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For 2m,+1< i<k, where k is the largest odd integer < (n,/n,_;)—2,
each term in the first sum in zero, where now Proposition 2 (i) has been
applied to F, and F,_;. For 4>k, the left hand side of (6) is <

p-1
w(z By, W/”p);
=1
which, by (8), is < p~* (logn,_,)~'. We conclude from.(6), and from
Proposition 2 (ii) applied to F, that
) np—2
Wiy (00> D74 ol —2p~* (logm,, )™ D) i,
i i=k+1
Since k> (t,[n,_,) —4, the second sum on the right is O(logn,_,). The
firgt sum on the right is > 1. Hence Wnp (0) >1—o0(1) (p - oc) and thus
the Fourier series of F diverges at 0.
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Convergence of convelution operators
by
CHARLES SWARTZ (Las Cruces, New Mexico)

Abstract. In this paper a locally convex topology is defined on the space of
convolution operators over a general test space of functions. When the test space
is the space & of rapidly decreasing functions, convergence in this topology coincides
with the convergence introduced in ¢} by L. Schwartz. The topology is studied in
some detail, and then the special case when the test space is a K{M,} space
is considered.

In [8], L. Schwartz defined a class of convolution operators between
certain spaces of distributions and introduced a topology on this space
of operators. In this approach emphasis is placed on considering convo-
lution by a fixed distribution as a linear operator between spaces of
distributions. In Gelfand and Shilov [2], a somewhat different approach
is taken. Gelfand and Shilov define a convolution operator on an arbitrary
test space with continuous translation and then consider a few examples
of such operators, some in very general test spaces. There i3 no topology
defined on the space of convolution operators although one sequential
limit theorem is proven ([2], TII. 3.5). .

In this paper we consider the approach of Gelfand and Shilov and
introduce a locally convex topology on the space of convolution operators
on a test space with continuous translation. In the first section some
of the properties of this topology are studied and we compare this topology
with the topology introduced by L. Schwartz in [8]. In the second section
we consider this topology for a certain type of K {3} space ([2], IL. 2.1).
Our results yield the characterization of sequential convergence in
0.(K,, K,) as given in [12] and also a characterization of sequential
convergence in the space @, of L. Schwartz ([7], VIL. 3). t

Our terminology and notation will basically be that of Gelfand and
Shilov [2]. A test space is a vector space @ of infinitely differentiable
funetions on R* equipped with a locally convex Hausdorff topology such
that
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(i) 2 < & with the injection continuous and 2 dense in @,
(ii) if the net {»,} converges to 0 in @, then for each ze R* ¢, () — 0
_ (iii) if P(D) is a partial differential operator with constant coeffi-
cients, then the map ¢ —P(D)¢ is continuous on @ into &.

1. A topology for the space of convolution operators. Throughout

this section @ will denote a test space with continuous translation. That
is, for each he R™ the map ¢ — 7, is continuous from & back into @,
(Here 7,p denotes the translation of ¢ through A, 7,¢(s) = p(z+5).)
If Ted' and @e®, Txg is the function defined by T*¢(h) = (T, 7, ¢d.
A generalized function T'e @' is said to be a convolution operator on @
(convolute in [2]) if for each ¢e¢®D, T+ped and the map ¢ — Txg is
continuous on @. If T is a convolution operator on @ and Se @', the con-
volution of T and 8, T*8, is defined to be {T*8, p) = (8, T*¢> for
@e ®. The subspace of @' consisting of all convolution operators on &
is denoted by ¢.(&).

We define a locally convex topology on 0,(®) in the following
manner, If p is a continuous semi-norm on @ and B is a bounded subset
of @, we define a semi-norm ¢,  on 0,(P) by

@)

0p,5(T) = sup{p(T*p): peB}.

Then - @,(®) is equipped with the locally convex Hausdorff topology
generated by the family of semi-norms g, 5, where p runs over the family
of continuous semi-norms on @ and B runs over the family of bounded
subsets of @. Of course, the same locally convex topology is generated
if p is allowed to run over some family of semi-norms on @ which generate
the topology of &.

We have the following obvious criteria for convergence in 0,(D).

ProrositioN 1. 4 net {T,} in  O,(P) converges to 0 in O,(P) iff for
each bounded subset B of @, T,x¢ =0 in @ uniformly for peB.

