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It follows that

(iMmHW<KQ§me

and by a theorem of Lindenstrauss and Pelezyhiski ([5], p. 313') ‘we con-
clude that E* < IP(u) for some measure x and the theorem is proved.

The result of Kwapied mentioned earlier is now immediate. For,
if B is isomorphic to a Hilbert space then E* c I*(u). If TedS, (B, 1
then TeQN,(B, I*) [7] (since B is reflexive). Hence by Theorem (3.3)
T* QN (B, B*), implying T*< A8, (P, BY).

Conversely, if TeAS,(B, V)= T*cAS,(I% B*) then TeQN, (B, 1)
= TeAS,(B, ) = " A8, (P, B*) = T*QN,(P, B*) [7], and by The-
orem 3.3 B* « L*(u). It follows that F is isomorphic to a Hilbert space.
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Weak type inequalities for product operators
by
NORBERTO ANGEL FAVA (San Luis, Argentina)

Abstract. In this paper we prove a weak type inequality for products of sublinear
operators from which a generalization of the ergodic theorems of Dunford and Schwartz
is deduced. As a further application, we show how the inequality yields a simple
proof of the theorem of Jessen, Marcinkiewicz and Zygmund on strong differentiability
of multiple Lebesgue integrals. :

INTRODUCTION

1. Preliminary definitions and statement of results. The space
underlying the following exposition will be a o-finite measure space
(2,8, w-

Dunford and Schwartz have proved in [4] that if each of the linear
operators T;(i = 1,2, ..., k) is at the same time a contraction of L' and
of L*, that is, if :

ITh <1, |Tde<1,

then the multiple averages
ny—~1 np—1

1 i i
P Z 2 Th ... Tixf
=0 =0
converge almost everywhere in £ as n, - oo, ..., 7, — oo independently,
provided that the function f belongs to some class L, with p > 1, in which
case the limit funetion is in L” and the averages converge to the limit
also in the LP-norm. We denote by R, the class of all funetions f such

that the integral
1f1 LF1VE
1o 24 du-
7 g o

{If1>t}
is finite for every t > 0.
‘We show that this class is a vector space which contains properly,
for any %> 0, the linear span of {J I*.

p>1
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Then we prove a weak type inequality which permits to extend
the result of Dunford and Schwartz to any function f in R,_,, where
is, naturally, the number of operators involved.

In the following section we consider the analogous extension for -

the case of continuous semigroups of operators.

As a further application, we show how the inequality yields a simple
proof of the theorem of Jessen, Marcinkiewicz and Zygmund on strong
differentiability of multiple Lebesgue integrals.

Acknowledgments. The author is deeply indebted to Professors
N. M. Riviére, R. V. Chacon and E. B. Fabes of the University of Minnesota
for their generous help. Thanks are also due to the Institutions that
supported this research:-
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Repiblica Argentina

Universidad Nacional de Cuyo.

2. Maximal ergodic inequality. Let us consider a linear operator 7
- defined on the clags I' + L™ of all functions f which can be written as
the sum of a function ¢ in I' and a function h in L*. We will assume
that (i) f > 0 implies Tf > 0, (ii) ||T]; <1 and ||T}, < 1. Such an operator
is usually called a positive contraction of L' and of Z*. In all the problems
connected with convergence in some gsense of the averages
n
Af ___f—{—Tf—l— w1
n-1
an important role is played by a weak type estimate whose statement,
given below, is known as the maximal ergodic theorem.
" The maximal ergodic operator M is defined by the expression

Mf(@) = sup|d, (@)

TeEOREM 1. If f is a function én L', and for a given 2> 0 we put

B = {Mf> 1}, then
1
;) <7Eflf\dﬂ-

For the proof of Theorem 1 we refer to [6].

Let (X, u) and (Y, ») be measure spaces. We say that an operator T,
mapping measurable functions from the first space into measurable
functions from the second, is sublinear if

IT(f+9)l < |Tf| +|Tgl,
IT(ef)l = lel - |Zf].

icm°®
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We. say that T' is of weak type (1,1) if there exists a constant C,
such that

w{Tf > B <2 |fl,

for any 4> 0 and any f in the domain of T.
For example, the maximal ergodic operator is clearly sublinear and
Theorem 1 implies that it is also of weak type (1, 1).

