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A characterization of subspaces of I”(u)
by

J.R. HOLUB (Blacksburg, Va.)

Abstract. Generalizing results of Kwapied and Cohen (Studia Math. (38), pp.
271-278) which characterize Hilbert space in terms of the behavior of absolutely
2-summing operators, the following theorem is proved:

If E is a Banach space then the following are equivalent:
i) B* < IP (w) Jor some p (1< p < +o00).
(i) If TeQNp(E, ") then T*<QN, (%, E¥).

§ 1. Motivated by a result of Cohen [1], Kwapieri has proved the
following characterization of Hilbert space.

THEOREM [4]). If B is a Banach space then the following are equivalent:

(i) E is isomorphic to a Hilbert space.

() If TeAS,(B, ) then T*<AS,(L, E*).

In this paper we show that the following more general result con-
cerning subspaces of LP(u) is valid.

TeEEOREM. If F is a Banach space then the following are equivalent:

(i) E* < IP(u) for some u (1< p < +oo).

(i) If T<QN,(E, ) then T <QN,(1% E*.

The proof is based on a result concerning the adjoints of p-quasi-
nuclear maps on Z%spaces (which extends a theorem of Persson [7])
and on a characterization of subspaces of I”(x) in terms of a domination
property of sequences which has been given by Lindenstrauss and Pel-
czynhiski [5]. The result of Kwapieni follows immediately from our theorem.

§ 2. Notation. Throughout the paper E and # will denote Banach
spaces and % (F, F) the space of all continuous linear operators from ¥
to F. The term “operator” or “map” will always mean an element of
Z(B, F).

Recall that an operator T'e¢.%(E, F') is said to be
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(i) p-nuclear [8] if T has the representation I' = 2fi®yi where
(f) = B (y:) = Fand2||f¢|1p< +oo," s 2lgu* < oo (p~t4q!
LgeF™* 4
= 1). The p-nuclear mwm of T, denoted N,(T), is defined by

(1) = int{( ufr )" sup (o war)™},

where the inf is taken over all such representations of 7.

(ii) p-quasinuclear [8] if there is a sequence (f;) = B* for which
Z]|f1”1’< +oo and || T < (S'Ifl(m )IP)2 for all x< B. The p-quasinuclear

fnorm of T, denoted by QN, (T), is defined by
o,(m) = int {( D II7)),

where the inf is taken over all such (f;).
(iii) p- absolutely summing [5] if there is a K > 1 such that for every
(m)e, = B, (Z T2 Py < K sup (Z |f(@)|P). The p-absolutely sum-

1,fel* d=1
Mming norm of T denoted AS (T

AS,(T) = infK, where K is as above.

We refer the reader to [7] and [8] (among others) for results con-
cerning properties of these operators.

If ¥ is isomorphically embedded in F we write F < F. If E and F
are isomorphic under a mapping I': F < I for which ||T| |77 < A then
we say B and I are A-isomorphic and that T is a A-isomorphism.

A Banach space F is called an #%-space (1< p < +o0) [5] if given
any finite dimensional subspace F < F there is a finite dimensional
subspace ¥y ¢ B such that ¥ = F, and F, is Aisomorphic to I? (where
r = dim Fy). It is well known that IP(u) is an Z%-space (for some 1) for
any measure u [5]. ‘

Throughout the paper we assume that p—* - g
- symbols occur.

is defined by

=1 wherever these

§3. Adjoints of p-quasinuclear maps. Our main theorem is a con-
sequence of the following result which extends a theorem of Persson [7].
TemorEM 3.1. Let B be an Li-space (1< ¢< +o00) and let T: B - F
be in QN, (B, F) (wherep™*+ ¢~ = 1). Then T*: F* - B* is in N,(F*, B*).
Proof. Since ¥ is an #f-space it follows from results of Persson and
Pietsch [8] that T ig the limit in p-absolutely summing norm of a sequence
of finite dimensional maps and hence may be written 7 = Zm ;®1Y,; where

(@) = B (y;) = F and the series converges in p- absolutely summing
norm (use essentially the same proof as ([10], p. 94)).
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n
Let ¢ > 0 and N so large that m, n > N implies ” Z 2:®@Yd| s, < &
Let m, n > N. Since B is an Z%-space, B* is an £7-space [6] ( 1igt=1)
and so there is a subspace X, B* such that X, is Z-lsommphm to %
under the mapping S: ¥ — X, and (2;)in < Xr
= Y a;;8¢; (where (¢)f, is
=1 .

