sels 211

In this section * refers to convolution over the group H~ only. In
the applications we shall have » = % in which case »  is u* We use
Lemma A directly with B = A(@).

The next is obvious and the whole point is to state it.

LeymA B. If @ is a locally compact Housdorff space and B, and B,
are Banach spaces then pointwise ® multiplication gives a morphism

Co(G; B1)®Co(G; Bs) - Co(@; By®B,).
BErplicitly f,@f, — f where f(x) = f1(2)®f,(2).

In our application we have B; = B, = L,(H"). Since Cy(G; ) is
a funetor we have

CoROLLARY. Convolution over H™, gives a morphism

OO(G; Lz(HA))®Oo(G§ Lz(HA)) _>CO(G§ A(HA));

where u®v > u*v .
Observe that the corollary corresponds to the formula

wsv (2y) = [ w(w, 90)v(@, HdL.

a

Since L,(H"; -) is a functor, the “inclusion” A(F) — C,(G) gives a morp-

hism Ly(H"; A(G) —Ls(H ; C,(®), but there is also a morphism
L{H"; Co(@) — Co(G; L,(H")} coming from the inequality

SUPpg [ |0 (@, IPdn < [ sup.glo(e, n)2dy.
H~ H*

If we put these morphisms together with the Corollary to Lemma B we
have that u®wv > u*v” gives a morphism

L(H; A@)OL(H ; A@) > Cy(G; AH"))

which is what we need below.

DrURY’S LEMMA. Let (B, @) be Helson a with E compact, and 6: B — H
a continuous map into a locally compact commutative group. Then given
fed(@xH), p>a, and & > 0 there exists geA(G) such that

() lglla<B2f 14>
() |f (z, () —g(=)| < & for all we R,
(i) (@) < B* supyem|f(z, )| for all z<G.
Proof. For simplicity assume |f|i, <1. We may write

f@,9) = [ <y, nel@, ndy
2.

2 — Studia Mathematica XLIL.3
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where ¢ is viewed as an element of L (H"; A(G)) with quﬂl = ||fll4. There

exists- a continuous function of compact support k:H — C such that
Ikfly <1 and

[ =Tk )] Iy ladn < e
)

Since 0F is a compact set in H, the seb
U ={neH : suPgep|l —<0(2), | < e}

is a neighborbood of the identity in H " Sizlce K =suppk is compact
there is a finite collection {n,...,7n,} = H such that K = (Ji.nT.
Put K, =K nnUand B,y =K Ny, UnCIE, V... U K,]. Thus K
is the disjoint union of the Borel sets K, ..., K,,. Since (¥, &) is Helson q,
for each ¢ there exists [;e 4 (@) with ||;]] ; < f > asuch that I;(z) = <{0(=), 7>
for ze B. Let | be the Borel-measurable A (G)-valued function d(}fined on
H" by l(n) =1 for neK,, I(n) =0 for n¢ K. Then kleL, HA; A(G).
This implies that v = (k)#(k)* is an element both of Co(H"; A(6))
and of C,(@; A(H")), in both cases with norm < g by Lemmas A and
B. Viewing v as an element of C,(¢; A(H")) we have w(z, 5)
= [ > bw, y)dy where heCo(G; Ly (H)). Define g by
bzt

g@) = [ f(@,9)h@, y)dy.
H
Since feC,(@; Cy(H)) we obviously have
lg(@)| < supyer|f(@, )| [ h(e,2)lde
H

which gives assertion (iii). On the other hand, for fixed z¢@ the Parseval
formula gives

[ flo, p)hie, dy = [ pl@, v @m)dn
H

H™

since h(x, +)e Ly (H) with (@, -) as Fourier transform and ¢(w, *)e Ly (H")
with f(z, *) as Fourier transform. Thus we have

[ ol@, )y, ndy.

H*

g (w)
Regard ¢ as an element of L,(H"; A(@) and y as an element of

Co(H™;A(@). Then we see that geA (&) and ||yl < llglh /vl < IfILeA>
This gives assertion (i). Finally we must estimate

o, 6 @) —g(@) = [ K@), )=y (@, M]g(@, n)dn
A
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for weE. To do this note that [<6(2), 7> —1(x, )] < }e for nesuppk,
e B. Hence, writing #(x, n) = {0(z), > we have
[ — Bk * (9%)*| = |l (1k)* — 0% * (9k)*|
< (=) E* (W6)*| -+ 9% * [(1— 9) k]|

< Felkls |1E]ls+ ¥ e 0% %]l < %e.
‘On the other hand

Ox (9%)* () = [ <0(2), 00>k (n2) <O(@), Lrk(D) dz

T
= <b(@), DE*k(n).
The conclusion is that for ze B and all 5
[K0(@); m> —w(z, M < [KO(@), 1> —0(@), MHE*E* (n)| + 3¢
= [1—Fk*E*(n)| + 3¢
which yields

If @, 6@) —g@l < [ [L—k*k*(n)+3ellp(@, n)ldn < e:
A
this is assertion (ii).