3. The Hardy-Littlewood maximal theorem. If for any integrable
function f on the unit interval, we define

I3

[ ywiay,

a

Mf(z) = sup

a<a<f ,5 —a

then the maximal theorem of Hardy-Littlewood asserts that M is of
weak type (1,1); more precisely that =

1

i >y <> [ |flam,

0

where m denotes the Lebesgue measure.

For a proof of this theorem we refer to [7].

Repeated use will be made of the following.

LevmMa 3. Let o(t) be a non-decreasing function on the veal imterval
0 <t << oo, such that p(0) =0 and @(t) is absolutely continuous on every
finite subinterval. ’

Then, for any mon-negative function f on a measure space (2, F, u)
and any set B in §, we have )

oo

[olf@}uldo) = [ w(E n{f>1))g ).

b ¢
Two particular cases of this formula are important:

oo

[ w(® >t

0

(1) If ¢(t) =1, we obtain [ f(z)du =
B

@) If p(t) =% with p> 1, then [ fPdu=p [ p{f>1¥  du.
2 0

For a proof of these results we refer again to [7].
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4. The ergodic theorems of Dunford and Schwartz.

THEOREM 2. Let T;, i =1,2,..., %k be linear operators in I} with
1T <1, and T3l <1, ¢ =1,2,..., k. Then, for every f in I* wip,
1< p< oo, the multiple sequence '

ny~1 np—1

1 i
— Ta... TF
nl...nkz 2 e )

=0 =0

converges almost everywhere as my — co, ..., m, — oo independenily.

THEOREM 3. Let the semigroups {T,(1),t 2 0}, 4= 1,2, ..., & be strongly
measurable semigroups in L' with T, <1 and |T;(0)|. < L. Then,
Sfor every f in LP with 1 < p < oo, the functions

1 o1 o .
P f f Talt) - L) ..

converge almost everywhere as 0 = 00, ...y oy —> 0o independently.

For the proofs see [4] or [5].

We will denote as usual by L(log*tL)* the class of all functions f
such that f(log™|f|)* is integrable over the underlying space.

The Greek letter y with a set as a subindex will indicate the charac-
teristic function of the set. A transformation o: Q — Q of (2, F, u) into
itself is ealled measure-preserving if for each He &, we have

o B)eF, (o B) = u(H).
. The Lebesgue measure of a set B will be denoted either by m¥ dr
y |E|. . -

I. WEAK TYPE INEQUALITIES FOR PRODUCT OPERATORS

1. Maximal operators and classes E,. ‘
Let (2, %, u) be a o-finite measure space. Having in mind the prop-

erties of the maximal ergodic operator and those of the Hardy-Littlewood.

pnaxima.l .operator, we shall say that an operator M. , defined on L'+ L%,
18 & maximal operator if
(i) f=0 implies Mf> 0,
(i) M is sublinear, )
(i) 0<f<g implies Mf< Mg,
0%) 1Sl < [ flls '
(v) M is of weak type (1, 1).

2
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We shall denote by R, (k =0,1,2,...) the class of all functions f,

.such that the integral

(1) [ itl—(log—li—l-)kdﬂ

. {lA1>8 ¢
is finite for every ¢ > 0. )
For k> 1 R, is a subclass of L(logt LY and both classes coincide
if and only if x(R)<< co. Obviously I! <« R, and L* = R, for any & if
p > 1. The last statement follows from the fact that

(log* w)* < const.:u?!  (u3=0).

The class Ry, is a vector space for any %> 0. We consider the case & > 0
and remark that a similar proof is valid for R,.

It is clear that Afe R for any scalar 1 and any f in R,. If f and g are
in R;, then

If+gl o 1f+al\*
e 28

k
< [+ [)nd (1Og+ IfI-tHgl) i
UASlaly  UA1<lgly
2 211\ 2 21g]\*
<f————]tfl (10g+—~—{tff) d’”'l'f_*ig! (Iog‘L-—ig]) dp < o
for every ¢ >0. ' . .
Among the classes R,, we have the relations
R,o R oR,>...