I,iema,rk 1. For the familiar spaces & = & and 2 we have 0.(F)
= 0, and 0,(P) = &', and it will follow from Proposition 9 that the
topology defined above agrees with the topologies defined on these spaces
by L. Schwartz [8].

We recall that a test space @ is said to have a differentiable translation
if the limit relation (1/h;)(p(@+7;)— g (a)) »%(h, =(0,..., hy, ... 0)
;1- (())1))01;;1&2 i]i i io]i'ezach ped ([2], 111, 3.3). An immediate corollary of
COROLLARY 2. If @ has a differentiable translation and P (D) is a linear

;{)(mial differential operator with constant coefficients, then the map T — P (D)T
is continuous from O,(®) into OL(®).
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Proof. If Te 0,(P), then P(D)Te ¢,(®) by the theorem in § IIT.
3.3 of [2]. Moreover, for @e @, P(D)(T*¢p) = T+P(D)g so the corollary
follows from Proposition 1 and the fact that ¢ — P (D)g is continuous on &.

‘We now consider some of the continuity properties of the eonvo-
lution operation. First, we note

PROPOSITION 3. The bilinear wmap (T, q¢)— T+q@ from 0, (DP)x P
into @ is B-hypocontinuous, where B is the family of all bounded subsets of .

Proof. If B < @ is bounded and the net {7,} converges to 0 in
@, (D), then T,*p —0 in @ uniformly for pe B by Proposition 1.

If Te 0,(P) is fixed, the map ¢ — T*¢ is continuous on @ by the
definition of convolution operator.

From the definition of the semi-norms in (1), we observe the following
criteria for boundedness in @ ().

LEMMA 4. A subset A = 0,(D) is bounded iff for every bounded subset B
of @, {T*¢: Ted, pe B) is bounded in .

Using this fact, we obtain,

PROPOSITION 5. The bilinear map (T,8) = T*8 from 0,(D)x P,
into Dy is o/-hypocontinuous, where <7 is the family of all bounded subsets
of 0.(P) and D, denotes D' equipped with the strong topology ([107], II. 19).

Proof. If Se &', {T,} is a net in 0,(P) which converges to 0 and B
is a bounded subset of &, then T,*¢ — 0 in & uniformly for ¢<B by
Proposition 1. Thus 7,*S — 0 in @, since {T,*8, ¢> = (S, T, *¢D.

If A c 0,(P) is bounded, B < @ is bounded and {8,} is a net which
converges to 0 in @,, then (Tx8,, ¢> = {S,, T*¢p> - 0 uniformly for
peB and TeA by Lemma 4. . .

Similarly, we have

PROPOSITION 6. If 8, T'e 0,(®), then 8xTe 0,(®) and the bilinear map
(8, T) - 8*T from OL(D)X O(D) into O,(P) is hypocontinuous with
respect to bounded sets.

Prooif. Note for e @, (S*xT)xp = S*(I'*¢) and then apply Propo-
sition 1 and Lemma 4. )

COROLLARY 7. If Ue @ and 8, T e 0,(D), then (SxT)x U = S*(T+T).

In order to compare this approach to convolution with that given
in [8], we make the following observations. If T ¢,(®), then T induces
a continuous linear operator T . & ->® defined by f’(qo) = T'*g@. The
linear map T ~T from 0,(P) into L(D, @), the vector space of contin-
uous linear operators on @, is one-one since if T' = 0, there is a pe @
such that <7, ¢> # 0 and then T*@(0) = L;’(q.n) (0) 5= 0. Hence 0,(®) may
be identified with a linear subspace of L(®, ). Let v be the topology
induced on @,(®) by L,(P, D), the topology of uniform convergence on
bounded subsets of @ ([10], IL. 32).
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PROPOSITION 8. The topclogy of O,(D) coincides with the topology 7.

Proof. Let B be bounded in @ and {T,} be a net in @,(®). Then
T, >0 in O,(®) iff T,x¢ -0 in ® uniformly for peB iff 7, >0 in
L,(D, D). '

In a similar fashion if Te @,(®), then T induces a continuous linear
operator T% from @, into @; defined by T*(S) = T'*§ (Proposition 5).
Again the linear map T — T% from 0,(®P) into L(®P,, P};) is one-one
since if Te 0,(P) and T # 0, then there exists pe @ such that Txp #0
and the Hahn-Banach Theorem insures that there exists Se &’ such
that (8, T+g) = (T*8, p) #* 0. Thus @,(P) may be identified with
a linear subspace of L(®’, &'). Let <’ be the topology induced on 0,(®)
by the space of linear operators L(®’, ®,) equipped with the topology
of uniform convergence on equicontinuous subsets of @'

PROPOSITION 9. The topology of 0,(D) coincides with the topology ~'.