ReMARK. In case G is discrete one can pass to Fourier—Stieltjes trans-
forms and take ge B(G) so that |lgllz < a®||fll., g{z) =f(m, ﬁ(w)) for
ze B, and |g(@)| < a®sup,g|f(®, y)| for all x<@. In this situation E is
a finite set. The particular case H = ZF with 6: § — H the obvious
map in the Lemma of [2].

Proof of Theorem 1. Let H > @ be a morphism of locally compact
commutative groups. Then there is a BAN-morphism 4 (G)®A(H)
—~A(GXH) given by k®hi>f where f(z,y) = k(zmy )h(y). Given
a neighborhood V' of the identity in @ let us fix ked (G) with ||k, =1,
k(1) =1, and k¥ = 0 outside ¥~'. Thus f(x,y) = 0 unless =y <Ve. Now
apply Drury’s Lemma.

2. Proof of Lemma 1 and related estimates. In this section the group &
is kept fixed. We always have «>1 and 0 < e<C 1.

For each ¢ with 0 <¢< 1 we consider a statement about the closed
set B < @.

(Ci,,) For each ¢ eCy(B) with ||¢|, <1, each f > a, and each closed F < G
disjoint from E there exists fe A(G) such that

@ Ifl.e < A—0)20 (e),
(i) lp—f1 <t on B,
(iid) 1< (1~1)% on F.
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Tt is easy to see that the truth-value of 0,‘1,6 is independent of . The
conclusion of Theorem 2 is: (Ve)CY ..
We also consider the statement
(L) For each pe M (G) we have

[ 1au) < o2(1+ae) 7 [w (@) lluloar + ellplal-
B

In order to prove Lemma 1 it suffices to prove that C,, and I,
are equivalent. Before doing this let us observe that if we take &7 = a2

then I,, gives

(A+1) [ ldu) < Aa2e (A0 |pleas+ 16l
o}

where 4 > 0 is arbitrary. Now if (#,, &) is Helson « and (E?, Q) ‘is Helson g

and we suppse suppu < H, U E, then the above inequality gives

lellar < (A —1)"* [a?0 (1/2e®) + B2 (1/28*) ] pllpar-

An estimate of the form w(e) < ;¢ ¥ and A = 2j+1 shows that the
union of a Helson « and a Helson ﬂ‘_ls Helson H(a, 8) < (2j)7(2j + 1)
0Q;(o?+ - g2+1) For o and p mear 1 we take j =1 and @, =1. For
large @ and 8 better estimates are obtained by taking j near loga and
using estimates for £; given below. For fixed « and large § it is better
‘touse the I, , inequality only. In this way the Corollary following Theorem
3 and the' §ubsequent remarks are proved.

It we weaken I, to f |dp| < a®lw(e) HILLHPM-}—EH‘L&HM] and use

wle) < Qe then there is no need to restrict £<<1. The best choice

of ¢ gives ;
COROLLARY TO THEOREMS 2 AND 3. If (&, @) is Helson o then for.all
we M(@) we have

J Vi < o G2l sy, where 0 = (2+1)7
B

‘We now turn to the proof of Lemma 1.

Proof that Q,, = L, ,. It suffices to establish I,, for a denlse subset
of M (@), in particular for u's such that suppu = B U F where F is a closed

set disjoint from B. In this case [ |du| = sup|[ pdu| where gpeCo(B U F),
I

llglle <1 and ¢ =0 on F. Now for fed (@)

|[ eau|<| [ fau+] [ (o —1)du] < 1F Lallone+ 19— Flo lllaes
where ||p—fll, is the supremum on B U F. Thus from Cf, we get

Utpd,ulé(1~t)ﬂ2w(a) for all B> a

lelipar +max[t, (1—1)% ] el
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and hence
| [ pau]| < (1—1)a*0 (&) |ullpar+maxt, (1—t)a*e] ).