Then for each i =m, m+1,..., 7 &

the unit vector basis for I?) and hence
r

n n ” \
LS 540 > “*'fy"nASp = Hgﬂ; (]; aySe,) EW!‘“AS H S‘woyw 45,

i=1 T=m

Therefore since § is a A-isomorphism it easily follows that

Hi:el (y ”y’)!,ds < A-g,

y4
i=1 i=m
T n 7
where we are considering > e® (> a,,-,-yi) as an operator from 2 to F.
i=1 i=m

r n - "
However we may also consider Y ¢®(Y ayy;) as an operator from F
i=1 i=m

= .
to I and under this identification we have by definition of the p-nuclear
norm and the fact that.(ej) is the unit vector basis for ¥,

S0 S assil < (3] 3 aard)”

j=1

But

= (SIS (3 e o

HZ’ &® (2 iiyi)”As?

i=m

(S 3 e

j=1 t=m

o

< A-e.

Therefore we have

”Z %® (2 agy{ly, <A

and since § is a A-isomorphism we again have

Ilgﬂe@ LZW: ai,-yi)! Np< e



GUEST


268 J.R. Holud
r n n . n
Since 3 8e;®( Y ayy;) = Y 4,©y; we then have, considering 3 R,
=1 i=m i=m i=m

as an operator from T* to E*,

n
“ Z 2,@Y;
1=m

and therefore Y #,®y; converges in N, (F*, B*). But since D z®y;,
=1 i=1

< Vs
Ny ’

as an element of & (F*, B"), is simply the adjoint of T = 3 #,®y, considered
=1

as an element of .#(E, F), we have proved that T*eEVp(F*, ).

As a corollary to Theorem 3.1 we have the following result which
extends Persson’s theorem that every p-absolutely summing operator
from L%(u) to L*(») is p-nuclear [7].

COROLLARY 3.2. Let 1< q< +oo, B an $%-space, F an LP-gpace
and I: B —~F in £ (B, F). Then the following are equivalent:

() T is p-absolutely summing. ‘

(ii) T* is p-nuclear.

(iif) T 4s p-nuclear.

(iv) T* is p-absolutely summing. ,

Proot. (i) = (i) follows directly from Theorem 3.1 since for 1<yg

< 400 an Z%space is reflexive [5] and every p-absolutely summing
map on a reflexive space is p-quasinucléear [7].
) *(ii) = (ili): If F is an #*-space then F* is an Z%-gpace [6]. Hence
if 7*%: F* -~ B iy p-nuclear then T* ig certainly p-quasinuclear and so
by Theorem (3.1) I™*: B** — F** is p-nuclear. But T = T and so (iii)
holds.

(iif) = (i) is well known [8].

(i) < (iv) is clear from the proof of (i) < (iti).

We are now ready to prove the theorem announced in the intro-
duction.

TurorEM 3.3. If E is a Banach space then the following are equivalent:

(i) B* < IP(u) for some measure u(1<p< +o0). '

(il) TeQN, (B, V") = T*<QN, (1%, B*).

Proof. (i) = (ii): First, suppose B* < I7(u) for 1 < p < -+ oo. Then

% . .
F, and hence F, is reflexive [5] and there‘ is a mapping Q: L9(u) oo pex g,
Let TeQN,(B, 7). Then ToQ: L (u) RS iy in QN, (L% (u), ) [8]
and hence by Theorem (3.1) the adjoint (ToQ)" e N, (1%, I (1)) But

since (ToQ)* = Q*oT™ where @* is an isomorphism it easily follows that
T* QN (19, B). Y
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For the remaining case suppose B* < L'(u). Then there is a mapping
Q: I°(y) = B*. By Kakutani’s theorem I®(x) is isomorphic to some
#(A) (where A is a compact Hausdorff space) and thus there exists an
operator Q,: €(4) %" B*™. Let T2 (I', B*). Since I' has the lifting prop-
erty [3] there is then a mapping S: I' — % (4) such that T factors as

TP >%d) B>

that is, £, B*) = I,(P}, B*) [8].