In order to prove this fact, we -write the integral (1) in the form

2
o )
{<ifi<aty  {lfI>2}
If f is in Ry, then the first integral is finite since u{|f| >} < oo.
The second is dominated by

! f il (Iog%)kﬂd,u.

log2 {I71>8 i

Hence E;., < Ry.
Since R, « I'+L*, it follows that any class R, is contained in

I+ ™. Finally we remark that on the realline the function f(z) = (logz)™*
-for x> 2,f(x) =0 for #< 2 is in any class R,. However f does not

6 — Studia Mathematica XLIL3
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belong to the vector space spanned by (J L”. To see this put Aty

>l
= meas{w: f(x) > t}. If it were possible to write f = fi+fa+ ... +f,,
where fie I? and p;>1, 4=1,2,...,m, then we would have Ai(t)

m t m
<)y meas{[fi] >—ﬁ}< > C;/t%. On the other hand for ¢ < (log2)™%, we
i=1 i=1

have A{t) = ¢¥*—2; hence for © > log2 we should have

m
<2+ D) Ol
=t
which is absurd.
LevumA 1. If M is a mamimal operator and f is a non-negative function

in L'+ L, then for every t> 0

e :
pidy > << | fdu.
{7>t}

If the right hand member is infinite the lemma 15 trivial; otherwise
the function f* = fyy., is integrable, and since f< f'+f, we have Mf
< Mft4-t. Hence ‘

c ¢
p{8f > 20 < il > << [ fap =2 | fap.
>4

COROLLARY. If p > 1, then

1 Mfllp < const. - |||,

The proof can be given by using the interpolation theorem of Mar-
cinkiewicz, or else directly as follows:
Assume that > 0; then

[tspan <o [ e u(f > gar<y [ ae 22 | fau
0 0 o {ef>t)

¢ %pp-C
- 2p0’fd,ufft”“2dt . & ffﬂdu.
8 3 -1
2. Principal result. By induction on %, we prove the following.
TeEeoREM 1. Let M, ..
() The operation M, ... M,f is well defined for any mwon-negative
Sfunction f in R,_, and
f k—1
) au

-y M}, be mamimal operators. Then

p{My ... Myf > 48} < © f—J:-
{f>1)

where O is a constant independent of f and of ¢t > 0.

1 -
(Ogt

icm°®
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(i) If fe Ry, then M, ... M,f is integrable over every set of finite
measure, and consequently it belongs to L'+ L™,

Proof. Let us put f' =fryys fi =Frg<y; S0 that f=f'+f,
elloo <2

(1) % =1. If fe R,, then M,f is well defined since R, = L'+ L™.
The inequality

(2) !

=—d,
f 1
>

p{M.f> 4t} < €

is obviously implied by the previous lemma.
Suppose now that fe B,. If E is a set of finite measure in £, then

o o«

[Mfap = [ w(B O {M.f> @< 4pB)+ [ p{M.f> t}ds.
F 0 4

Using (2) we see that the last integral is dominated by

~ 4 ~ 4
ofa [Lapmofauf Kot -
o 4

4 {4f>1}
4f
4f
= it =4 log*fd
Cffd,u! = at O!fogflu,<oo

since R, = L(log* L), and the theorem is proved in the case k = L.
(2) Assume inductively that the theorem holds as stated for k> 1
maximal operators and consider k-1 operators M,, M,,..., M, ,.
If fe Ry, then the operation M, ., M,... M,f is well defined by
virtue of '(ii). Moreover, from f = f*+f, we get
Mypr oo Myf < Myyy ..o Myf242t.

Hence, )
(3) u{Mysy My ... Myf > 48} < p{ My, My ... Myf* > 28}

<$ M, ... Mfap

(M M0
fzt
=C M, ... Mgdu where g =7
{Mp,... Myg>1}
In terms of the distribution function
AMr) = p{My... Mg > 1}

the last integral in (3) can be written as

@) [ (M. Myg>1} 0 {My... Myg >} dr = A1)+ f Alr)dr.
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Now we estimate each of the lagt two terms.
By our inductive hypothesis

. g [ 49\
) M) < 40 f 7(10;;—7:—) du.
{4g>r} : :
Hence
49 k-1
fz fdrw— f g(logT) au
{sg>7}

L4
4g\Ft 1 40
=40 | duyg (log—) —dr———— g(log™ 4g)*du.
Ju o]

Since log® (ab) < log* a+logtb and (a+ b)* < 2%(d*++b*) for non-negative
numbers ¢ and b, we can dominate the last integral by an expression
of the form .