Take t = a*e(1-+a¥e)™ %

Proof that I,, = C,,. Fix ¢ = d’¢(L+a%) " and put = = &/w(s).
Consider the Banach space Co(H. U F)x A (@) which consists of the pairs
(v, 9) with yeCo(B U F), ged (&) and |(y, 9) = max |yl lg]ls). Let §
be the subspace consisting of elements of the form (f, —f) for feA(@).
Given geCy(E) let peCy(E U F)x A(Q) be the element @ = (@, 0) where @
is extended to be 0 on F. Then Of,:z is the statement: distance (¢, 8) < £]|¢]lw -
This number can be computed as sup|L(g)] where L ranges over the
linear functional of nerm < 1 which vanish on S. The dual space to
X X Y is X'+ Y. In this instance it is M (B U F) -I—PM (@) which consists
of pairs (u, T) with pe M(E U F), T« PM(G) and ||z, T)|| = llpllar+1Tlpar-
If (4, T) vanishes on 8 then [fdu—7{f, T> =0 for all feA(). This
says T = v~ du. Thus sup |L(p)| = sup|[ du| taken over ue M(E U F)

with {lully+ 77 ullpr < 1. By I,. this inequality implies f]d,u[ <t
yo

3. Proof of Lemma 2. The deduction of Lemma 2 from Theorem 1
is straightforward and the reader may skip the details.
‘We suppose that (#, &) is Helson « with B compact and that peCy(H),
B >a, F a closed subset of G disjoint from F, and & with 0 < e << 1 are
given. For simplicity we suppose |joll,, = 1.
Fixy > 1 such that y*® < £ and fix o > 0 such that as < (> —y*&)e.
Let V be a neighborhood of the identity in & such that B N VF =@.
Since (E~, H) is supposed to satisfy the conclusion of Theorem 2,
given F~ a elosed subset of H disjoint from E~ there exwts hosA(H)
with [y < yo(e), hy =1 on B, |hl;<e on F~. Put ¢ = pon where
H = @is the given morphism. Then since (B, H) is Helson 1 there exists
hieA(H) with [[hy)l; <y such that h, =¢ on E”. We put & = hh,
F" = a Y(VF) and apply Theorem 1. This gives the existence of geA(G’—)
with Jlglly < (ya)* i, < y* 0?0 (e) such that jp— gl <o on B, lg| < (yalye
= y*a’c on F. Since E is Helson a and ¢ —g considered as an element
of C(E) has norm < o, there exists g,<4 (@) with llglls < ao such that
g1 = @—gonE.Putf = g+ g,. Then f satisfies the conclusion of Theorem 2.

4. Proof of Proposition 1 and description of the behavior of w. Given
1> 0 define ped(Z™ by p(x) = exp(— }t|z°) where |z]* = af+ ... +ab.
Then [p|l, =1. The set H; = {weZ™: a,+. .+, =1} is a coset.
Hence there is a Fourier—Stieltjes transform hsB(?") with  |[hllp =1
sach that .h =1 on H; and. % =0 elsewhere. Put f = eph; then
Iflle < lpilaliblz < e and fl@) =0 if @¢H,. If weH, we have
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f(x) = exp{—tk(x)} where
2k (@) +1 = |s* 4 ... + |w,,]2.

It is clear that k() is always a positive integer and k(z) = 0 iff ze B, .
Taking ¢ = logl1/e the f just constructed meets the requirements of Pro-
position 1.

By the definition of w, and the weak* compactness of the unit ball
in B(Z"), given ¢ there existy a Fourier—Stieltjes transform fe B(Z")
with [[f]z = w,(e) such that f =1 on B, and |f| < ¢ elsewhere. In this
context we can pass to n = oo, Thus w(e) = inf(|f||z for fe B(Z*) with
f=1on E, and |f| < ¢ elsewhere. It is immediate that

o[£} < dotd+ale)] and w20 < o (80l

In particular, w is convex and hence continuous.

‘We have already established the estimate w(e) < e ' I don’t see
how to improve this when {<<e<1, but we shall now show that for
§ =1,2,... there are bounds w(e) < 2;¢7"¥. In fact, we shall construct
suitable £; with log 2; < }(logj)?+ Clogj where € is some constant. For
a given small & we can choose j = [logl/e(loglogl/e)~'] which gwes

—~1/2

logw(e) — 1 (loglogl/e)? -~ —co0 as & - 0.