Since I* has the metric approximation property of Grothendieck [2]
it is known that Z(I', F**)= N(E,1)*[2] and I,('E™) =QN(B,H*
[8]. Hence (since the identifications of these dual spaces are accomplished
in exactly the same way in each case) we have that QN (B, 1') = N (E, I!).
Therefore i#f Te QN(E,1') then T*«N(I®, B*) and so -certainly
T*e QN (1=, BY).

(if) = (i): By assumption, if TeQN,(F, ") then ”T*H@Np< -+ co.
Therefore by the Baire category theorem and the fact that QN,(E,P)
is complete [8] there is a number K > 1 such that if T eQN,(E, *) theh
HT*HQN,, < KHT”QNI,' In particular HT*”ASp < K“-T”QNp (8] N

Now let (f))7-; and (g;)7; be sequences in E* such that 3 |F(f)|”

i=1
m n m
< Y |F(g)? for all Fe E*™. Then in particular Y |fi(x)]? < 3 |g;()|” for
J=1 i=1 =1
all ze B. Define the operator T: E —1* by
n
T(z) = ) fi@)e:.
i

Then TeQN,(E,”) and by definition of || “Q.vp we have

”T”Wz, < (i" !igj“p)”b

n m
(since |Ta = (31f:(0) "% < (31g; ()"} for all @),
i=1 =1
Therefore by the above we have

”T*“ASP < K(S “gjnp)llb-

j=1

But clearly T* = 3 ;9f;: 1! = E* 50
P}

1T"as, > ( b WPy

i=1
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It follows that

(iMmHW<KQ§me

and by a theorem of Lindenstrauss and Pelezyhiski ([5], p. 313') ‘we con-
clude that E* < IP(u) for some measure x and the theorem is proved.

The result of Kwapied mentioned earlier is now immediate. For,
if B is isomorphic to a Hilbert space then E* c I*(u). If TedS, (B, 1
then TeQN,(B, I*) [7] (since B is reflexive). Hence by Theorem (3.3)
T* QN (B, B*), implying T*< A8, (P, BY).

Conversely, if TeAS,(B, V)= T*cAS,(I% B*) then TeQN, (B, 1)
= TeAS,(B, ) = " A8, (P, B*) = T*QN,(P, B*) [7], and by The-
orem 3.3 B* « L*(u). It follows that F is isomorphic to a Hilbert space.
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Weak type inequalities for product operators
by
NORBERTO ANGEL FAVA (San Luis, Argentina)

Abstract. In this paper we prove a weak type inequality for products of sublinear
operators from which a generalization of the ergodic theorems of Dunford and Schwartz
is deduced. As a further application, we show how the inequality yields a simple
proof of the theorem of Jessen, Marcinkiewicz and Zygmund on strong differentiability
of multiple Lebesgue integrals. :

INTRODUCTION

1. Preliminary definitions and statement of results. The space
underlying the following exposition will be a o-finite measure space
(2,8, w-

Dunford and Schwartz have proved in [4] that if each of the linear
operators T;(i = 1,2, ..., k) is at the same time a contraction of L' and
of L*, that is, if :

ITh <1, |Tde<1,

then the multiple averages
ny—~1 np—1

1 i i
P Z 2 Th ... Tixf
=0 =0
converge almost everywhere in £ as n, - oo, ..., 7, — oo independently,
provided that the function f belongs to some class L, with p > 1, in which
case the limit funetion is in L” and the averages converge to the limit
also in the LP-norm. We denote by R, the class of all funetions f such

that the integral
1f1 LF1VE
1o 24 du-
7 g o

{If1>t}
is finite for every t > 0.
‘We show that this class is a vector space which contains properly,
for any %> 0, the linear span of {J I*.

p>1
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