4 [ gdu+B [ g(log*g) du.
By the definition of g,

Jawe [ Lol [ Hfosl) o

5 7>
and also
° i I
f glog* g)rdu = f f;(logé) dp.
{f>2} .
Hence
% ' k
(n f Mrydr < 0y f %(log%) au
T >

On the other hand, (5) yields

(8) AW <4C [ gllogdg) du = 40 f g(log™ 49)*du

{49>1}

<4 fgauinf olog" 9 d < 0, [ f-(logi) ap.
' ' gtV

From (7) and (8) we conclude that (i) is true for k-1 operators. To show
that (i) also holds we assume that fe R, +1 and compute as follows

(9) J My oo Myfdu = [ p(BO My, ... Myf > 1)) at
‘ 0

S<4p@)+ [ p{Myy, ... Mof > thds.
4

icm
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By what we proved before

a{ My ...

Mf=>8<0

iti (log %f)k dp

{47>1}

Hence, the last integral in (9) is dominated by

Gfdt f—ii(logtf)

4 {4f>1)

which is finite since R,.; = L{log™ L)

279

ofd,,;f (log )dt‘ N

k—i—l

k+1

This completes the proof of the theorem.
Finally we remark that for & > 2 the inequality of the theorem may

be written as

p{My ...

for any f in B,_,.

f +f k-1
M1f>4t}<agf—t(1og ?) ‘d,l

f Floghf)+iau

3. Application to almost everywhere convergence of operatoi' averages.
Suppose that we have % linear operators T; (1 = 1,2,
the class I'+ L™, such that [T}, <1, [|Tille < 1.

We also assume that each T; is a positive operator, that is, f >0

implies T;f > 0.

., k), defined on

In order to study the behavior of the multiple averages

A(ny, ..., n)f =——17k2 2

ny—~1 np—1

i3=0

we introduce the “maximal function”

o) =

=0

sup A (ny, ..y m)f ()]

Ryeees >0

Tf

From Theorem 1, we obtain the following weak-type estimate.
THEOREM 2. There ewists a constant C, such that for every f in Ry _,

and every t> 0

wlz: fF (@) > 463 < C

Proof. If we put

M;f = sup|—

n>0

{Ifi>8

-1 T%f’,

f itl (log-u;—i.)k_1 d/f.
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then each M; is a maximal operator and

1 ny—1 Npp—1—1 1 np—1
. B .
A(nl,...,n,c)f=————«2... 2 Th... T 1( T;g«f)
Moee gy i Ny %2:0
1 7 —~1 np—1—1
<—=— .. > Th.. Ty
My gy S
<M. M.
Changing f by —f, we get
Ay, ooy m)f= — My My f
and consequently ‘
[A(Ray ooy mp)f| < My ooo M.
Hence
P,y My

and Theorem 2 follows at onee from Theorem 1. Q. E.D.

From the estimate just obtained, we derive a result on pointwise
convergence.

TeeorEM 3. If f is a function in Ry_,, then the averages A (n,,
converge almost everywhere in Q as n, — oo, ...

cooy M) f

s Ny, = o0 tndependently.
Proof. For any function g in L'+ Z®, let us define

w(g) = Lmsup A4(ng,...

Ty een N0

y M) g — liminf A (nq,...

Ty Fugg>00

y M) g

It is clear that o is subadditive and that w(g) < 2¢*. Given fin R,_,,
we select a sequence f,(n = 1,2, ...) of simple functions having support
of finite measure, such that fn -~ f pointwise and |f—f,| < |f| for
each #.

Since o(f) < o(f—fu)+o(f,), and w(f,) =0 by virtue of the
theorem of Dunford and Schwartz, we have

o(f) S o(f=f) <2(f—f)"

Hence, for every t> 0

plo(f)> 8} < p{(f—f,)* > 4} <0 =1l (log LL:M)"”IM
{f =Tyl >1) t
<C f M (log"‘ I_f;-tﬁd_)h—ld

{I71>¢3

But the last integral tends to zero as n — oo, by virtue of the Lebesgue
dominated convergence theorem.

icm°®
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COROLLARY. If p(£) << oo, then for every function f in L(log™ Ly*~!
the averages A (ny,...,n;)f converge almost everywhere in £ as n, —> oo,
.oy iy, — 0o independently.