Our initial construction gave us a function fe B(Z*) of the form
f@) = g, (¢, k(x)) where ¢, (u, k) = 4% we shall always assume 0 < u <1
and k(z) = + oo if z¢ H,. Now suppose we have a function ¢; with the
properties

(@) ¢, 0 =1

(b) @;(-, k) =0 for 0 <j<k,

() @i(w!, & = O u* for k> j where |C),| <1

@) g, k(s < QuP.

Choose 2; >1 and put ; _

q7j+1(’“'7+1; k) = }“j_l{(lj‘i‘l)%' [(/17"5—1)”1“7'70]“ (Pj(ujy k)}.
Then ¢;.; has the above properties with

1 )
8 = (1 L)t r2r+ 1] 2
A Ay

If we put f(x) = ¢(c", %(v)) then f =1 on B,, and |f|< e elsewhere
while |fllz < @;e7Y. Starting with 2, =1 the Q; 8 are determined
recursively from the sequence {1}. The choice 1, = j gives the type of
estimate previously claimed.

5. The free compact commutative group and the proof of Proposi-
tion 2. Let CA designate the category of continuous homomorphisms
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of compact commutative groups and COMP the category of continuous
maps of compact Hausdorff spaces. Let U: CA — COMP he the forgetful
functor to the underlying space. Then U has a left-adjoint I': COMP — CA,

and there is a natural transformation Id -> UI” of endofunctors of COMP,
The explicit description is this. Given a compact Hausdorff space E we
put I'" (B) for the discrete group of continuous maps BT Ifi: BE~G
is a continuous map into a eompact commutative group then y —yoi
gives a homomorphism ¢~ — I'" (B). By duality we have a GA-morphism
I'(B) - @ designated by I'(4). The map 8 associates to z¢ & the character
of I'" (E) given by (fz, x> = x(x). It is easy to see that § is a homeo-
morphism.

The functor I', being a left-adjoint, preserves inductive limits. It
does not, in general, preserve projective limits; and, in particular, it
does not preserve the type of inverse union we use below.

Let COMP, designate the category of continuous maps of totally
disconnected compact Hausdorff spaces and CA, the category of con-
tinnous homomorphisms of profinite groups. The forgetful functor U,:
CA, — COMP, has a left-adjoint I'y;: COMP, — CA, giving the free pro-
finite commutative group. Given a totally disconnected compact Hausdortt
space FE, the group I'y(#) has for character group I, (F), the discrete
group of all continuous maps y: B — Q/Z. This time, f F = lm&E, is

the presentation of F as the inverse union of its finite quotient spaces
we haNe Iy (B) = hmF o(F;). Once again the natural transformation

Id -% U,y is a homeomorphlsm

Puty = I'(6,), i.e. p is a morphism I'(E) — I'y(E) such that zpo@ = 0.
Let 4 be the kernel of y. Then we have

Levmma 3. Let E be a totally discomnected compact Housdorff space
and F o closed subset of 0E-A disjoint from OE. Then given 6> 0
there ewists keA(I'(B)) with [k, =1 such that [1—k|< 6 on 0F and
k| < 6 on F.

Proof. The map EX 4 — 6E- 4 given by (2, ¥) — 0(z)y is a homeo-
morphism since 8(z,)y, = 0(z)y, implies 64(z,) = 0,(x,) and hence
@z, = @,. It follows that there exists a closed K <= A, disjoint from the
unit element, such that ¥ < 0F-K. Choose p e 4 (I'(F)) such that [jpll, = 1,
p(l )=1, and p =0 on K. Thenp = Yp" (x) i, zeI” (B), where each
P (x)>0and Yp (x) = 1. For each y we can find ¢, I () such that
|x—¢,J) < 6 as functions on F; here the fact that E is totally discon-
nected is used. Put k = 3p” (x)TpZ x- For ze B, ysA we have k(0(x)y)
= X" (2)7, (@) 2(@)<y, 2>; and so [k(0(@)y)—p @) < Ip"(1)6 = 4.