Proof. Let B be bounded in & and 4 be an equicontinuous subset
of @' If {T.} is a net in O,(P), then 7, 0 in 0,(P) iff T4 -0 in &
uniformly for pe B iff (S, T,*¢) = (T,*8, p> = T#(8)(¢) - 0 uniformly
for pe B and Se<d ([6], Prop. 3 of III) iff TF — 0 in L(P', &) with respect
to the topology of uniform convergence on equicontinuous subsets. -

Remark 2. From [8], § 11 it follows that the topology defined here
coincides with the topology introduced by L. Schwartz for the spaces
0,(2) = &' and 0,(&) = 0,.

Remark 3. This is also the case when &' is the gpace of distributions
of exponential order (see [12], Theorem 4).

The results in Propositions 8 and 9 can be used to deduce certain
topological properties of ¢,(®P) inherited from .

COROLLARY 10. If @ is complete and barreled, and D, is nuclear, then
0,(D) is nuclear.

Proof. ,Under the hypothesis, L,(®, @) is nuelear ([10], IIL 50.5)
and thus 0,(P) is nuclear ([10], IIL. 50.1).

COROLLARY 11. If & is bornological and complete, then 0,(D) is complete.

.Pro of. Suppose {7} is & Cauchy net in 0,(®). Then {f’,,} is a Cauchy
net in Z, (P, @), and sitce I, (P, @) is complete ([10], Corollary 1 of II.
32.2), there exists Se L,(®, ) such that i‘v - 8.

. RDeﬁne Ted by (T, 9> = §(@)(0). For pe®, S(p) = T+¢p since for
he R”,

’

S(e)(h) = UmT,*p(h) = HmT, *(z,¢)(0) =
=8(mp)(0) =<T, 19 = T*p(h).
Thus for ge®, T+pe® and the map ¢ = T*¢ iy continuous. That is,
Te 0,(®) and, moreover, T, - T in 0,(®) since T = &.
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By applying Corollary 2 of Theorem II. 34.2 of [10] and using the
same technique as above, we may also obtain

COROLLARY 12. If @ is barreled, then 0,(®) is quasi-complete.

This method of course has its shortcomings. For example, properties
such as @,(®) being barreled (bornological) cannot be deduced by this
method since subspaces of barreled (bornological) spaces aren’t necessarily
barreled (bornological). However, many of the familiar spaces of convo-
Iution operators are barreled and bornological. (See [4], Theorem 16 for
C,(&) and [12], Corollary 1 of Theorem 9, for the space of convolution
operators on the distributions of exponential order.) It would be interesting
to determine what properties of @ imply 0,(®) is barreled or borno-
logical.

2. Convergence of convolution operators for certain K {1} spaces.
Let {3,} be a sequence of continuous functions defined on R* such that
1< M2 < My(z)<...xe RE

The space K {IM,} is defined to be the vector space of all infinitely
differentiable functions ¢ such that M, D%¢ is bounded on E* for every
positive integer p and |o| < p. The vector space K {AM,} is given a locally
convex Hausdorff topology by means of the semi-norms

2) »=12,...

In this section we will only consider K {3 ,} spaces which satisfy the
condition (P) ([2], II. 2.1). The sequence {M,} satisfies condition (P)
if: (P) for each p there exists p' > p such that

loll, = sup{M, (@) D°p(z)|: ze R |o < p}

lim M, (#)/M,(x) =0.
|00
We will give examples of such spaces at the end of this section.