An easy example shows that the condition u(£2)< oo camnot be
removed from this corollary. Let us consider a sequence g, G, Gay-.-
of real numbers, such that for each =, |a,| =1, and the sequence of
arithmetic means _

@yt a ...
n

+ Gpy

is divergent.
- On the real line, we consider the operators

If(#) = f(z+1), 8f(@) =f(=)

and define a function g by putting g(#) = a, ifn< s <n+1(n=0,1,2,...),
and g(z) = 0 otherwise. Clearly geLlog™ L. On the other hand, if 0 <2 < 1,

n—1 m—1

A(n,m)g(z) = -—~2 2 T 8ig(x)
=0 J=0
n-1
1 . 1
- —%—%‘T 9(@) = (agt . + )

diverges as n — oo. Actually the averages diverge everywhere.

4. The case of continuous semigroups. Let {I'(t), >0} be a semi-
group of bounded linear operators in some space L?, where 1< p < oo.
The underlying measure space being denoted by (£, &, u)-

For all the definition and results needed here we refer to [4] in the

bibliography; specifically pp. 684-687.
We say that the semigroup T'(t) is strongly continuous if

Bm [T (s)f =T (!)fllo = 0

for every f in I? and every ¢ > 0. If this condition is satistied, the integral

(L¥) f T(t)fdt can be represented as the I”-limit of the Riemann sums
0

We say that T'(t) is strongly mt-egrable over every finite interval if, for
each f in L” the function T(-)f is integrable with respect to Lebesgue
measure on every finite interval 0 < ¢ < a. If this condition is satisfied,
we have the following.
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>
b

LEeMMA 1. There exists a function g¢(t, %), measurable on the product
space [0, co) X £, which is uniquely determined up to a set of measure zero
in this space by the conditions

(1) For almost all t, g(t, -) =T (1)f.

(2) For almost all w, the function g(-, %) 8 integrable over every finite

interval and the integral f g(t, @) dt as a function of » equals (LP) f T fat.

For the proof we refer to [4], page 198, Theorem 17.

The function g(¢, #) is called a scalar representation of 7'(¢)f and
will often be denoted by T'(t)f(x)

From now on, we will consider a semigroup T'(¢), ¢ > 0, of positive
linear operators defined in the class L'+ L*. We will also assume that

(1) [1T@®)). <1 and T'(¢) is strongly continuous when restricted to I

(i) T <1 and T(f) is strongly integrable over every finite
interval when it is restricted to L*.

If f=g+h, with ge I* and he L®, we define

[ T = (I [ T@gdt+ (™) [ T()hdt.

To see that this definition is consistent, it is enough to show that
for any f in I' n L™

(M [ T@fd = (L°) [ T@fat

where ag before, the signs preceding the integrals indicate the norm with
respect to which each integral is defined. But this fact follows immedi-
ately from Lemma 1, since the L' and the L™ -scalar representations of
T()f must coincide almost everywhere on [0, oo) X Q.

Choosing “scalar representations T(f)g(z), T(t)h(z) of T(f)g and
T(t)h, we get a scalar representation

TWf (e} = T(t) g () + I (t)h(w)
and the ordinary Lebesgue integral

fT(t)f(a;)dt:f T(t)g(m)dt—{-f.’l’(t)h(w)dt

as a function of x equals the element f T'(t)fdt whose definition has just
been given.

For an arbitrary f in I'+ L%, we consider the average

ouf(@) = —(11- f T(t)f ()t
. 0
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and define the maximal ergodic operator M by
Mf(w) = sup—-l f (1) (aa)tlt'

LEMMA 2. The operator M defined by the previous equation is a maximal
operator.

Proof. First we show that M does not increase the L®-norm of
any function. Suppose that ||f]l, < oo, and define the set

B ={{ o) |TOf@)] > Ifllo} -
For almost all ¢
1T (0)f(@)] < IT @) oo < 1 llo
almost everywhere in .
Hence

[m{s: (¢, 2)e Byp(do) = m@u(B)=0,

where m denotes the Lebesgue measure. Therefore, for almost all

1T @)f (@) < [If e

almost everywhere in ?.
Consequently

18
=|[ zwi@a|<ifl
a H )
for all « and all z outside a certain set of p-measure zero which depends
only on f. This proves that ||Mfl.<<[Ifllw-

Now we prove that M is of weak type (1,1).

Let R be the set of all positive rational numbers, and consider a
function f in L.