Proof of Proposition 2. Given y >1 and ¢ with 0 << e <1 we
can find g, with 0 < gy << ¢ such that yw(e) > w(ey). Fix 6 > 0 so that
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d< efdo(ey), (L+0)g < g and (14 6)2w(e) < yw(e). Let F be a closed
subset of I'(F) disjoint from OF. Using Lemma 3 and the fact that
(6B, I'(E)) is Helson 1, we find that there exists f,e4 (I'(E)) such that
Ifdlu<<14+46, f =1 on E, and |f,| <26 on FF n(0E-4). Put F, =
F n{|fi = 26}. Then 0,F and wF, are disjoint subsets of I'y(H). From
the fact that I\ (Z) = limI(#;) where the FE; range over the finite
quotient spaces of ¥, it follows that there is a finite.space B’ such that
under the canonical homomorphism I, (%) z I'y(E') the sets 6,B' and
nly, where @ = n'cy, are disjoint. Now (0,7, I\(B')) is Helson 1, so
the first sentence of Theorem 2D applies. Thus there exists f, eA(FO(E’))
with [|folls < (14 8) w(so) such that f, = 1 on 6,8, |fo] < & on =F,. Then
[ = (foom)f, meets the requirements of the assertion of Proposition 2.

6. Proof of Proposition 3. If ¥ is a compact metric space and p
is a Radon measure on #, then given ¢ > 0 there is a closed totally dis-
connected subset K, = & such that f |du| < &, — to see this it is sufficient

- E/K,

to map E homeomorphically into/[O: 1]° and preform an explicit con-
struction. If (¥, G) is Helson 1 then Theorem 2’ applies to (K, G) where K
Is any compact totally disconnected subset of . Lemma 1 now shows
that Theorem 2’ holds for (E, &) with E metrizable and G com-
pact.

Let ¢ be an arbitrary compact commutative group and ¥ and F
two disjoint compact subsets of . Then there exists a finite set 8, « ¢
which distinguishes B and ¥, i.e. given ze B, ye¢ F there exists ze
with <@, 1> # <y, x>- Let S, be a subset of @ such that 8, U S, is a
set of generators for the abelian group G". Let ¢: G @& = TS be the
morphisms obtained by evaluating elements of @ at the points of ;.
Then (¢ X 44): G - Gy x G4 is a monomorphism with @, a finite-dimensional
torus. Put By = o, B, F, = ;,Fandlet V he a neighborhood of the identity
in @ such that B, NVF, = @. Let 6,: B, - I'(H,} be the natural map.
Then Theorem 2’ applies to (6, E,, I'(H,)) because F, is metrizable. Hence
given y;>1 and 0<g <1 there exists f, cA(T(Ey) such that |fi|,
<nole), fr =1 on 0,E, |f, <s on a7)(VF,), where I'(H,) -3 @, is
the natural morphism. Put H = @, x I'(H,) and define hed (H) by
h(ty, y)~= fu(y). We have a morphism H -% @y X Gy given by » = Gy X ;.
Letj B = (4Xu)B be the included image of F in Gyx@&,. Then
(B, 64X @,)is Helson 1 whenever (, &) is. Moreover 6 : B~ — H defined
by 0(0®, 0,@) = (1,8, 0,5,2) is & section. Tt follows from Theorem 1
that given 6> 0 there exists ged (G, x @) with 9lle < y3w(ey) such
that [1—g (4, ,2)] < 8 for we B (this is a rewriting of |1 —g| <6 on B~
and |g] < yie on G x I). A slight adjustment of the function go (4% &)
gives the required f.
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Appendix on tensor products. For Banach spaces 4 and C we define
HOM(4, 0) as the Banach space of bounded linear transformations.
This gives an endofunctor HOM(4, -) of BAN. The tensor product A®-
is defined as the left adjoint of HOM(4, -). This means that (assuming
existence) A®B is a Banach space such that the morphisms A@B — (¢
are in natural one-to-one correspondence with -the morphisms B —
— HOM(4, 0). This description gives the elementary properties of tensor
products immediately.

Given a Banach space B let us write B for the set constituted by
the closed unit ball of B (B — B is the good forgetful functor for BAN).
Then the morphisms 4A®B — C are in one-to-one correspondence with
the maps 4 X B — C which preserve the obvious linearity relations. To
prove the existence of the tensor product the easiest thing to do is to
verify that I,(4 X B)/R has the required universal property, where B
is the subspace of I,(4 X B) generated by fhe elements of the forms

(11034155 B) =11 (ay, B) —1y(Gs, B); [o] - |85 < 1, 4y, aged, beB

and the similar expressions with the roles of A and B reversed. One can
also present A® B as the ecompletion of the vector space tensor product
for the greatest crossed norm. All presentations of A® B must be naturally
isomorphic; this follows from the universal definition.
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