If & = K{M,} and the sequence {M,} satisfies condition (P), then &
is a test space. Indeed, it is eagily checked that properties (i) and (iii)
for a test space hold and property (i) follows from Theorem 1 of II. 2.5
in [2]. Thus any generalized function T« @’ can be identified with a dis-
tribution. ‘

We have the following result pertaining to sequential convergence
in (D). )

ProposrTIoN 13. If T, — 0 in O (D), then for each positive integer p
there is a positive integer n, and bounded continuous functions f, (0 < [J] < ny)
such that

i) T, = Z -Djfﬂ,iy

l<ny,

(if) each function M,f, ; is bounded and for every j, im M,f, ;(f) = 0

uniformly for t in RF. ‘ "
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Proof. Since T, >0 in 0,(®), D = {M,(h)7_,T,: heR*, n>1} is
strongly bounded in 2'. Consider _D as a net in @' directed by (n, h)
> (»', b') iff 2> «'. Then D is a bounded net which converges to 0 in 9’
with respect to the strong topology since & = @ and the injection is
eontinuous (Proposition 3). Therefore there is a compact neighborhood K
of 0 in R* and a positive integer m such that if ye 9%, then the net
{(M,(h)7_, T,)*y: heR¥,n>1} of bounded continuous functions con-
verges to 0 uniformly on K ([7], Ch. VI, § 7, Th. XXIII). The elementary
solution B of AY is m-times continuously differentiable for large N so
if we take y ¢ D5 such that y is equal to 1 on a neighborhood of the origin,
then yEe 2% and 8 = 4¥(yE)— ¢ where ge 9. Thus

(3) Tn = T”*(S = AN(Tn*yE)'—Tn*(p

Since the net D converges to 0 in £,

(4) <Z|Ip(h)7—hTm (P> = MzJ(h)Tn*<p(h) -0

a§  m — co uniformly for he R*

and each function T',*¢ is bounded and continuous. Since yH e 2, the
net of continuous functions {M,(k)t_,T,*yE: he R*, n>1} converges
to 0 uniformly on K. Therefore each function T, *yE is bounded and
continuous and

(5) lim M, (h) T, * (yB) (k) = 0

uniformly for he R* since 0¢ K.

Formulas (3), (4) and (B) give conditions (i) and (ii).

If the sequence {1} satisfies some additional conditions, the con-
clusion of Proposition 13 can be reformulated. In particular, {M,} is
said to satisfy conditions (M) and (N) if:

(M) the functions M, are quasi-monotonic in each coordinate, i.e.,

it |Xi < |Xj|, then M,(Xy,..., %X} ..., X)< My(Xyy ooy Xy ooy Xy
for each fixed point (Xy,..., X; 1, Xjpy, ..., Xy).

(N) for each p there is p’ >p such that the ratio M, (x)/M, (@
= My, () tends to 0 as |z| — co and the function m,,, is Lebesque summmble
on BF ([2], IL. 4.2).

COROLLARY 14. Let {M,} satisfy conditions (M) and (N). If T, -0

in 0, (D), then for each p there exists n(p) and continuous fumnons fuse THERY)
such that ’

(I) Tn = Z -Djfn,i:
171<n(p)
(1) each M,f, ;¢ L'(R*) and for every j, M,fn; 0 in L'(R" as

n — oo,
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Proof. Pick ' > p as in condition (N) and then set n(p) = n,, as
in Proposition 13. With the notation as in Proposition 13, we have
Mypfril < My |fo il Myp < Omy,y, since the sequence {M, f,”},, 1 I8 uni-
formly bounded Sinee lim M, (t)f, ;) = 0, M f,; = 0in LYRFyasn — oo

by Lebesgue’s Dominated Convergence Theorem.

‘We now seek converses to the two statements above. We show that
such converses do exist in certain K {M,} spaces.

The sequence {M,} satisfies condition (F) if:

(¥) each M, is symmetric, i.e., M,(x) = M,(—x), and for each p’
there is a p’>p and Cp > 0 such that M, (x4 h) << Cp My (@) M, (h)
for all @, he R* ([9]).

We recall that if {1} satisfies conditions (M) and (N), then the
semi-norms .
©®) gl =sup{[ M (@)|Dp(@)|do: ol <p} (A<p< )

generate the same locally convex topology on K {M,} as the sequence
in (2) ([2]}, IL. 4.2). (Throughout f f denotes the integral of f over RE)
Thus in this case the topology of @,(®) is generated by the semi-norms

) T > sup{[ M, ()| D*T*g(0)|di: |a] < p, pe B},

where 1<<p < co and B is a bounded subset of @ (equation 1))

PrOPOSITION 15. Let {M,} satisfy conditions (M), (N) and (F). If the
sequence {T,} < @' satisfies the conditions (I) and (II) of Corollary 14,
then each T,ec 0,(D) and T, —0 in 0O, (D).