For every ae R, we have

an!—1
1 m
- L T{—|f.
fT(tfdt Zi—lim (m!g (n!)f

Using the Cantor’s diagonal process we find a sequence n; << fp < flg < -+
such that )

angl—1
. 1 m _
}lﬂ ang! g T(%i!)f(:c) = o.f(®)
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for all e R and all # outside a set F(f) having measure zero. If we put

k-1
1 m
Uf = su -( T(—«M),
d = g ()

then for ¢ > 4y(a) and all » outside E(f), we have

any -1
. my
S CErpY 7 (2100

and consequently
limint M;f(2) > |o.f(2)|
300
for all ac R and all o¢ H(f). Hence
Mf(o) <liminf M;f(@) (o¢ B(S)).

100

. m\ _{1\™
On the other hamnd, since T{—] = T|=} ,
" "

w{Mf > 1} <

1
=l

and finally, since {Mf >t} < Liminf{M,f > 1} U B(f),

p M > 1) < limind s (L > 4 < 1.
1200

Since the remaining conditions are trivial to check, the lemma is proved.
Let Ti(%), t20, i=1,2,...,% be semigroups of positive linear
operators in L'+ L%, satisfying the conditions (1) and (ii) that follow
Lemma 1. For any f in L'+ L%, we form the averages
e %

1
Al ey lf = [ ) sa ..,
x 0

THEOREM 4. If we put
F@) = sup |d(ay, ..., )f@),
0

then there is a comstant C, such that Jor every f in Ry_, and every t > 0

piw: f* o) > 4} < 0 f}fT](log*‘ %L)Ic_ld%

] ©
Im Weak type inequalities for product operators - 285

Proof. Let us consider the “partial” maximal operator M;, defined by

M;f(%) = sup
a>0

i— of T,()f (@) dt..

‘We have
Aayy .oy ap)f
1 ay -1 1 az
= #f f T,()... Tk_l(tk_l)[—f Tk(tk)fdtk]dtl e dlyy
Gy eee Opoy o p Ay v
-1

1 M
<—f f Tyt o Ty (b ) Mif iy ... @ty
Qyeen Gy J ‘

S <My Myf

almost everywhere in .
Changing f by —f, we get

Alayy .y op)f= —M, ... M,f.
Hence
[A ey, ooy a)fI < My Myf

almost everywhere, and consequently
f*< My... Myf

except possibly in a set of measure zero. Theorem 4 follows now easily
from this relation and Theorem 1. From Theorem 4, we derive an indi-
vidual ergodic theorem.

THEOREM 5. If f is in R,_,, then the averages A (as, ..., oz)f converge
almost everywhere in Q as a, — oo, ..., a; — oo independently.

We omit the proof of this theorem, since the argument is the same
as that in Theorem 3.

COROLLARY. If u(Q) << oo, then for every fumction f in L(log® L)
the averages A (ay, ..., az)f converge almost everywhere in £ as a; — oo, ...
.oy ay — oo independently.

k-1
2

5. Application to strong differentiability of multiple Lebesgue integrals.
Let f(@) = f(#,,...,%,) be an integrable function on the unit cell (2)
0<m<l (6=1,2,...,k).

Following the usage of [8], we shall say that the integral of the
function f is strongly differentiable at the point z, if

lin: 1
11 _—
(1 sttroa M|

[rway
I .
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exists and is finite, where I denotes any cell with sides parallel to the
axis contained in £ and containing @; [I| denotes the measure, and o(I)
the diameter of I. The limit (1) will be called the strong derivative of the
integral of f at the point . It was proved by Saks that there is a function
fe I'(2) such that ity integral is nowhere strongly differentiable.

LeyMA. If for any function f in L'(Q), we define

1
1*(@) = sup= [ Ifwlay,
e 1] ;
then for evéry ¢ > 0 )
o L e LIV
m{w: [ (2) >4} <0 e log e dw,
2
where O is a constant independent of f and of 1.
Proof. Let us define the operators M, by

3
M, f(x) = sup -ﬂ—l— [F(uy @y . ony @)l dut,

a<zy<p P—d b

B
Mof@) = swp =2 [ (@, v, ..., ay)ldu,

a<wy<f ﬂ‘*ﬂ &

1 ./3
Myf(z) = sup ——— |F (@15 @y ooy w)| due.

a<zp<f f—a &

It is clear that each M is a positive sublinear operator, such that
[M:fllee < [Ifll- We want to show that M; is of weak type (1,1). Here'
iy the proof for ¢ = 1.

mis: @) >t} = [ . [ Ho: Mof (o, @, .00y 2) > 8] da, ... do,

1 1 1
. 2
<f f(-{f |f(aol,w2,...,w,ﬂ)|dw1)dm2...dmk
0 1) )

9
== I/l

Hence, each M; is a maximal operator. Finally, from Fubini’s theorem,
F<M, L My
and the lemma follows by . Theorem 1.

. COROLLARY (Jessen, Marcinkiewicz and Zygmund). If f(log™|f])*?
8 mt.egmble over 'the unit cube Q, then, at almost every point x, the Mtegml
of f is strongly differentiable and the derivative is equal to ().

@
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" Proof. For any function ¢ in I', define

. 1 oo 1
wy(w) 1“}‘(‘1)33(}’ T If 9(y)dy 1{51(111)_1? ] Ifg(y)dw
Clearly, w is subadditive, and wg < 2g*. To prove the theorem, assume
tirst that f is a simple function ; then, there exists a sequence ¢, (n = 1,2, ...)
of continuous functions such that ¢,(2) — f(2) almost everywhere in £,
and such that |@, —f| < const. .(w = 1,2,...).
- Since wf < w(f—g@,)+ 0@y, and we, = 0, we have

[{ﬂ?: of () > 8t} < [{=: “’(.f,— p,) > 81} |
E—1 -
<l (=) >4 <0 [ lf = 7l (10g+ !f~t #al ) o,

Since the last integral tends to zero as m — oo, for any ¢ > 0, the
statement of the theorem is true for any simple function f.

Suppose now merely that f is in L(log*L)* ' = R,_,, and select
a sequence f, of simple functions, such that f,(2) — f(x) almost every-
where in 2 and |f—7f,| < |f|. With the same reasoning as before,

_ PERL =
[{z: of (@) > 8t} <C’f \f tf”‘ (10g+ I/ tf"l) az

and the last integral tends to zero as n — oo, for any ¢ > 0. Hence the
limit
. 1
9@ = lim = [f@)dy (I>a)
s || 4

exists and is finite almost everywhere in £2. To finish the proof, it remaing
to show that ¢(») = f(x) a.e.

1
Let I, (@) be the cube of edge w with center at . Then the sequence
4

fy)dy
Iy(=)

converges almost everywhere to g(x) as n — oco. Since it also converges
in I' to f, we must have g(z) = f(x) a.e., and the theorem is proved.

_t
()]
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Invariant norms for O(T)
by
STEPHEN SCHEINBERG (*) (Stanford, Ca.)

Abstract. The space of continuous functions with supremum norm has a huge
group of isometries. Given a subgroup of this group ome can ask whether there is
another algebra norm for the continuous functions having isometry group containing
the given subgroup. This paper presents various constructions of algebra norms
designed to accommodate several natural groups of isometries and gives conditions .
under which certain, groups of isometries characterize the sup norm among all algebra
norms.

In many calculations on function algebras an important property
of the sup norm, in addition to completeness and the indispensible ine-
qualities defining “norm?”, is that a particular collection of mappings
of the algebra are isometric, or perhaps norm-decreasing. It is often
evident that the sup norm could be replaced by any other “invariant”
norm. This gives rise to a natural question: are there any other norms
besides || ||, which have a given invariance behavior, and how much
invariance must be imposed in order to characterize || |, among all
norms ? The purpose of this note is to exhibit several distinet norms
which are invariant under large collections of mappings and to give
conditions sufficient to ensure that a norm must be identical with the
sup norm. For simplicity let us consider C(T), where T is the circle.
Generalizations to C(@), @ a compact abelian group, and in some cases
to C(X), X a compact Hausdorff space, will be apparent.

If || || is an algebra norm for O(T), then |[fll = (flw, by & theorem
of Kaplansky ([1], Theorem 6.2). An algebra norm is complete if and
only if || flo<| < K| o, for some K < co. A theorem of Bade and
Ourtis ([2], Theorem 4.1) asserts that |f|| < K ||f|l for all f vanishing on
a neighborhood of a certain finite set, which may be empty. If || [l is
translation-invariant (||f(t+s)|| = [F@I), then it immediately follows

(*) Supported in part by NIF Grant GP-25084.
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