Proof. First we show that if Te @' satisfies conditions (I) and (II)
of Corollary 14, then Te @,(®). Let ¢ be a positive integer and |a| < q-
Set »p = ¢’ as in condition (F), and apply the hypothesis of (I), (II) in
Corollary 14 to the integer p. Then for ¢e @,

(8)
[ M (W) D*Tx ()| @k = [ M,(1) [T, 7, D° 9| dh

<[u,m) D [If@D* ¢(a+h)dzdh
17i<n(n)

= 3 [ 1fi@)| M ®)| D p(a+h)| dhde
1il<n{p)

< D O [1fi @)\ My(@)ds [ M, ()| D p(w)] du
lil<n(z)

<0 > [ 1HMy el

lii<n(p)
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Since @ has a differentiable translation ([9], Cor. 2), each T+ is infinitely
differentiable, and it follows from (8) and (6) that T+¢< @ and the map
@ — T'xp is continuous. Hence Te 0,(P).

If the sequence {T,} = &' satisfies conditions (I) and (II) of Corollary
14, then equation (8) applied to each T, implies that T, -0 in ¢}(®)
by (7).

COROLLARY 16. Let { M} satisfy condition (M), (N) and (F). If {T,} = &'
satisfies the conditions (i} and (ii) of Proposition 13, then {T,} < 0,(®)
and T, -0 in O,(D). :

Proof. Let p be a positive integer and choose p’ as in condition ().
Apply the representation in (i), (i) of Proposition 13 to the integer p’.
Then My |fosl < My |fp;lMpy < Omy, since the family of functions
{Myfns: n21, 0<|jl<n,} is uniformly bounded .by hypothesis.
Since lim M, (t)f,,;(t) = 0, the Lebesgue Dominated Convergence Theorem

implies M,,f,; — 0in I*(R"). The corollary now follows from Proposition 15.
Summarizing, we have
TeeorREM 17. Let {M,} satisfy conditions (M), (N) and (F). For a se-
quence {T,} < @, the following are equivalent:
(a) {T.} € O(D) and T, 0 in O,(D),
(b) conditions (i), (ii) of Propoesition 13,
() conditions (I), (IX) of Corollary 14.

Remark 4. The argument in Corollary 14 shows that if Te @' is

such that for each p, 7' is a finite sum, T = ID’ f; with I,f; bounded,
then »

(9)  for each p, T is-a finite sum, T = ZD?g;, with M,g;¢ I'(RY).

The ’argument in Proposition 15 shows that it Te & satisfies (9), then
T'e 0,(D). Therefore, by Theorem 2 of [9], Te0,(D) iff (9) holds.

By the same type of arguments employed above, we can obtain

THEOREM 18. Let {M,} satisfy conditions (M), (N) and (F). For o subset
B ={T,: acd} = &, the following are equivalent: } ‘

(a) B is bounded in 0,(®);

(b} for ea?h positive integer p there exist n(p) and continuous Sfunctions
Fuglacd, 0< 5] <n(p)) such that T, = Df.; and the family of
) ) 1<aw) |
con?;,guous functions {Mpfos: aed, 0] < n(p)} is uniformly bounded

on R*;
(e) for eac'h positive integer p there ewist n(p) and continuous fumctions
Jeslacd, 0< il < (@) with T, = 3 DIf, | and

lil<n(p)

{M,fot aed, 0 |j] <n(p)}  bounded in I*(RY).
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‘We now consider these results for some of the more familiar spaces
of generalized functions.

ExamMPLE 1. The space & ([7], VIL 3) is a K{M,} space with M,(z)
= (1+|2*)? and {3} satisfies (M), (N) and (F) ([9]). Theorems 17 and
18 therefore apply to . These characterizations of convergent se-
quences and bounded sets in @, do not seem to appear in Schwartz’ book
[7] but can be derived by using the method of proof employéd in Theorem
3.59 of [1]

ExavpLe 2. The space of distributions of exponential type ([5],
[11], [12]) is the dual of the K{3,} space, where M,(z) = exp(py(:c)),
y(z) = l/l—f—{wP. The sequence {M,} in this case also satisfies (M), (N)
and (F) so that theorems 17 and 18 apply. A form of Theorem 18 for
this case is given in [11], Proposition 12.

Examere 3. The Wy, spaces of Gelfand and Shilov ([3], I. 1.1)
are also K {M,} spaces satisfying (M), (N) and (F) ([9]). Hence Theorems
17 and 18 ar& also applicable fo these spaces.
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